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Simulation of nonideal gases and liquid-gas phase transitions
by the lattice Boltzmann equation
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We describe in detail a recently proposed lattice-Boltzmann model [X. Shan and H. Chen, Phys.
Rev. E 47, 1815 (1993)]for simulating Sows with multiple phases and components. In particular, the
focus is on the modeling of one-component Quid systems which obey nonideal gas equations of state
and can undergo a liquid-gas-type phase transition. The model is shown to be momentum conserving.
Prom the microscopic mechanical stability condition, the densities in bulk liquid and gas phases are
obtained as functions of a temperaturelike parameter. Comparisons with the thermodynamic theory
of phase transitions show that the lattice-Boltzmann-equation model can be made to correspond
exactly to an isothermal process. The density pro61e in the liquid-gas interface is also obtained as a
function of the temperaturelike parameter and is shown to be isotropic. The surface tension, which
can be changed independently, is calculated. The analytical conclusions are veri6ed by numerical
simulations.

PACS number(s): 47.55.Kf, 02.70.—c, 05.70.Fh

I. INTRODUCTION

Since the lattice-gas automaton (LGA) was introduced
[1—3] as an alternative method for simulating Huid Hows,
a great amount of eff'ort has been devoted to develop-
ing models for various physical systems [4]. In a LGA
model, both space and time are discrete and particles
move along links on a regular lattice and collide with
each other on each lattice site according to some prop-
erly designed rules and conservation laws. A set of Huid

equations can be derived describing the macrodynamics
of the system which, under proper limitations, lead to
incompressible Navier-Stokes equations.

Although the LGA ofFers a simple and efficient tool for
simulating some fluid Hows, it is difficult to achieve high
accuracy with the LGA because of its statistical noise.
Moreover, it usually suffers from other problems includ-
ing a lack of Galilean invariance and velocity-dependent
pressure, unless some special procedures are taken to
eliminate them [5]. To overcome these problems, an alter-
native approach, known as the lattice-Boltzmann equa-
tion (LBE) method [6—8], was derived from the LGA. In
this method, rather than following dynamics of the par-
ticles, a Boltzmann equation governing the evolution of
the particle distribution function is directly solved. The
solution, after some simple mapping, can be shown to
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obey the desired Huid equations under certain conditions

[9,10]. While having inherited the major advantages of
the LGA in simulating fluid Bows, such as the computa-
tional simplicity and the ease in handling complex bound-
ary conditions, the LBE method is free of the problems
mentioned above.

There have been LGA models proposed for simulating
Hows with multiple thermodynamic phases. One of the
first models was constructed by Chen et al. [11]in which
the particles interact according to a nearest-neighbor po-
tential. The thermodynamic properties are equivalent to
that of the Ising model so that phase transition and the
critical point is exactly known [12]. However, the mo-
mentum exchange in this model does not correspond to
that in a real Quid. It cannot be used for simulating
realistic Quid Bows.

Alternatively, Appert et al. [13—15] proposed a mornen-
tum conserving LGA model for simulating the liquid-gas
phase transition. In their model, particles over several
lattice sites can interact with each other. As the range of
the interaction exceeds a certain critical value, a liquid-
gas type of phase transition is observed. Nevertheless,
this model suffers &om the shortcomings of the usual
LGA models, especially the lack of Galilean invariance
which becomes severe when there is a large density vari-
ation. Moreover, the surface tension in this model de-
pends on the orientation of the interface with respect to
the lattice structure [15].

In a previous paper [16],we presented the basic idea of
a LBE model for modeling Bows with multiple thermody-
namic phases based on nearest-neighbor interactions. In
addition to the advantages of the LBE models, it offers
some features highly desirable in simulating multiphase
Bows. First of all, it is computationally eKcient since
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for most purposes, the nonlocality can be restricted to
nearest-neighbor interactions. The additional computa-
tion involved in such a nonlocal interaction is equivalent
to that of a streaming step, which can be efBciently im-
plemented on parallel computers. Second, it can handle
Quid systems composed of arbitrary number of compo-
nents, each of which can have different mass and trans-
port coefBcients. Third, the equation of state is exactly
expressed in terms of the interparticle potential and can
be tuned to precisely match any given functional form.
When the equation of state is properly chosen, a liquid-
gas phase transition can occur. Critical phenomena can
be studied since the critical point is analytically calcula-
ble.

In this paper, we focus our attention to the application
of this model to one-component systems and discuss in
detail the equilibrium properties when a liquid-gas phase
transition is allowed. In Sec. II, we present the details
of the interparticle interactions and show the momen-
tum conservation in a global sense. The liquid-gas phase
transition is shown to occur when the interparticle poten-
tial is properly chosen and a temperaturelike parameter
is below a critical value. In Sec. III, the two-phase co-
existence curve is calculated analytically &om the micro-
scopic mechanical balance condition. The pressure tensor
is given in analytical form, from which the density profile
across the liquid-gas interface is obtained. The surface
tension is also calculated as a function of the temper-
aturelike parameter. Comparison with thermodynamic
predictions reveals that this LBE model corresponds to
an isothermal PVT system when the interparticle poten-
tial is chosen to be in a particular form. In Sec. IV, the
analytical results are veri6ed by numerical computation.
The agreement between the theory and the simulation is
found to be excellent. The density profile is also shown to
be isotropic with respect to the underlying lattice struc-
ture. Finally in Sec. V, we offer further discussion and
suggest some future research directions.

II. LATTICE-BOLTZMANN MODEL W'ITH
PAIRWISE INTER-PARTICLE POTENTIALS

1 —d() D „n'q(x) = n(x) + e . u
b c26

D(D+ 2) D+ ee:uu — u

l 2n', q(x) = n(x) do ——,u',

at long-wavelength limit, Navier-Stokes equations with
an ideal gas equation of state

c'(1 —do)
D

will be obtained from the kinetic equation (1). The corre-
sponding kinematic shear viscosity v is c (r —2)/(D+2)
and the bulk viscosity q is doc (7 —2)/D. In the equa-
tions above, n(x) = P n (x) and u = P e n (x)/n(x)
are the particle number and the Quid velocity at lattice
site X. 6 is the number of total links connecting a lattice
site to its nearest neighbors. The velocity vectors are
represented by e (a = 1, . . . , b) with magnitudes equal
to c, the lattice constant divided by the time step. D is
the dimension of the chosen lattice [3]. The constant do
is the equilibrium fraction of particles with zero speed. It
can be easily verified that with the equilibrium distribu-
tion function n'q so chosen, the BGK collision operator
on the right hand side of Eq. (1) conserves the total par-
ticle number n(x) and the total momentum P e n (x)
at each site.

To simulate nonideal gases and their mixtures, long-
range interactions between particles must be included.
Since particles then exchange momentum through the
long-range attractive or repulsive forces in addition to
short-range collisions, sitewise momentum conservation
must be abandoned. In a previous paper [16], we sug-
gested the inclusion of effects of the interparticle forces
in a system composed of S components by defining a po-
tential of the following form:

We recall the one-component lattice-Boltzmann equa-
tion with the Bhatnagar-Gross-Krook (BGK) [9,17] col-
lision term:

V(x, x') = ) ) G -(x, x')g (n (x))g (n (x')),
a=1 cr=l

n (x+ e, t+ 1) —n (x, t) = ——n (x, t) —n ~(x, t)j

where the distribution function n (x, t) at lattice site x
denotes the particle population moving in the direction
e, n (x, t) is a prescribed equilibrium distribution func-
tion, and 7 is the collision time [9]. It has been shown

[9,10] that if the equilibrium distribution function is cho-
sen to be

where n and n are the number density of components 0.

and o.. Since in a lattice model, particles reside on lattice
sites with fixed distance between each other, the num-
ber density on each site also determines the average chs-

tance between particles. The potential is then made to be
proportional to the products of local "effective masses"

(n ), which are functions of local densities and are
defined individually for different components. Although
the exact mapping is currently unknown, the forms of the
Q's control the detailed nature of the interaction poten-
tial and determine the equation of state of the system.
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The forces between different components can be either
attractive or repulsive and can have different strengths,
as defined by the Green's function G -(x, x.'), which is

reduced to G -(~x —x'~) in homogeneous systems.
In the case of a one-component system with nearest-

neighbor interaction, the Green's function is further re-
duced to a single number g, namely,

With the new equilibrium distribution function given

by Eqs. (2) and (7), following the same Chapman-Enskog
procedure [3], we have previously shown [16] that the
Navier-Stokes equation with the equation of state

C b
p = —(1 —do)n+ —gg (n)D 2

fx —x'f ) c
[x —x'[ = c,

which measures the strength of the interactions among
the particles on the nearest-neighboring sites. The long-
range force due to the potential Eq. (4) acting on the
particles at site x is then

F(x, t) = —gg(x, t) ) g(x+ e, t)e, (6)

where g(x, t) = @(n(x,t)). To reflect the momentum
change caused by this force at each time step, we let u
in the equilibrium distribution function given by Eq. (2)
be

b 5

u= ) e n (x) —egg(x, t)) Q(x+e, t)e
n(x)

(7)

bP = —g) ) g(x)g(x+e )e .
x a=1

By replacing the dummy variable e with —e, the above
is also equal to

b,P = g) ) g(x)@(x—e )e .
x a=1

The second term is the momentum change due to the
long-range force between particles at site x and its near-
est neighbors.

With this choice of interaction, although the momen-
tum is not conserved by the BGK collision operator at
each site, it can be easily shown that the total momen-
tum is indeed conserved. At each step, summing over all
the lattice sites, we have the following net momentum
change:

can be obtained. Fluids with a quite general class of
equations of state can then be modeled by selecting the
function g(n). Once the function g is properly chosen,
this equation of state will exhibit many essential features
of a liquid-gas phase transition. In the limit of weak
nonlocal force, namely, g -+ 0, Eq. (11) approaches the
equation of state of an ideal gas given by Eq. (3) with a
constant temperature proportional to g (1 —ds). As the
parameter —(1 —ds)/g decreases below a critical value
(either by increasing the interparticle force or increas-
ing the rest particles at each site), pressure p becomes a
nonmonotonic function of n, qualitatively similar to the
van der Waals equation of state for many choices of g,
e.g., Q(n) = 1 —exp( —n) [16]. The unphysical negative
compressibility dp/dn corresponds to a thermodynamic
instability and the system will segregate into a denser
(liquid) phase and a lighter (gas) phase. The critical
value of (1 —ds)/g will be given by the following two
equations:

Bp cg (I do

a~ Dq g
(12)

The equation of state (11) gives a relation between the
pressure and the density, similar to an isotherm in a PVT
system. The parameter —(1 —ds)/g formally plays the
same role in this LBE model as the temperature in the
van der Waals theory of phase transition. However, it
should be noted that the original kinetic equations (1),
(2), and (7) do not imply explicit energy conservation.
The existence of an energylike quantity is unknown at
this point. As a consequence, this LBE model does not
have a well de6ned statistical mechanical temperature
and, in general, the correspondence between the LBE
model and an isothermal process cannot be established.
A more detailed discussion will be given later in Sec. III.

b,P = g) ) vP(x+e )vP(x)e = —b,P,
x a=1

(10)

and hence AP = 0. In another words, no net momentum
change is incurred by the interaction between particles
introduced above. Same conclusion can be proved for
systems with more than one component.

If the boundaries do not introduce any moment»m Bux
into the system, then x can be viewed as a dummy vari-
able. Let x' = x —e and then drop the primes, the
above equation becomes

III. EQUILIBRIUM PROPERTIES

It is of great interest to calculate the coexistence curve
for a two-phase system. For the PVT system, the co-
existence curve is given by the procedure known as the
Maxwell construction, which requires that the Gibbs po-
tential is minimized around the phase transition where
it is triple-valued. But for the current lattice Boltzmann
model, there is not a priori an explicit energy conser-
vation relation. %'hether one can find an effective &ee
energy for this system is still unknown. However, the
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simplicity of the form of the interparticle force in our
model enables us to obtain, &om the microscopic me-
chanical balance conditions, the coexistence curve as well

as the density profile across the liquid-gas interface. The
surface tension can also be calculated once the pressure
tensor and the density profile are known.

We consider the one-component lattice Boltzmann
model with nearest-neighbor interaction as described in
Sec. II. The momentum flux tensor comprises a kinetic
term due to the &ee streaming of the particles and an
additional potential term from the long-range interparti-
cle force. For the interparticle force given by Eq. (6), the
momentum Qux tensor is

II = ) n e e + —g(x) ) g(x+ e )e e,

where the Erst term is the conventional kinetic term and
the second is the potential term. We consider the system
in equilibrium, namely, n (x, t) = n (x). We further
assume there is no net mass transfer along any of the
links connecting two lattice sites. This can be expressed
as

n-(x) = n (x+ e ) for e = —e-. (14)

For a homogeneous density distribution, the Quid veloci-
ties before and after the collision step equal to each other
and vanish when the system is in equilibrium. But they
are not equal in the interface region due to the momen-
tum change included in the collision step. Neither veloc-

ity is zero in this interface zone. However, the magnitude
of the fluid velocity of the equilibrium distribution given

by Eqs. (2) and (7) can be calculated. Multiply the lat-
tice Boltzmann equation (1) by e and sum over a. Tak-

ing into consider Eq. (14), we have, for steady state, the
following equation at each site

1 —dp 2 c2bg 2 cbg
D

'"' 2D~ +4D(D+2)
c bg+ @VV'Q

4b2 2

(19)

where I is the unit tensor. In a homogeneous Quid where
all the derivatives vanish, the pressure tensor is isotropic,
and once again we obtain the equation of state Eq. (11).

In order to calculate the density profile across a liquid-

gas interface, we consider a Qat interface coincident with
the x-y plane separating the two phases. The densities
in the bulk liquid and gas phases are nr and ng, respec-
tively. We choose the point where n = (n~ + ng)/2 as
the origin of the z axis without loss of generality. All the
variables vary in the z direction only, so that n = n(z)
and t9/Dz = 0/By = 0. In this situation, the pressure
tensor p becomes diagonal:

p(x) = p»(z)e~e~ + p»(z)e„e„+ p»(z)e, e„(20)

pz~ =Pa = 1 —do 2 c2bgcn+
2D

3bc4g «(dna, d2n
+4 D(D+)20

0"
lkdz l +0 dz2 ( )

where its transverse components p (z) = p„„(z)
[= pT (z)] because of the symmetry. The normal com-
ponent p~(z) = p„(z) = pp must be a constant follow-

ing the mechanical balance condition V p = 0. The
constant po is the hydrodynamic pressure in either bulk
phase. For a low-viscosity Quid, we can ignore the last
term in Eq. (19), since r —

2 v «1. The normal
component of the pressure tensor p„can then be further
reduced to

(i6)

We can then solve for u'~ from the equations above and
obtain the following equation:

1 c b

2y Dn (17)

Substituting the equilibrium distribution given by
Eqs. (2) and (17) into Eq. (13), and using the follow-

ing Taylor expansion of Q(x+ e ):
1

@(x+e ) =@(x)+V/ e + —VV@:e e
2

we obtain the pressure tensor

where u'i = P e n'& is the velocity in the equilibrium
distribution function and

c2b
nu'~ = nu —g~Q) e Q(x+e ) nu —gr /VS. 1 —do 2 cbg

c ni+ Q (ni)2D

1 —dp 2 c2bg
c ng + g (ns).2D

(22)

This is simply the equation of state written for the
two bulk phases. Equation (21), coupled with Eq. (22)
through the unknown constant po, is the equation from
which the density profile n(z) is to be solved with the
boundary condition dn/dz = 0 at z = +oo. A simple
change of variable can reduce it further to obtain a formal

d2
solution. let (dn/dz) = y and notice that &,, ——2P;
then Eq. (21) will be transformed to the following first-
order differential equation of y:

1 —dp 2 cbg 2 3cbg
D ~ 8D(D+ 2) ~ dn

where g' = dg/dn and Q" = d2$/dn2. In either of the
liquid and gas phases far &om the interface, the pressure

po satisfies the following relation:
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8D(D + 2) & 1 —dp

3c4bg@'2 ( D

!

4(D + 2) (2Dpp 2(1 —dp)
3c2@'2 ( c2bg bg )

n

ln(@)dn,

czbg 2) dg
2D

g2
ln vP

——
2

(24)

where the pressure pp and the integration constant will
be determined by Eq. (22) and the boundary conditions

y(ni) = y(np) = 0. To be compatible with these bound-
ary conditions, we must have

"' ( 1 —dp 2 csbg
! pp — c n — @ !

dn=—0.

where @(n) is a known function of n and all the deriva-
tives are with respect to n. By direct integration, we

obtain the following solution:

1 —dp 2 c2bg 2) 1
! pp — czn — $2

!
dn —= 0.

D 2D &
n2 (30)

Compared with Eq. (25), we find that the coexistence
curve of the LBE model will not agree with the thermo-
dynamic theory unless we chose the function Q to have
the form

It is interesting to compare the above results with
the classic thermodynamic theory of phase transition in
PVT systems [19,20]. If we take Eq. (11) as an isotherm
of a PVT system, the Maxwell equal-area construction
[which requires J"'(pp —p)dv = 0, where v 1/n is
the molar volume and v& and vs are its values in the liq-
uid and gas phases] yields the following equation for the
coexistence curve:

g(n) = @p exp( —np/n), (31)
From Eqs. (25) and (22), we are able to determine the
pressure pp and the densities ni and ns in the bulk liquid
and gas phases for any given parameter (1 —dp)/g. This
defines the coexistence curve of this LBE model.

Once the pressure pp and the densities ns and ni are
determined, y(n) = (dn/dz)2 is completely known. The
function y(n) and the densities ns and ni depend only
upon a single parameter (1 —dp)/g. The density profile
n(z) across the liquid-gas interface is then given by the
following equation:

(n~+nI )/2
(26)

cT = Pp —PT z. (27)

Using the expression for the pressure tensor given by Eq.
(19), we have

4bg d2@
0' =

2D(D + 2) dz2
vP dz. (28)

Integrating by parts and considering the boundary condi-
tion that d@/dz = 0 at z = koo, we obtain the following
equation:

C4 @"[y(n)]'~2dn,

where the right hand side is a function of (1—dp)/g only.
Since n(z) also depends only on (1—dp)/g, we are able to
change the surface tension independently of the density
profile.

which in general cannot be expressed in terms of ele-
mentary functions except for some very special choices
of @(n).

The calculation of the surface tension is straight for-
ward. By definition [18],in the case of a fiat interface, the
surface tension can be calculated &om the components of
the pressure tensor as the following integral across the in-
terface:

where gp and np are arbitrary constants. This is not
surprising since there is neither an energy-conservation
relation guaranteed by the kinetic equation nor a well-
defined temperature in this LBE model. Therefore the
LBE model does not necessarily correspond to an exact
isothermal process. Nevertheless, if we indeed choose g
to have the form of Eq. (31), the behavior of the LBE
model will be consistent with that of an isothermal pro-
cess and the parameter (1 —dp)/g can be used as a tem-
perature scale. We can also derive from the "isotherm"
(11) an efFective Gibbs potential which is always mini-
mum near phase transition, even though we do not have
energy conservation in the model.

IV. SIMULATION VERIFICATION

In this section, we verify the results of Sec. III by solv-
ing Eqs. (22), (24), (25), and (29) numerically and com-
paring the solutions with simulation results. We chose
the function Q(n) to be 1 —exp( —n), the same as in
a previous paper [16]. On a two-dimensional hexagonal
lattice, the critical point of the system can then be calcu-
lated &om Eq. (13) as —(1 —dp)/g = 1.5, at the critical
density n = ln 2 0.6931.

Numerically solving the density profiles &om the equa-
tions derived in Sec. III is a complicated procedure. First,
for a given value of —(1 —dp)/g, the integral on the left
hand side of Eq. (25) is a function of pp, where the inte-
gration limits ns and ni have to be solved &om Eq. (22)
for given pp. We can then solve pp together with n~ and
ni by finding the root of this function. Once ns, ni, and
pp were obtained, y(n) was found by integrating Eq. (24).
The density profile n(z) can then be easily solved from
(dn/dz) 2=y. Integrating Eq. (29), we obtain the surface
tension. The whole calculation takes a few seconds on a
Gray- YMP C90 computer.

The simulations were carried out on a two-dimensional
hexagonal lattice. In most of the calculations, the colli-
sion time ~ is chosen to be 0.6 unless otherwise specified.
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We first verify the numerically calculated coexistence
curve and the density profiles by simulations on. a 64 x 256
lattice. Periodic boundary conditions are used in both di-
rections. The initial density distribution was so set up
that the density in half of the domain is higher than
that in the other half. When the system reaches equili-
rium after about 10 iterations, a Hat interface parallel
to the shorter edge of the rectangular domain forms in
the middle. The densities in the bulk phases are then
measured for different values of —(1 —do)/g and plotted
in Fig. 1. The numerical solution of Eq. (25), shown as
the solid line, is found to be in very good agreement with
simulation results. In Fig. 1, we also demonstrate the
deviation from the coexistence curve predicted by the
M 11 construction shown as the dashed line. T is

25')curve is obtained by solving Eq. (30) instead of Eq. ( )
with the same procedure. The difference is small but no-
ticeable, especially when —(1 —do)/g goes far below the
critical value. Of course, this difference will not exist if
the efFective mass g(n) is chosen to have the form given

The density profiles for several different values of the
temperaturelike parameter below its critical value are dis-

p aye in ig.l d
' F' . 2. To examine the isotropy of the surface

tension, for each value of —(1—do)/g, we performed two
simulations in which the angles between the normal vec-
tor of the interface and the lattice links are 30' an 0',
respectively [15]. The measured density profiles in both
cases are displayed. No significant difference between
these two cases is found. The isotropy of surface tension
in this model is also evident as the previously displaye
bubbles [16]are circular. Here all the measurements were
made at one cross section and at one time without any
kind of average. The lines shown in Fig. 2 are the den-

sity profiles solved from Eqs. (21) and (22). The analyti-
cal predictions are again in excellent agreement with the
simulation results. It is also seen that when the temper-

1.55

1.6-

0.4 ==-

0.2:- =

0
-10 -5 10

FIG. 2. The density pro6les across the liquid-gas interface.
Solid lines are solved from Eq. (24) by numerical integration.
For eac va ue oF r each value of —(1 —do)/g, results of two simulations with
the angle between the normal vector of the interface and the
lattice n s eing anli k b 30' nd 0' are shown. No signi6cant differ-
ence is found between them. As —(1 —ds)/g approaches the
critical value, the distinction between the two phases becomes
negligible.

~ ~

aturelike parameter —(1 —do)/g approaches the critical
point, the distinctions between the two phases become
smaller and will eventually vanish at the critical temper-
ature.

Plotted in Fig. 3 is the surface tension scaled by the
factor 1/g, numerically evaluated using Eq. (29), as a
function of —(1 —do)/g. It is a monotonically decreasing
function which goes to zero at the critical point. The
agreement with the Laplace law was verified by simula-
tion on a 128 x 128 lattice. For initial conditions, we
set up a circular high-density region in the center of the
d Wh the system reaches equilibrium, a liquidomain. en
bubble in very good circular shape forms and t e u-
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0 0.2 0.4 0.6 0.8

n
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1.2 1.4 1.6 1.8 2

0.02—
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FIG. 1. Coexistence curve when the function g is chosen to
be 1 —exp( —n). The critical point is at —(1—do)/g = 1.5 and

= 1 2 0.693. The solid line is the solution of Eq. (25)n~= n . . e
Maxwelland the dashed line is the solution to Eq. (30), the Maxwe

construction. Both of them are obtained numerically. The
diamonds are the results of numerical simulations.

l0
1.2 1.25 1.3 1.35 1.4 1.45 1.5

-(1-do)/G

FIG. 3. Surface tension, scaled by 1/g, as function of
—(1 —ds)/Q. This curve is obtained by numerical integra-
tion using Eq. (29).
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cr
pin pout (32)

where R is the radius of the bubble. Plotted in Fig. 4
are the measurements and straight lines drawn with the
slopes given by the numerical solution of Eq. (29). The
two cases are for —(1—do)/g = 1.3 and 1.4, respectively.
The agreement between the simulation and the analytical
results is good.

As a simple application, we compute the dispersion re-
lation of the capillary waves. In the absence of gravity, at
long-wavelength limit, the dispersion relation of capillary
wave on a free surface is (see, e.g. , Ref. [22]):

(33)

ble radius and the pressure difFerence inside and outside
the bubble are then measured. According to the Laplace
law, for a two-dimensional circular bubble, the pressure
difFerence p; —p „t and the surface tension cr are related
by

0.01
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FIG. 5. Dispersion relation of capillary wave at a liquid-gas
interface. The diamonds are measured from lattice Boltz-
mann simulations and the dashed straight line is given by
Eq. (33).

where 0 is the surface tension and p is the deasity of
the Huid. The dispersion relation given by the lattice-
Boltzmann model was measured by examining a stand-
ing wave at a liquid-gas interface. The simulations were
carried out on a rectangular domain, measuriag L x H in
lattice unit, with periodic boundary conditions in both
directioas. Initially an interface parallel to the shorter
edge was set up in the middle of the domain. A sin-

gle sjnusoidal wave with wavelength I was imposed on
the interface and the amplitude of it was subsequently
measured. To make the effects of finite water depth neg-
ligible, the aspect ratio of the domain H/L has to be

large and was chosen to be 4:~z here. The maximum
value of the wave aumber k = 2m/L that can be simu-
lated is limited by the fact that the wave amplitude has
to be much larger thaa the thickness of the interface but
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FIG. 4. Laplace law tested by numerical simulations. The
marks indicate measured pressure differences inside and out-
side a 2D circular bubble p;„—p „t,versus the reciprocal of the
measured bubble radii. The lines are the analytic predictions.
The two cases are for —(1—do)/g = 1.3 and —(1—do)/g = 1.4.

much smaller than L. Four simulations with wavelength
L = 256' 3, 128~3, 64v 3, and 32+3 were performed.
The aagular frequencies u are plotted in Fig. 5 versus
wave numbers k, together with Eq. (33). From the plot,
the comparison is quite satisfactory. In these simula-
tions, the parameters are —(1 —do)/g = 1.1, de ——0.5,
and w = 0.6, The surface tension and the densities of the
two phases are 0 = 0.40, n~ = 0.063, and nI, ——2.23.

V. DISCUSSION

We have described in detail a lattice-Boltzmann model
for simulating Huids obeying a nonideal gas equation of
state. The equation of state can be changed arbitrarily.
With a properly chosen equation of state, the LBE model
can undergo a liquid-gas phase traasition. In addition
to the equation of state, we gave the bulk densities and
the density profile at equilibrium, all as functions of a
single temperaturelike parameter. The surface tension is
also given by numericaI integration and it can be varied
independent of the above equilibrium properties.

This LBE model provides an efficient method for sim-
ulating Hows involving interfaces and phase transitions.
Phenoxnena near a liquid-gas critical point can also be
simulated. The advantage over other LGA or LBE mod-
els developed for similar purpose are apparent, since in
addition to its coxnputational ef5ciency, almost every-
thing with this model is known and can be changed to
fit any desired properties.

The collision time v should be xnade to depend on the
local density when sixnulating a fluid system with large
density variation, so that the two phases will have dif-
ferent transport coe%cients. The equilibrium properties
discussed in this paper will not be altered by this change.

As we have pointed out before, the long-range inter-
actions in systems with multiple coxnponents can also be
treated in LBE xnodel using the same scheme. The phase
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diagrams of such a system are more complicated and re-
main to be calculated. En general, work similar to that
contained in this paper can be carried out for the multi-
component system as well. This is necessary before this
method can be applied to practical problems to produce
accurate quantitative results.

The major weak point of this model, we believe, is the
lack of an energy conservation relation and a dynamic
temperature equation, in spite of the fact that a static
temperature can be identi6ed with a particular choice of
the effective mass. Although lattice-Boltzmann models
with more speeds can be constructed to enable energy
conservation [21], it is difficult to incorporate into it, at
least with the scheme discussed here, the correct non-
local interparticle forces and conserve the total energy at
the same time. This is mostly due to the discrete lattice

e8ect, that each time step is separated into a "streaming"
and a "collision" step. It is diKcult to keep the total
energy conserved in these separated steps.
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