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Lagrangian path integrals and fluctuations in random flow
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The problem of the asymptotic behavior of the probability distribution function (PDF) of a scalar field

advected by Gaussian random Bow is investigated using the Lagrangian path-integral approach, which

naturally captures the physics of transport and dissipation relevant to the problem. For a single-scale

random-velocity field and in the presence of a mean scalar gradient we find that the one-point PDF's of
both the scalar and its gradient have exponential tails. Under the same conditions the normalized gra-

dient skewness scales with Peclet number to approximately —0.3 power.

PACS number(s): 47.27.—i, 05.40.+j

I. INTRODUCTION

The fluctuations in turbulent flows are most naturally
quantified by a probability distribution function (PDF)
which is directly measurable experimentally [1—6]. The
PDF at a given point is constructed as a histogram of the
time series of the fluctuating field. The interesting
single-point measurements involve velocity, pressure, or
advected scalar, either passive (e.g. , a dye) or active (e.g.,
the temperature in convection). With a pair of probes or
in the presence of a mean flow, from pairs of temporal
recordings one can construct PDF's of relative velocities
or temperature differences for points separated by a dis-

tance r and, in the limit of r ~0, the derivatives. The ex-

perimental measurements of the PDF of velocity
differences (as well as temperature gradients) were report-
ed by Van Atta and Park [1], Anselmet et al. [2], and

Castaing, Gagne, and Hopfinger [3] for a variety of wind

tunnel flows. The PDF's of temperature fluctuations
have been studied by Castaing et al. [4] for turbulent

Rayleigh-Benard convection, and by Gollub et al. [5],
Jayesh and Warhaft [6], and Thoroddsen and Van Atta

[7] for externally forced fiows. While the PDF of the ve-

locity at a point (in a reasonably isotropic turbulent fiow)

is Gaussian, the PDF's of other quantities are typically
not Gaussian and exhibit characteristic long tails.

In particular, the PDF's of velocity differences for iner-

tial range separations are markedly non-Gaussian and
rather appear to fall off exponentially [1—3]. Asymptoti-
cally exponential PDF's of local temperature are ob-
served in turbulent Rayleigh-Benard convection and in
forced turbulent Bow with a large-scale temperature gra-
dient [4—6]. On the other hand, the PDF's of both veloc-

ity and temperature derivatives [1—3] in turbulent fiows

appear to have considerably slower than exponential,
perhaps "stretch" exponential, i.e., exp( —x r ), decays.

The large fluctuation statistics of the advected scalar is
qualitatively similar in its non-Gaussian nature to that of
the velocity difFerences, which suggests that much can be
learned from understanding the relatively simple problem

of a passive scalar advected by a synthetic random flow

[8—16]. Thus below we shall study the statistics of large
fluctuations of a scalar and a scalar gradient in a Gauss-
ian random flow.

In Sec. II we shall formulate the problem of the passive
scalar advected by the random incompressible velocity
field and specify the conditions under which we can solve
for the statistics of the scalar. Since the scalar is passive,
the tails of its distribution arise from the rare
configurations of the velocity field which bring an ele-
ment of the fiuid from afar to the point of observation,
without much mixing and dissipation along the way.
Even if the scalar field value for the fluid element was
close to the mean at the point of origin, at the observa-
tion point it will appear as a large fluctuation. The ap-
propriate theoretical tool for calculating the probability
of such velocity configurations is the Lagrangian path in-

tegral developed in Sec. III. The scalar PDF is shown to
be exponential (for values exceeding the variance) in Sec.
IV. The scalar gradient PDF is studied in Sec. V and is
shown to be also asymptotically exponential for a single-
scale velocity field.

II. THE PASSIVE SCALAR PROBLEM

Let us consider the passive scalar T(r}, advected by a
Gaussian random incompressible fiow u, (r) in d dimen-

sions [8,9]:

B,T+v-VT =mph' T, (2.1)

where Kp is molecular diffusivity and V' v=0. Assume a
single-scale velocity field with characteristic length scale

g and correlation time 7'

(u, (r, t)u„(0,0})=II V e '"' ~e (2.2)

where II,b ( r ) is a suitable projection operator which
makes the divergence on either the a or b index 0. Physi-
cally, the correlation time should be roughly the "eddy
turnover" time r-g/V, but it will be useful to consider
the white noise ~ g&/&V and the "frozen" random field
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~»g/V limits as well. The ensemble average in (2.2) is
over the realizations of the random field.

The scalar field is "forced" by imposing a large-scale
gradient (T(r))=g r. Let us define the rescaled fluc-
tuating scalar field 8(r):—[T(r)—g.r]/( ~g~g) and nondi-

mensionalize r/(~r, tV/g~t T.hen, for g= —x, we ob-
tain

B(8+V V8 K(} 8=U» (2.3)

where z=(Vg/ao) '=Pe ', the inverse of the Peclet
number, will be assumed small. (We will occasionally re-
store the dimensionful symbols V, g in what follows,
when we want to emphasize units. )

We shall be interested in the probability distribution
functions of the scalar at a given point,

P(8, r, t) = (5(8——8(r, t))),
and similarly for its gradient,

P(8, 8, r, t)=(5(8,8—8,8(r, t))& .

(2.4a)

(2.4b)

Since stationary statistics are expected, these PDF's will
be time independent and the ensemble average on the
right-hand side (RHS) can be replaced by the time aver-
age. Further, because of the translational invariance
(after averaging}, the PDF's do not depend on r either. It
will be convenient to work with generating functions,
e.g.,

P(A, )—:Jd8e' P(8) . (2.5)

Any distribution function involving the scalar is only
meaningful after such times as the advection and
diffusion terms have come into balance. Acting alone,
say, on initial data T ~ g r, advection will yield a Gauss-
ian scalar PDF with variance -t characteristic of a ran-
dom walk since T acts as a Lagrangian marker. Pure
diffusion will also reduce any. distribution to a Gaussian
with variance —1/t Avery phe. nomenological model in-
corporating the balance of advection and diffusion was
considered in [15,16] and shown to give exponential tails
for 8 in (2.3). Evidently, the tails of the scalar PDF arise
from improbable events in which a parcel of fluid moves
a distance »g along the tnean gradient without equili-
brating. More precisely, we show that this occurs be-
cause of fluctuations in the shear-assisted mixing rate
along a typical path [17] rather than the converse: typi-
cal mixing along an atypical jetlike path. In either event
the problem reduces to finding the probability of all ve-
locity fields which yield the desired 58 [18] or, in more
physical terms, computing the effects of dissipation in a
Lagrangian representation.

Another important aspect of physics concerns the dis-
tinction between the scalar and the gradient of the scalar.
The scalar is conserved, dominated by wave vectors

and consequently transported by the nearly
Gaussian large-scale velocity, with the smaller scales
which are present in a real high-Reynolds-number flow
acting as an eddy difFusivity. By contrast, the scalar gra-
dient is not conserved and is amplified by the strain,

which is a small-scale quantity, very non-Gaussian, and
not well characterized in the present state of turbulence
theory. While calculating the statistics of the large-scale
strain-induced mixing along the Lagrangian trajectory
will describe the scalar fluctuations, more is required for
the gradient. Experimentally, the distribution of the sca-
lar gradient is profoundly intermittent with relatively
large well-mixed regions, where the gradient is minimal,
interspersed with sheetlike high gradient structures
[3,19,20].

The calculations which follow deal with a single-scale
random velocity field [i.e., the velocity spectrum is
confined to a shell of wave numbers q -g ', as stated in

(2.2)] and small ~0, for which our approach is most trans-
parent. The Peclet number Pe=a ' should be large.
This could be achieved experimentally by adding a high-
molecular-weight dye to randomly stirred fluid at
moderate Reynolds numbers. The physics of this single-
scale regime corresponds to the Batchelor regime [8—10]
which is conventionally realized in high-Reynolds- and
high-Prandtl-number flow in the range of scale below the
viscous but above the scalar dissipation cutoff. (The k
spectrum derived by Batchelor [8] arises due to the scalar
folding into sheets of variable thickness down to the dissi-
pation scale while keeping the variance of the scalar
difference independent of the separation between points
to within logs. The experimental consequence is that if
the probe does not resolve the thinnest layers, it will aver-

age effectively over several realizations of the true single-
point scalar distribution, suppressing the non-Gaussian
aspects of the latter. This situation is to be contrasted
with the case of the Kolmogorov-like, k ~, scalar spec-
trum where the local value of 8 is dominated by the
largest-scale modes and the averaging due to the finite
probe size is immaterial. )

Physically, once Re&10, the simplest eddy-difFusion

ideas would suggest that the small-scale turbulent fluc-

tuations renormalize Kp upwards so that the effective tur-

bulent Peclet number defined for the integral scale of the
flow, g, is O(1). This would appear to completely vitiate
our approximations which require that the mixing is con-
trolled entirely by the large-scale strain rate. In other
words, there would not be a significant variation in mix-

ing time with the large-scale strain, and one would expect
a Gaussian scalar PDF. This line of reasoning we believe
to be oversimplified, because the small-scale velocity
modes responsible for the enhanced diffusivity are them-
selves only present because of the large-scale strain acting
in the same O(g) region. The simplest dimensional
reasoning makes the eddy difFusivity vary linearly with
the strain. Therefore, the mixing time varies inversely
with the strain rate, as it does (to within an unessential
logarithm) for the single-scale velocity field we treat.
Once it is accepted that the mixing time is governed by
the large-scale strain, the tails of the scalar PDF simply
reflect a certain strain history, whose probability can be
reasonably calculated within the model we employ. (A
more refined treatment of a large Re velocity field is a
problem of turbulence, not scalar advection, and beyond
our capabilities. } The situation is more complicated for
the scalar gradient and all discussion on approximations
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and applications to experiment are reserved for the Con-
clusion.

r, = lim f dr rG(o, overt)= f dt f dr vG(o, overt)
f~oo Qo

dtv r t, t

III. THE GREEN'S FUNCTION
AND THE SEMICLASSICAL APPROXIMATION

Dr exp
r(t) =r

r(t') =r'
f dt" [r', —u, (r, t")]

4z

(3.2)

which solves Eq. (2.3) with the RHS replaced by a 5-
function source. In the absence of the fiow (v, =0), the
RHS of (3.2) becomes the diffusion kernel In .general,
however, it is a functional of v(r, t) so that G(r', t'~r, t) &0
is a random number.

The velocity ensemble-averaged Green's function be-
comes again a diffusion kernel (for times long compared
to ~):

The Lagrangian dynamics is made evident by the
Green's-function solution of (2.3):

8(r', t')= f dt fdr v„(r, t)G(r', t'~r, t), (3.1)

where the Green's function is defined by the path integral

G(r', t'~r, t)

=r(t, ) . (3.5)

G( 0, 0/r, t)-e (3.6)

where the only memory of the earlier history enters via

r, determined by (3.5}. Thus the fiuctuation effects that
determine the tails of P(8} are compactly parametrized
by t„ the existence of which motivates the subsequent
calculations in this section.

For
~

tt (t, , G can be calculated in the semiclassical
approximation, i.e., in the small-~ limit, where the path
integral is dominated by the classical trajectories that
minimize the action

S(t', t) = —,
' f dt "[r', u, (r, t—")]

The second equality expresses an exact property of 6,
namely, that (2.3) can be solved by initializing (2.1) with
T =x and then evolving for a long time. Evidently, from
Eq. (3.1) 8(0,0) is nothing but x, . The second line in

(3.5) recognizes that the t integral is cutoff when G
spreads sufficiently in r that the spatial integral over U

averages out. This cutofF time by definition is t, .
Finally, for ~t~ &&t„G explores a volume &&g and

therefore self-averages, so in conformity with (3.3),

-(.-., )'/4Dl fl

(G(0,0~r, t) &-e

with an effective diffusivity (in the limit of small ~u),

(3.3) This classical dynamics is defined by the Hamiltonian
H(r, p, t)=rlp2+p v(r, t), which is equivalent to the La-

grangian (r' —u)2/2. The equations of motion are

D= f dt(u, (r(t), t)v, (0,0)), (3.4)
0

given by the Taylor formula [11] involving the velocity
correlator along the Lagrangian trajectory r(t} with
r(0)=0. This expression is true for an arbitrary velocity
correlation time ~. In particular, we define the white-
noise limit r ((g/V, as being taken with D —~Vz fixed.

The behavior of the unaveraged propagator can be an-

ticipated on physical grounds, as the subsequent calcula-
tion confirms. For

~ t~ less than a velocity-dependent mix-

ing time t „G(0,0~ rt) is concentrated along the Lagrang-
ian trajectory r(t) defined by r(0)=0 and only at t =t,
acquires a spread -g, which signals the onset of dissipa-
tion. The point where the mixing turns on can be defined
as

r', =U, +p, ,

p = t} vbpb

(3.7a)

(3.7b)

The absolute minimum, S=O, is realized for p, =O,
r', =v„ i.e., the unique Lagrangian trajectory passing
through a given point. Hence, for a given v, (r, t), G is

concentrated along the Lagrangian trajectory which
reaches r =0 at t =0.

This suggests a linearized approximation for the
Green's function which is developed as follows: First, we
introduce the momentum variable p(t) as the Legendre
transform field in the path integral after shifting the vari-
able of integration r =r+g by the Lagrangian trajectory
r(t), viz. ,

0G(r', o~r, t):—fDrtexp —(1/4v) f dt'[it, u, (r+g, t')+u, (—r, t')]
t0, , 0= fDrtf Dp exp ~f dt'p—(t') exp i f dt'p—, [g, u, (r+g, t')+—u, (r, t')] (3.8)

The variable end point r' is introduced merely to allow a
spatial derivative and we continue to define r(0)=0 so
that the boundary conditions on g become g(0}=r' and

g( t ) = r r( t ). Integrate p, i), by—parts and then

Fourier-transform on the end point r via

fde(t) exp[iq [r(t)+g(t)]],
thereby obtaining
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The path integral on p itself is now trivialized as the 5
functions instruct one to initialize with q and integrate
the equation of motion (3.7b) forward along the r(t) La-
grangian trajectory. This is accomplished by the formal
but still useful expression

p, (t') =M,b(t', t)pb(t)
—f dt "m (t")

—="TIe ' ].bPb(t» (3.10)

which involves a time-ordered product denoted by T (lat-
est times on left) of the exponentiated strain matrix

m, b
= "d.vb(t—) ="d.ub(r(t), t) .

The initial condition is p(t)=q. (Derivatives on r',
which compute V8, simply bring down factors of p(0) so
in this section and in Sec. III which are devoted to the
scalar PDF we set r'=0. ) Collecting factors and

suppressing the final-space time point,
0;~.q(()

—(a'/2) f dt'p (t')

i~qr t) —(e/2)q X q=e e (3.11)

where the second equality and the linearity of (3.10)
suffice to define matrix X.

The behavior of the linearized G reduces essentially (to
an extent we quantify below) to the study of M,b(Olt)
computed along the Lagrangian trajectory. Provided the
Lagrangian trajectory traverses many correlation
volumes, t/~&&1, as in the white velocity limit, M is the
product of many uncorrelated and random matrices with
unit determinant. The multiplicative ergodic theorem
shows that an "averaged" Lyapunov exponent can be
defined as

5(p(t) —q) exp[iqr(t)] .

We now introduce the linearization, i.e., expand
u (r+2), t) to the first order in 2). In this approximation
the path integral over g is trivial and forces the semiclas-
sical equation of motion (3.7b) on the p field:

0

G(0 l }
iq, r, ( t)y —f dh'P( t')

Xe" 'u' '5(q —p(t))

X g5(p, +B,ub(r(t'))pb } . (3.9)

Its order of magnitude is -rllBull or -Dg in the
white-noise limit with D given by (3.4). Via (3.10), yt
governs the growth of all wave vectors (forward in time
from t to 0}along the Lagrangian trajectory except those
initially perpendicular to the most expanding direction of
M. Exponent yL controls the divergence of classical tra-
jectories with g(0) fixed and p(t &0)=q variable. The
adjoint of M governs the separation of nearby Lagrang-
ian trajectories as one goes from 0 to t, i.e., backward in
time.

The linearization that leads to (3.11) is only valid for
t & t, or 2) &g. (It is at this point where the single-scale
assumption on u is essential. ) Clearly, for short times and
small a, ~q X.q is &&1 for lql-g ' so G(0,0lrt) is well
localized near the Lagrangian trajectory. Thus we can
estimate t, by using (3.12) to reexpress X:

t, —
—,'yL '(v) ln[yL (u)g /~] (3.13)

or, equivalently, lG( q-g ', t, )l- —,'. Replacing y~ by

yL, (3.13) would yield the conventional estimate for the
time a random strain field takes to stretch and fold a blob
-g down to a scale on which molecular mixing predom-
inates. (The dependence of p in (3.10) on q is shown
below to be immaterial for the purposes of this section. )

The exponential growth in (3.12) greatly facilitates ap-
proximations, e.g., r~ -r(t ), in (3.5), since the arbitrari-
ness in the definition of t, occurs inside a log, and r, is

only algebraically dependent on t„i.e., (r2 ) -2Dt, . Of
course, for ltl &t„our linear approximation absurdly
overestimates the domain sampled by G (0,0lr, t), making
it grow exponentially out, whereas it should follow (3.6);
once two points are separated by more than g, the dis-
tance between them grows only diffusively. This is not,
however, a significant source of error in (3.5) since the in-
tegral terminates at t, anyway, i.e., once G(0,0lrt) is
spread over b,r )g, the integral on r over v averages to
zero.

To further validate the approximation that the distri-
bution of 8 is identical to that of x (t, }, as follows from
(3.5), we quantify the extent to which lG(q, t)l (with

q =1) is approximated by a step function 8(t+t, ) and
at the same time find the PDF of t, . Let us study the
moments

0

Q„(T)—= (IG(q, t)l'"&l, =,=(e ""fr" "
&, (3.1-4)

yL
= lim —ln[ [M(tlO)p (0)]2/p2(0) ],t~+e) 2t

where the limit exists for almost all directions of p(0)
[21]. We cannot take the infinite time limit, nor do we
want to average at this stage since it will be precisely the
ffuctuations of the norm of M(0l t}, llMll, which are of in-
terest. We therefore de6ne a U-dependent Lyapunov ex-
ponent yL (v) by

(3.12)
I

where T )0, p(t) is given b (3.10}with initial condition
p( —T)=q, and q =1. No e that the absolute value in
the definition of Q„ in (3.14) removes the r(t)-dependent
phase factor [see Eq. (3.11)], which upon averaging over
the Lagrangian trajectories would have reduced
( G "(q, t) ) to a Gaussian form even for short times t & t, .
In the white-noise lixnit ~~0, we assume that the strain
matrix m(t) in (3.10) is uncorrelated with r(t), which
remains fixed throughout, and replace the v(r, t) ensemble
average by the Gaussian average over strain:

( . )=A' ' JDm5(Trm)exp —(1/(7) Jdt[Trm+m+ Trm ]
1

0+1 (3.15)
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There is only one free parameter in (3.15) since we have assumed v is isotropic and homogeneous so that

cr d+1
(B,u B,U ) — [(d+1)5„5„—5, 5, —5,„6„,] . (3.16)

Rewrite (3.14) in discrete time with the insertion of a dummy path integral over p (t }:

Q„=JV ' fDm5( Trm) exp ——g [Trm (j)m(j)+ Trm ]
CT o

g f dp (J)5(p (j) p—+(j —1)e 'J'e™r)p(j—1))e (3.17)

where p(j)=p(jb, —T), p(N)=p(0), and the argument
of the 5 function enforces (3.7b). The integration over m
performed in Appendix A leads to a much simpler path-
integral expression,

Q„(T}=e 'i' ~i'~f dx ei'"p„(x~T),

where p„(x~t) solves

[0,——,'8 n~e "]p„(x—~t)=6(t)5(x) .

(3.19)

(3.20)

The RHS of (3.19) was normalized so that Q„0=1.
Equation (3.20) is solved in Appendix B by performing a
Laplace transformation in t and noting that the substitu-
tion z =e" reduces the left-hand side (LHS) to the Bessel
equation. The result for T )&1 is

—3/2 —( /2)Q„(T)= const X T e 'i' '(2nv) ~ Ko(2nx. ),

where we have defined x (t)= —,
' lnp (t) and y=(d +6)/2.

[The time scale has been adjusted to eliminate the strain
variance a introduced in (3.15)). Note that (3.18) sub-
stantiates several heuristic claims made above, namely,
that the mixing time defined by ~

G ( q, t, ) ~

—
—,
' can be es-

timated from M(0~t) and that the exceptional values of q
for which p does not grow according to (3.12) are imma-
terial.

By deriving Eq. (3.18), we have shown that p (t) is
governed by a log-normal ensemble with the secular
growth rate 8, ( ln ~p ~ ) =y. This growth rate was previ-

ously identified with the average Lyapunov exponent as
given by the multiplicative ergodic theorem for the prod-
uct of random matrices. Note that y -d for large d, cor-
responding to the increase of the ratio of the secular
growth rate to o in (3.14). The evolution and statistics of
p are the same as that for the "wave number" of the ad-
vected scalar structure discussed by Kraichnan [10] and
the log-normal ensemble of Eq. (3.18}makes contact with
his analysis.

The one-dimensional path integral in (3.18) is comput-
ed by observing that the term linear in i integrates to the
boundary and the rest corresponds to the motion of a
quantum particle in the potential e '. We have

—(7 /2)t~

(t, )-
t 3/2

+ I ~ ~ (3.23)

i.e., t, is asymptotically exponentially distributed.
A few remarks concerning the physics of P(t„) and the

range of validity of (3.23) are in order. The calculation
that culminated in Eq. (3.23) was a quantitative estimate
of the probability of a configuration of a random velocity
field leading to a large scalar fluctuation. These
configurations have a Lagrangian trajectory with low
strain. A crude estimate for the probability of t, = T can
be obtained by requiring the strain at each point of the
trajectory to be less than T ', which would guarantee
that p (t) remains of O(1) and, hence, negligible dissipa-
tion. Assuming an 0 (1) correlation time for m along the
Lagrangian path then yields

(1/T) = exp( —TlnT)

as an estimate of the probability of such a configuration.
This implies a P(t, ) decaying a little faster than ex-

ponential. This simple argument, however, underesti-
mates the number of allowed configurations by suppress-
ing the fluctuations of strain along the trajectory, which
are properly accounted for in (3.17) and (3.18).

A minor caveat on (3.23) will be noted. No matter
what happens with the strain, the lifetime of the fluid
parcel cannot be extended beyond ~ '=Pe since there is
no way to eliminate the molecular diffusion. The error
can be traced to the passage from (3.14} to (3.18) where
for certain improbable trajectories we allowed

0f dt exp(2x) —O(1)

which is valid for T)) ln(ns. )
' [the restriction being

imposed by the asymptotic expansion in (B7)]. The rath-
er minimal dependence of ( ~G(q, —T) ~2") on n confirms
the step-function character of G(q, —T). The probability
distribution of r„,P(t, ), is then defined by

—Br(~G(q, —T)~ ) = f dr, 5(T i. }P(—r„)=w(T),

(3.22)

where P is positive since ( ~G~ ) is monotone decreasing
and is properly normalized by virtue of

~
G (q =0)

~

= 1.
Thus, from Eq. (3.20) for t, ))( t, ) —in'
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rather than &O(T). Fortunately, this shortcoming in
our derivation only matters for 8-a ' when P(8) is al-

ready absurdly small.
The reader should now appreciate the warning given at

the end of Sec. II regarding the turbulent diffusivity.
Tails of the P(8) arise only inasmuch as the mixing time
t, can be increased beyond its average value of order
lnPe and up to Pe by controHing the strain. For large Re,
if the various scales of velocity all fluctuate independent-
ly, they all have to be suppressed to achieve a lifetime
»1, which then occurs with vanishing probability.
[Note that for a fully turbulent flow the mixing time
based on cascade ideas is O(1) rather than lnPe. ] We
will argue in the Conclusion that the eddy diffusivity fluc-
tuates with the large-scale strain in the same way as the
scalar lifetime, so that our approximation remains valid.

A final comment is due regarding our assumption that
the velocity has negligible weight for q ((1. We have fo-
cused on the suppression of mixing to generate the tails
and in Sec. IV will assume that the Lagrangian displace-
ment is Gaussian for long times. One could also ask
whether the probability of jetlike configurations of the ve-
locity field is large enough to influence the tails. The
answer is clearly no if the velocity is confined to a wave-
number shell and remains so even if the wave number is
thermal, which is an overestimate for real turbulence.

IV. SCALAR PDF

If one accepts the conclusion drawn from (3.21},name-

ly, that G(qt) behaves like e(t+t, ), then, via (3.1) and
(3.5), the 8 PDF is identical to that of x, . The latter is
Gaussian and difFusive with D given by (3.4} provided the
distances involved are g. Hence, knowing the distribu-
tion of t, from (3.23), one readily derives

—y (t~/2)
P(8)- J dt, e

, -ylel/&zD

valid for 8 larger than the variance

& 8 ) -2D & t, ) -2D ln(x ') .

(4.1)

We again see that the tails in P(8) originate from the ex-
ponential probability of low strain trajectories leading to
long lifetimes t, .

It is very instructive to recompute P(8) directly from
the definition (3.1}via the characteristic function (2.5):

P(A)=(exp Q f dt Jdr e, (x, t)G(0, 0lrt) (4.2)

and not introduce t, by hand. The exact expression (4.2)
involves correlations between 6's at different times,
whereas (3.14) and its sequel did not. We will still neglect
the correlations between the Lagrangian trajectory r(t)
and the strain inatrices m(t), which enter the linearized
6, and u„. This is most plausible for Gaussian white v
and large dimensional space, but should be reasonable for
any Gaussian v for t, ))~. With

& v„(rt),v„(r't') ) =5(t —t ')D (r r—'),
one has

P(X)=(exp —A, J dt fdqG(q)(G(qt)l,

exp P2 dt dq D q

= —2a TrM+(O, t)M(O, t) .

Denoting p (t)—:p (O~t}, we rewrite (4.3) as

~2D df ~
—2trP (t)0 2

P(z)=&e -- ) .

(4.5)

(4.6)

(4.3)

where we use p(t'~t) for the momentum in (3.10) to em-
phasize the boundary condition p(t~t) =q. For the veloci-
ty field (2.2), D (q) is nonzero only for q = 1 (in the scaled
units} and fdq D(q}-rV, i.e., eddy diffusivity. Equa-

tion (4.3) reduces to (4.1) provided t, =f dt~G(q, t)~

for q =1, which is, of course, consistent with thinking of
~
6 (q, t}

~
as the step function advocated earlier.

We now recompute the PDF. The idea is again to
reduce it to a path integral on p as in (3.17). Two tech-
nical difficulties are encountered, as follows.

(i} The fdt in (4.3) requires averaging G(q, t) at
different times which are not independent; the problem
manifests itself in the appearance of the p2(t'~t) function
with the p(t ~

t) =q boundary conditions applied at
different points with respect to the Lagrangian trajectory.

(ii) The fdt' integral appearing in the second exponen-

tial makes the path integral nonlocal in time, which
would in general require the introduction of an additional
field.

The issue of boundary conditions requires careful ex-
amination of the q dependence of ~G(q, t)~ . Let
Qob=q qb so that

in~6(q, t)~ = —I dt'Tr[M+(t', t}M(t', t)Q] . (4.4)
2K

Since

M+(t', t)M(t', t) =R +(t', t) diag(t', t)R (t', t),
where the rotation matrices R (t', t) for different t' are
statistically independent if m is white and the largest ei-
genvalue of the diagonal matrix diag(t', t) is er~' '

~, the
integral on t' then contains many terms of comparable
magnitude but involving uncorrelated R(t', t) matrices.
Thus we expect the RHS to be independent of the direc-
tion of the q vector [22], i.e., independent of Q. Also,
since for most velocity configurations the integrand
grows exponentially with t', we expect the RHS to be
dominated by the upper limit of integration. The latter
suggests a "local" approximation for the dissipation in-
tegral in (4.3) where it is estimated from the value of the
integrand p (t'~t) at the upper limit t'=0. The validity
of such an approximation is quantified in the course of
computing & ~G~") in Appendix B.

We are thus led to the approximate expression

inl G (q, t }I

'= —2ap'(Ol t)



2918 BORIS I. SHRAIMAN AND ERIC D. SIGGIA 49

lim e r dx er"p(x, T),
7~00 00

where p(x, t) solves

(4.7)

a, —
—,'a„'+ v(x) +(x, r) =5(r)S(x), (4.8)

2x
with V(x) =e "' . The Green's function is solved for
in Appendix C under a further (and mild} approximation
that exp[ —2~ exp(2x)] can be replaced by a step function
in x at x, =—

—,
' ln~ ', yielding

(y —&y'+ X')x

P(X)= ~' +0(T-'".-'& "")
q+~@'+X'

(4.9)

in the large-T limit. (As discussed earlier, this expres-
sion, however, should not be extended beyond T =i~ '. }

We observe that variance of the PDF ( 8 ),
(8')=& a'z), ,

which is 0( Inir '). This agrees with the naive "mean-
field" estimate which followed (4.1). On the other hand,
P(A, ) has a strip of analyticity in the complex A, plane of
width y which implies exponential tails for its Fourier
transform, the scalar PDF, P(8)-e r~ ~. This suggests a
simple ad hoc crossover formula matching the two limits
of the PDF:

10"

1 0-2

LLo 103
CL

Using (4.5) for p (t), we repeat the derivation in Appen-
dix A to arrive at the "Abelian" path integral [in units
such that D =

—,
' and normalized to P(0)=1 as in (3.19)

and (3.20)]

dt(x —y) —(g /2) dt e
1 ~ 2 2 0 p Zx

P(A, )= Dx e ' -" e

p(8) e
—ro /(1nv +~9~) (4. 10)

In principle, of course, P(8) is determined directly by the
Fourier transform of (4.9) from which one can easily es-
tablish the asymptotic result P(8)-~8~ ' e r~ ~ [cf.
(4.1)].

The more significant approximations employed in this
section after the point where 6 was linearized can easily
be checked numerically. The "correct" PDF can be sam-
pled by first evaluating (4.4) (with Q= 1 } for one realiza-
tion of the Gaussian white m ensemble (3.15). Following
(4.2), we sample 8 by computing 1 dry(t)G, where

co(t) is an independent Gaussian white variable. The first
approximation is then just to define a t, where 6 first
hits O.S and equate 8 to a Gaussian with variance t, . The
result is indistinguishable from the "correct" calculation.
The second approximation defines the t, using the "lo-
cal" G in (4.5). Figure 1 shows that both distributions are
well fit by (4.10). All dependence on Pe for values ~ 10
occurs through the variance.

V. SCALAR GRADIENT PDF

We now investigate the asymptotic behavior of the
PDF of the scalar gradient defined by (2.4b). The corre-
sponding generating function is

The equation for the gradient of the scalar is obtained
simply by differentiating (2.3),

[a, +u, a, —~a', ]a,e+a.u, a, e=a.u„. (5.2)

The essential difference here is the appearance of the
straining term (the second one on the LHS) which de-
scribes amplification of the gradient by the spatially
nonuniform fiow field. Note that the small-scale cutoff
for the scalar field is at (Pe '~ —the length scale for
which the advection and diffusion terms of (5.2) balance.
Hence, expect ( ( ae } ) -g Pe.

The solution of Eq. (5.2) can be written as

a, e(0,0)= f dt f dr G,b(0, 0~r, t)abu„(r, t), (5.3)

with the matrix Green's function 6,&
for the gradient

defined by the path integral

G,b(0, 0~r, t)= f Dr M,b(0~r, t)e
r(t)=r
r(0) =0

(5.4)

&0-5

106
0 2 4

FIG. 1. The scalar PDF in three dimensions computed from
(4.3) using the correct time-integrated dissipation (lower curve)
versus an approximation using the local dissipation (4.5) as ex-
plained in the text. The dashed curves are fits to (4.10), the data
sets are onset for clarity, the variance is scaled to unity, and
~=0.01 through a11 values ~ 0. 1 gives identical PDF's.

with the same action S (r, t) as in (3.2) and the strain his-
tory matrix M defined for the r(t) trajectory by (3.10).
While the gradient Green s function involves familiar ob-
jects, the approximations required to reduce it to a tract-
able linearized form are far more serious than for the sca-
lar. We present two approximations making plain their
deficiencies and then display their consequences numeri-
cally.

Both approximations begin with the observation that
since for

~
t

~

& r ~ the paths contributing to the integral in
(5.4) are localized close to the Lagrangian trajectory by
the exponential of the action and since the M,b(0, 0~r, t)
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varies with r only on the scale -g, one can evaluate the
latter on the Lagrangian trajectory. This leads to

G.,(O, OIr, t}=M.,(OIt}G(O,OIr, t) .

The external integral on r in (5.3} is then evaluated by
linearizing 6 (O, OIr, t} as in (3.8) and (3.11) and assuming
that the spatial dependence of v„cuts off the integral at
Ir —r(t)I-g. As before [see Eq. (4.5}], the Fourier-
transformed Green's function G(q, t) with IqI-g ' ap-
pears and is approximated by

G (q, t) = exp [iqr( t) ]Go( t)

with

10 —
I

I I
1

I
I I

ioO

this "local" approximation for dissipation is compared
with that based directly on (5.7) in Fig. 2(a). The PDF is
noticeably skewed for «=0.01 [see Fig. 2(b)] and the nor-
malized skewness appears to scale as Pe * ' in both
two and three spacial dimensions. Note that while

(t)„8}=0, the peak of P(8„8) moves with increasing Pe

Go(t}—= exp tr J—dt'TrM+(t'It)M(t'It) (5.5)
$ Q-1

We arrive at the approximate semiclassical expression

a e f.
' =a~ ,(Ol~e;. &n~) ~&.G,(r). (5.6)

Now, to generate the first approximation, we note that

a,M.„(OIt)=M.,a, v„(r(t), t )

sc dt'TrM t' t M t' t

first reaches —1. Replacing 2lnGO by the end-point
value of the integrand tr TrM+(OIt)M(OIt) as we have
done in computing the scalar PDF significantly narrows
the wings of the gradient PDF but leaves them asymptot-
ically exponential and the center cusped. The PDF in

so that integrating the RHS of (5.6) by parts yields

t), 8=5 —f dt M,„(OIt)B,G (t) . (5.7)

Note that t).8—5.„ is nothing but the gradient of the to-
tal unshifted temperature, i.e., B,T. Our extensive ap-
proximations have preserved the mean value of the gra-
dient, as follows from the fact that in the white-noise lim-

it, (M (OIt}}=5,so that the average of B,Tis —5
Thus, Eq. (5.7) knows about the large-scale boundary
conditions and can be expected to capture correctly the
skewness of the gradient PDF. Finally, note that (5.7) is
very analogous to the form the scalar assumed when ex-
pressed in terms of t, . To the extent that Go(t) behaves
like a step function, its derivative is a 5 function at t, [cf.
(3.21)].

Analytic work with (5.7) would be quite arduous, as
the simple approximation which follows demonstrates,
and we content ourselves with a numerical computation
of the gradient PDF based on (5.7). We sample M,b(t'It)
by exponentiating a string of B,vb matrices drawn from a
Gaussian ensemble defined by (3.15) and (3.16). The time
slice is made small enough so as to be in the white limit
and verify (M„}=1. The result is shown in Fig. 2(a) for
st= 10 for d =3: Note a conspicuous cusp in the center
and a crossover to exponential tails beyond the variance
of the PDF. For d=2, the tails are slightly more
stretched, but the center cusp is the same. The Figure is
virtually indistinguishable if one replaces t), Go by
5(t t, ), where t, is d—etermined by when

) Q-2

103

104
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I
I

I I I
I
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0
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FIG. 2. (a) The PDF of 8„8in three dimensions for ~=10
from (5.6) (upper curve) and with the local dissipation (lower
curve) as explained in the text. The curves are offset for clarity,
and are nearly symmetric (normalized skewness -0.03-0.06).
(b) The derivative PDF in three dimensions for ~=0.01 comput-
ed from (5.6) for 8~8 (upper curve) and (8„8—1) (lower curve).
The curves are normalized to unit variance which for (8„8—1)
equals 1.86. The most probable value of 8„8 has not yet
reached the value 1 that it attains for large Pe, but its average is
always 0. The skewness of the P(8„8)PDF has the sign of the
large-scale gradient. The upper PDF was prepared from a his-
togram for IB~HI and then reflected about zero since the off-
diagonal elements of M(OI t) are symmetric.
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towards 8 6I= 1, which corresponds to B„T=0 and
hence to the preponderance of the fully mixed regions
[20]—the gradient expulsion effect.

It is useful to compare the above direct numerical eval-
uation of the gradient PDF based on (5.7) with a simple
mean-field-type approximation for the same equation.
The latter approximation corresponds to replacing
a, Go(t) on the RHS of (5.7) by 5(t t, —) with t, axed at
its average value —lnPe [see (3.13)]. Within this approx-
imation a, T= M—,„(0~t, ) and its statistics can be ob-

tained by studying the PDF of vector p, (t) =—M„(t~O),
since the statistics of M,b(t'~)t) depends on t' t o—nly.
For Gaussian white strain, m(t), distributed according to
(3.15) and (3.16), the PDF of p, Q(p, t), is governed by

a Qt(p, t)=(d+1) [p Q(p, t)]p'

fp.pbfl(p t))
a2

apa apb
(5.8)

which is obtained from a similar equation for the generat-
ing function derived by computing a, ( exp[i( p(t)]) us-

ing the "equation of motion" a,p, =m, bpb and the
white-noise correlator for m (3.16) which brings down
from the exponent another factor of a, p g. Equation

(5.8) with the initial condition Q(p, 0)=5(p —x} can be
readily solved. For d =2 the result is conveniently ex-

pressed in polar coordinates:

1 —(3' + 1 )t +
—

( 1n r ) I4t +Qr, , t, *e
Qrrt, r

(5.9)

where r =
~ p ~

and (I) = tan '(p~ /p„). This of course
yields a log-normal distribution for the magnitude of p:

f dg{p~II(~p~, ttt, t) Howev. er, the anomalously long tails

of the gradient PDF predicted by this argument are not
to be believed because the mean-field approximation un-

derestimates the effect of diffusion on large gradients
which was properly included in (5.7). The approximation
is expected to be more reliable for small gradients, i.e.,
the center of the PDF. Therefore, we compute the curva-
ture at the center of

P(pr)= J dP Jdr rQ(r, g, t, )5(r sin(I) —p )5(r costt) .

%'e find that as p —+0,

a lnP(p )~e '-Pe'r

to the leading order in Pe. The scaling with Pe in this ex-
pression is obtained by comparing it to (p ) which is

St~
equal to e * as computed from (5.9) but is also known to
be -Pe, which effectively fixes the mean-field cutoff t, in
terms of Pe. As a result, the curvature at the tip of
InP(a~8) as in Figs. 2(a) and 2(b) is a factor of Pe ~

greater than that for a Gaussian PDF with the same vari-
ance. This at least qualitatively explains the cuspy ap-
pearance of the gradient PDF function at large Pe.

The mean-field theory (MFT) for the gradient PDF
also yields an estimate for the gradient skewness. In-

tegrating (5.8) over p with a p p„weight factor results in

an equation for the third moment of 0 at time t:

a, ln(p p„)=2(d —1)(d +4) .

Hence,

(p„(t, ) ) —exp[2(d —l)(d +4)t, ],
which should be compared to the variance

(p )- exp[(2d +2d 4)t„]-—Pe,

computed by similar means. Thus the normalized deriva-
tive skewness S—Pe ~ with exponent

g
= (d —3d +2) /(2d +2d —4) .

For d =2, we have (=0, while for d =3, /=0. 1. In both
cases the exponent is smaller than the 0.3+0.1 value
found numerically for (5.7), indicating that the MFT is

overestimating the skewness. In the d~()0 limit where

naively one may expect the MFT to work best, it predicts
g~ —,', which, however, is difficult to check numerically.

Our second scheme for reducing (5.3) attempts to re-

tain the proper dissipative cutoff for large gradients but is

more cavalier regarding the correlations between the
source U„and the strain so that it loses the anisotropic as-

pects of the gradient Auctuations and, consequently, the
skewness. Here we compute P(A, ) directly from (5.3) by
performing a Gaussian average over U„and use isotropy
to arrive at the expression depending on A, only:

P(t{.)= exp }(Jd—t T. rM (O~t)M(0)t) exp —2~I dt'TrM+(t'~t)M(t'~{t)
(X) t

(5.10)

(with suitably scaled A, ). We, again, for the sake of sim-

plicity, resort to a 1oca1 approximation for the dissipation
and repeating Eqs. (4.6) and (4.7) arrive at

—
2 I dt (x —r ) —(2. r2) I dt V(x)

P(k, T)= Dx e ' r e

with the Green's function P(x, T) solving

2a, —,a'. + v(x) y(x, t) =&(t)&(x), (5.12}

=e (r ~2)Tfdx
—
e " (x, T), (5 11) with the effective potential
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2x 8 2xV(x)—:e e "' =e 8(x, —x), (5.13)
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FIG. 3. The derivative PDF from (5.10) in the a=0, finite-T
limit (solid curve) and x & 0, infinite-T limit (dashed curve).

where as before we will approximate the double exponen-
tial by the x, = —,

' lrvc ' cutoff.
We "solved" for P(A, ) in Appendix D by reducing it to

a blitz o'f Bessel functions. One again finds an analyticity
strip in A, and thus exponential tails. To actually display
the PDF described in (5.11), it is the easiest, again, to
make up a process whose characteristic function is (5.11)
and sample it numerically. Thus we construct a free par-
ticle x (t) and then sample

g y1/2 /
T

where co(t) is Gaussian and white. The histogram is
shown in Fig. 3 for the two limits: yT«x, and

y T»x „with y T» T'~ in both cases W.hen the
cutoff is supplied by the diffusivity, the distribution is
nicely exponential, while in the opposite limit where one
takes ~~0 with T fixed, the output is consistent with log-
normality. The latter is not surprising since except for
the time integral on V(x), (5.11) defines a log-normal dis-
tribution (see also Appendix B).

A significant conclusion which obtains in spite of our
approximations is that lognormality disappears in a
steady state under dissipation. This is certainly the case
in the "toy model" represented by (5.11) where the cross-
over from lognormal to exponential tails occurs as x, be-
comes smaller than yT. The physics is, of course, that
the dissipation acts first on the largest values of the gra-
dient, so that one is never looking at an unconstrained
product. We also insist on continuous injection or forc-
ing, which is essential for maintaining the steady state.

There are many deficiencies in our modeling of dissipa-
tion that are much more apparent for the derivative than
for the scalar. Retaining the buildup in dissipation over
time is necessary, as we showed with our first approxima-

tion. Also important was the correlation between the
source and the strain which was at the origin of the
derivative skewness. A more complete treatment of the
problem should also include the correlation of the strain
and velocity along the Lagrangian trajectory.
Specifically, for a static velocity field, the Lagrangian
derivative of v,p, is zero, so that only the components of
p, and hence components of the scalar gradient, normal
to the Lagrangian trajectory can grow. This leads to the
streaky patterns of the scalar and the alignment of the
gradient perpendicular to the streamlines, as observed in
the experiments.

Equations very similar to (5.2) have been analyzed by
Kraichnan [10] in the context we are considering, al-

though different compromises were made in their solu-
tion. He retained the time history in the dissipation but
was more cavalier with the forcing. On the other hand,
the analysis of Ott and Antonsen [13] concentrated on
the spatial distribution of the gradient in the ~=0 limit
and for the a%0 case did not address the fluctuations of
dissipation. Majda [14] has found steady-state non-
Gaussian statistics for the scalar in the presence of ran-
dom shear (by a path-integral technique). Such a flow,
unlike turbulent Qows, has zero Lyapunov exponent.

VI. CONCLUSION

Tails in the distribution of a scalar advected by random
flow arise very generally due to fluctuations in the strain
enhanced mixing which imparts an exponentially distri-
buted lifetime to clumps of scalar drawn from distant
values of the mean gradient. The Lagrangian displace-
ment itself is a simple random walk as obtains for scales
larger than g. Jetlike events in which the velocity is
directed along the axis of a radius-g cylinder for a dis-
tance much greater than ~at have negligible probability
(i.e., are dominated by the random walk}, even if the ve-
locity has an equipartition spectrum for long wavelengths
which is an overestimate for turbulence. This mechanism
is different from the one occurring in a discrete transport
model [15,16,23] where instantaneous interchange of fluid
parcels is allowed and tails in the scalar represent the
Poisson distribution of interchanges within a dissipation
time which is essentially fixed.

In our analysis of the scalar PDF several controlled
and ultimately minor approximations were made in em-
ploying the dissipative cutoff. Several analytic variants,
e.g. , (4.5}, and direct simulation (Fig. 1) all showed that
instantaneously erasing the fluctuation of the scalar when
the local gradient exceeded Pe' was adequate. The
white-noise approximation was unessential both because
Lagrangian quantities would vary even if the Eulerian
ones are frozen, and far enough in the tail, t~ is much
greater than the Lagrangian correlation time, which is
the real requirement. Our neglect of the correlation be-
tween the Lagrangian trajectory r(t) and the strain along
it is more plausible in high spatial dimension, and the
large-d expansion could in principle improve the rigor of
the calculation. Clearly, the frozen d =2 velocity field is
exceptional because of the lack of ergodicity of Lagrang-
ian motion.
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One of the key elements of our analysis has been the
semiclassical approximation for the Green s function fol-
lowed by the linearization about the Lagrangian trajecto-
ry. This is reasonable for a single-scale random flow with
Pe »1, but would be more diScult to justify the Re »1
turbulent flow with its multiscale velocity field and
effective Pe-1 because of eddy diffusivity. In the latter
case the crucial question is whether controlling the
large-scale strain will control the mixing time of the -g
blob of scalar. Such a requirement —or assertion —is at
variance with simple notions that postulate a homogene-
ous, nonfluctuating contribution to the eddy diffusivity
from each decade of velocity scales irrespective of how
they are being driven. We prefer to think that everything
is contingent on the largest scales of motion. At the
present time, the most compelling arguments for our
point of view are the laboratory experiments [1-6].

The gradient PDF is complementary to the scalar one
in that it samples the small scales rather than -g. The
velocity spectrum and Prandtl number certainly do
matter for the gradient, and our calculation is strictly
limited to the Batchelor regime. The gradient PDF de-
pends in an essential way on the steady-state balance be-
tween stretching and dissipation. Although M(0~t) is
lognormally distributed for fixed t, the dissipation de-
pends on M having a larger effect for larger values of M
and eventually resulting in a merely exponential tail for
the gradient PDF. The disappearance of lognormality in
the steady state is also exemplified by (5.11), which in
spite of its defects as a model of (5.1) clearly would be
lognormal for T finite and ~=0 but is exponential in the
physical limit of infinite T, ~& 0. On the other hand, the
exponential nature of the tail can be understood intuitive-

ly by assuming that the large gradients are a consequence
of large jumps of the scalar field occurring over a jinxed
dissipation scale. Because of the exponential tail of the
scalar PDF, we expect to have an exponential tail in the
probability of large jumps and, hence, large gradients.

Another extension of the conventional log-normal wis-
dom was required to understand the cuspy structure of
the center of the gradient PDF. The appearance of the
cusp in the large-Pe limit can be at least qualitatively ex-
plained by the mean-field calculation of the PDF of the
gradient vector which generalizes the usual log-normal
distribution for the magnitude of the gradient.

A steady forcing provided by the imposition of a mean
gradient is essential for clean conclusions. If the scalar
were injected periodically, then for appropriate time
scales there would be a window of lognormality for times
early enough that the dissipation is not yet felt. A con-
stant imposed gradient also generates the skewness which
would be zero with isotropic initial data. In fact, the an-
isotropy of the small scales is described rather naturally
by the Lagrangian formalism. For example, consider the
correlation of the scalar gradient and the strain,
Y—= (r},8Bb8t},vb); the only contribution to Y comes
from the latest ~ segment of the Lagrangian trajectory in
(5.3) and (5.4), so that in the white-noise limit

Y- ((8 )')((&8)')-L}( 'g'P

By a mild extension of our arguments in the Batchelor
regime (still neglecting the correlation between velocity
and strain), it is straightforward to display the distribu-
tion for the entire 8 field. Specifically, for the generating
functional P [ A, ],

P[) ) =(exp —i f d) f f dr'dr )(r')G(r D)r))v„ir)'),

exp —D too t r, rzkr, kr2 exp —r&2MOtM+ Otr~2 ' ' (6.1)

The second line follows for white noise v as in (4.3) or (5.10) whose spacial correlations are exponential (2.2). The final

points r, z which label A, are related via their respective Lagrangian trajectories to their locations at earlier times. As
already remarked, the matrix M(0~ t) which governs the growth of p forward in time governs the divergence of La-
grangian trajectories backwards in time, which explains its appearance in the exponential of (6.1). For

~ r, 2 ~
larger than

a dissipation length, the time integral is cut off by the decorrelation between the preimages of r, 2 rather than by the
diffusion.

A simple expression follows if we work in the Abelian limit as in (4.5) and (4.7):

0
~ ~

x 2 2x

p[X] =fDx exp —
—,
' f dt{x —y} exp —f dt f f dr, dr2A(r, ) (.(rd)e2

oo oo

with suitable choices of A,(r) one can recover either (4.7)
or (5.10). The correlation function (8(r, )8(rz) ) can be
correctly evaluated in the mean-field limit by replacing
the time integral by y

' ln~r, 2 ~

' to obtain

( 8( r, )8( r2 ) ) ——ln
~ r, 2 ~

or

( [8(r, )—8(r2)] ) —ln(r, 2/~)

in agreement with Batchelor's result. Of course, (6.2)
contains much more information and is the most succinct
statement of solvability for the problem of advection by a
single-scale velocity field.

An alternative approach to the statistics of the 8(r)
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X T(ri, t)T(ri, t) T(rN, t) ) =0 . (6.3)

Since in the white-noise limit, u (r, t) correlates only with
the change in T(r', t) in the latest r segment, one arrives
at a closed set of equations for equal-time correlators:

N

g [C,b(r; rj )8;B—&+5 &zBJ ](T(ri ) T(r&) ) =0,

field in the case of velocity field which is white in time is
provided by the Hopf equations [24] for the multipoint
correlation functions. These are obtained from the condi-
tions for the statistically steady state:

B, (T(r&, t)T(rz, t) T(r&, t))
N= —g ([v(r, t).B —aB ]

power-law behavior in the case of velocity field with alge-
braic decay of spatial correlations. [Curiously, the ex-
istence of scaling solutions of (6.5) is not accompanied by
conformal invariance [26] properties even in d =2. ] On
the other hand, the use of (6.5) in the study of the PDF
asymptotics is not immediately evident; by contrast, the
Lagrangian path-integral formulation is more intuitively
transparent.

Finally, it is readily apparent why multiscale advection
is more complex than the single-scale Batchelor case:
linearization of the velocity is no longer valid out to dis-
tances of the order of the velocity correlation length. We
expect the Lagrangian Green's function to remain a use-
ful construct, as already noted by Kraichnan [25]. Our
contribution has been to think of it as a random quantity
and evaluate it by path-integral methods.

(6.4)

where

C,b(r)= fdt( u(r—, t) &u(0, 0)) .

Substituting T(r)=8(r)+g r and using translational in-
variance of 8 correlators leads to
N

g [D,b(r; r)+a5,b]B;—d (8(ri ) 8(rN))
l+J
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N= gg g C b(r, r)(8 ),"—
EPJ

N

+g gD, (r; r}8 (8 );-
iAj

(6.5)

APPENDIX A

Here we shall derive Eq. (3.18) from (3.17). Consider

Q=JV ' fDm5(Trm)

where we have defined D,&(r)=C,&(0) —C,b(r) an—d used
the notation ( 8 ); ' to denote the N —1st-order
correlator at points r , with j=1, . .. . , i —l, i +1, . . . , N.
We observe that the left-hand side is related to the
Richardson difFusion operator [24,25], while the RHS is
the source term driven by the large-scale gradient.

The above equations are convenient for studying the
low-order correlators and are valid for velocity fields with
arbitrary spatial correlations (as long as the velocity field
remains Gaussian and white). For example, for the two-
point function, one readily recovers Batchelor's result [8]
for the single-scale fiow and the Corrsin-Obukhov [24]

N

X exp ——g [Trm,+m;+ Trm ]tr, . ' ' d+1

X g fdp;5[p; p;+,e ' e —'p;, ] .

(A2)

Introducing

Expanding to second order in 6, we have

e e =I+2lku+2b u +b, [u,co],

where m=u+t0 and m+ =u —co.
o =o(d+1)/(d+2),

Q=Ã 'f Du5(Tru) fDcof Dp exp ——+Tr(u;+ co,
+

co,).
0

X exp i g k;[p,. —p;, —2h Tr(u, .p,. ip,.+, ) —2b, 2Tr(u2p, . @,+, ) —b,2Tr([ co]up, ip,+,)].
1

=fDuf Dk fDp exp ——g 1+i p, ,k,. Tru;+i gk;[p; —p;, —2b, Tr(u;p; ip;+, )]
s l

X D exp i JTruj
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—[d (d + 1)—2 j/4

Dk Dp2 1 +i+ p2
l

-d —1
exp —b,o g k; (p;, ) +i g k;(p; —p;, )

l l

Dp exp '—
)p2 ) 40 d —1

2 2
p( pi —j

p2+
(d +2)(d —1)

2d

2

12
p (T) 1 d r 2 (d+2)(d —1)

exp ~ — dt 8, lnp— 0
p2(0) 4o d —1 0 2d

Dx exp
d+2 +2 [x (T) x(0—)) exp —— f dt x

1 d
2 y d —1 0

(A3)

The second line is obtained by integrating over the matrix
vorticity field co to leading order in 6, and observing that
of Q(b ) terms, only the "diagonal" part of

Q2
b,2Tr(u, p; g,+, )~ p, , Tru,

can survive the continuum limit 5~0, as seen in the next
three lines. The 3 line is obtained by integrating over
[d(d+1)]/2 independent components of the strain ma-
trix u with the incompressibility, Tru=0 constraint im-
posed by the Lagrange multiplier g. In the fourth line
the product is reexponentiated and integration over auxi-
liary k is performed. Finally, the continuum limit is tak-
en and the x =——,

' lnp variable is introduced. We define

the secular growth exponent y =(d +6}/2d and choose
units such that o(d —1)/d =2. Equation (3.18) of the
text follows.

APPENDIX B: SCALAR GREEN'S FUNCTION
AND LOGNORMALITY

In this appendix we compare various approximations
for the path-integral expression:

Q(A T)= fDxe ' o e 0, (Bl}

where T & 0, x (0)=0, and x (T) is integrated over. The
normalization Q (0)= 1 is satisfied since y may be shifted
away via x~yt+y, and the usual difFusion Green's-
function integrates to 1. As before, rewrite

l VX

limI;„(A)K;„(Ae")=
A~0 2V

and, hence,

p(x, T)= f e '" '~P(x v)
ic —oo 277l

ic+ ~ JV iv)xj —(v /2)7e e
A~O ic —oo 277

(BSa}

(85b)

The latter formula is the correct free particle p.
The integral over x in (82) is most easily performed by

interchanging it with the v integral in (85a) and evaluat-
ing it with the aid of the formula

" r-'IC ( }d =2r-' r y+"
0

valid for Re(y+iv) &0. (It is at this step that we lose
contact with the free-particle limit. ) The remaining
pieces of the x integral cancel if one uses the expression
relating K,„ to I+,„, sets a=0 in (85a}, and uses the
v~ —v symmetry. Finally,

where v = —2s and A, &0 in order that g ~0 as x =+~.
The Laplace inversion is done over a contour in s from—i ~ to +i ~ with Res )0 which since K and I are en-
tire in v may be deformed into a v contour running from
+ ~ to —~ with Imv) 0. The choice of root in the in-
dex of I and K permits us to write

1

Q(A. )=e ' f dx er"p(x, T),

where

2 A,'2
8, ——,'8„+ e " p(x, t}=5(x)5(t) .

(82)

(83)

T oo
y

Q(A)=e "
4m.i lV

2

C,B6)

+20( —x)K; (A, )I;,(Ae"), (84)

The latter equation after a Laplace transform in time,

p(x, s) =f e "g(x, t)dt,
0

reduces to the modified Bessel*s equation under the sub-
stitution z =e . Hence,

p(x, s) =28(x)I,„(A,)J,„(Ae')

Note the singularity at A. =O, which could have been in-

ferred from (82) by eliminating A, from the potential in
(83) by setting x =x —lnA, . Evidently the concomitant
change in the x (0) boundary condition is immaterial.

The large-T limit of (86) is most readily evaluated by
using the symmetry v~ —v to replace I i by
i vr

' sinh( m v)K; . Then,



49 LAGRANGIAN PATH INTEGRALS AND FLUCTUATIONS IN. . . 2925

e (y—l2)T 2 I 2(y/2
lim Q (A, ) = sl2 I(.0(A, )

T Z'l' & 2 2m.

have been derived directly by iterating (B3) in powers of
A, after Fourier-transforming in x, i.e.,

X[1+0(T ')] . (B7) q A,
8, + p(q, t) =5(t) —p(q +2i, t), (B10)

For small A,, Eo ——
—,
' ink. .

It is interesting to compare (B7) with the dissipation in

(B1) replaced by its local limit, viz. ,

dx A, 2„(x yT—)
Q), )(A, )= exp — e "—

2')r T
—(y /2)T

(2A, 2)r l I (y /2) [1+Q (1/T) ],
2&2m T

(B8)

where Q is again normalized to Q (0}=1.Hence, if (B8}
were used in (32), there would be a change in the prefac-
tor but not in the essential conclusion that G(q, T}
behaves as a step function.

Equation (Bl) can be interpreted as the characteristic
function of fDdt co(t)e", where co(t) is white noise so

there should be some similarity between (B6) and the gen-

erating function for the log-normal distribution. Take T
pure imaginary, and wrap the v contour around the posi-
tive imaginary axis so it runs from i ao to zero with
Rev&0 and from zero back to io() with Rev&0. For
convergence it is essential that I;„and not I(:;,is used in

(B6). The integral is then evaluated by residues to yield

n
'y

Q(g)=e r' ' '-y (y+2)t)—
n!

XI „„(Z)r(y+n)e(r+'"""' .

(B9)

Note that each term in (B9) is analytic as A, ~O, but that
the series is divergent for ReT&0. In fact, (B9) could

where p= f"„e '~"p dx and (B2) is recovered by letting

e~~r.
Let y be a log-normal variable with distribution

P ( )
— 1 1

e
—( )n!y! a)—2/2b

2v'2b~ lyl

and compare the series of R (A, }=(e'"~)with (B9). For
large T, to exponential accuracy, it suffices to retain only
the small-A, limit of IT+2„. Therefore, comparing y

"
with the coefficient of ( —I )"A2"/(2n)! in (B9), one obtains

exp[(a +2nb) /(2b}]

r I'(y+n) (2n)!
n! I'(y+2n }

ln 2
X exp[(yT —ln2+2nT) /2T] exp 2T

(B1 1)

which quantifies the extent to which (B9) is lognormal.

APPENDIX C

Here we solve for the Green's function appearing in
Eq. (4.8) which satisfies

a, —
—,'a„'+ V(x) +(x, t)=S(t)gx),

2z
with V(x) =e "' which can be approximated by a step
V(x) =8(x, —x) with x» =

—,
' ln(2~) &&1 (for )( &&1).

The solution for the Laplace transform of p(x, t) is

v 9( —x) —2v'v'+z'»» V v2+$2 —v i/p+22„
2&2+F2 +v +A, +v

~ —&/+x'x,
@x)(9(x» x) +v2+&2 —v v &+g'(» —2», ) i/p+gi, e(x «» —H» —»» )+ e ', (C2)

2+v+A, ~ v+A, +v +v +A, +v

leading to

v++v +A2

(y —+v +A, )x+
P(Z) — —(/ 2)Tf ~+/2 2)tT/

I 27Tl

1 v+y
v rr' —v'— 1

v A,
(C3)

Note the normalization condition P(0) = 1 is satisfied by the last term. For Rev & 0 and ImA, =0 the integrand of (C3) is
analytic except for a pole at v= y, so that

( -v'„'+~'),
p 2ye (y2l2)TI ao+(E v dV e e

(C4)
r+&y'+&' --+ 2 r' y+&&'
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In the large-T limit, the dominant contribution is the one
from the pole leading to

(y —+y +A, )x+

P(g)= y +Q(T 3/2e ~r /2)T)
y+&y'+X' (C5)

The first term in (C4) has a strip of analyticity in the
complex A, plane of width y, and satisfies P(0)=1. The
second term in (C4} has a branch cut extending down to
the real axis, but its contribution to P (8) is small because
of the exp( yT—/2) prefactor.

APPENDIX D

The study of the gradient PDF calls for the evaluation
of the generating function

P(A, , T)=fDx exp —,' f d—t(x—y)

ponential by the x, =—,
' lna ' cutoff.

In contrast to (3.19), we now have to consider three re-
gions: (1) x (0, (2) 0 (x (x», and (3) x )x, and match
by requiring continuity off (x, t) and r}„p(x,.t), except for

B,p(0+, t) —B„P(0,t) = 1

as required for the Green's function. Taking the Laplace
transform with respect to "t" and denoting s =

—,'v, the
Laplace variable we have for x & 0 is

K„ i(A. *)
x, —=I„(Ae") I„(A,) +K„(A,)I„,(A,e ')

(D4a}

for 0(x (x„

2x veX exp — dt e 'e
2 T

=e 'r /2'T dx er" (x, T),p ) (D 1)

v K )(Ae ')
x,—=I„(A,) I„(Ae") +K„(le")

I, , (Xe"")

with the Green's function p(x, T) solving

and for x &x„,

(D4b)

with the efFective potential
2xV(x)=e "e "' =e "8(x,—x), (D3)

where, as before, we will approximate the double ex-

v
x,'2

I„(A,)e

I„,(Ae ')
Inverting the Laplace transform and substituting back
into (D 1),

P(A T)=e r' ' e
—"'f "dx er f0 r 2vri

I (A, )

Ae "I, , (Ae ')
X~

+e ~ / j dxe " . e~" / ~ I (g) I (ge') +K (ge')
2 dv K„,(Ae ")

0 r 2&l I„ i(le ")

I„,(ke ')
+e —~r /2~rdx er~ U e'~ ' I (ye~) I (A, )

dv K )(Ae ')
r 2~i

+K,(A, ) (D5)

Note that the analytic continuation formulas

and

I ( —z)=e' "I„(z)

K„(—z)=e ' [K (z) imI (z)]—
(D6a)

(D6b)

provide expression (D4) with invariance under A.~—
A, . Observing that I„and K„are analytic functions of v in the

Rev) 0 domain and I„(z)%0for any real z, we perform the x integration followed by the v contour integral in the first
term. The latter has contribution from the v=y pole and the imaginary v axis. In the remaining terms, the v contour
is deformed to the imaginary axis and the terms are recombined using the v~ —v symmetry and Bessel functions:



49 LAGRANGIAN PATH INTEGRALS AND FLUCTUATIONS IN. . . 2927

P(A, ) =
TI (Z) —(y /2)T r + dv —(v /2)T+e e e

(Xe"')-"'I, , (re"') 7Tl 'I (Ae *) '"

+e (T ' e ' ' I (A, ) dzzr 'I (Az)
K,„)(Ae ')

—oo 77l I,„)(Ae *)

Z~
——sinh(mv)K;„()(, )f dzzr 'K;,(Az) . .

7r 0
(D7)

A,e 'I)(A,e *)

For large T, the v integrals are dominated by the v=0 saddle point and we find

P( g )
— r T—3/2y —2 —( /2) TJ. TI (X-)

(A,e *) r+'I )(A,e ')
1/2

2

' 1/2
2

K)(Ae *)
T / e (T 'TK (A, ) f dz zr 'Ic(Az)

Ii(i(.e ')

Ki(ke ')
T ' e ' ' K (A, )+Io(A, ) f dzz 'Ko(Az) .

I)(Ae ') (D8)

The integral in the 3 term is bounded by e 'Ko(A, )Io(Ae ') which makes it (for Ae
* »1) of the same order as the

second term. The upper limit of the integral in the last term can be sent to infinity (under the same condition) which
reduces it to the form of (B2) or (B6).
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