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Separatrix-map analysis of chaotic transport in planar periodic vortical flows
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We have studied chaotic transport in a two-dimensional periodic vortical flow under a time-dependent

perturbation with period T, where the global diffusion occurs along the stochastic web. By using the

Melnikov method we construct the separatrix map describing the approximate dynamics near the saddle

separatrices. Focusing on small T, the width of the stochastic layer is calculated analytically using the

residue criterion and the diffusion constant is computed using the random phase assumption and the

theory of correlated random walks. The analytical results are in good agreement with the results of two

different types of numerical simulations: integrations of Hamilton's equation of motion and iterations of
the separatrix map, which establishes the validity of the use of the separatrix map.

PACS number(s): 47.52.+j, 47.20.—k, 05.60.+w, 05.45.+b

I. INTRODUCTION

Recently the global transport and mixing in the prob-
lems of planar fluids have been studied intensively using
the framework of dynamical system theory, where in-
teresting physical quantities like mass or heat can be de-
scribed to some degree of approximation as moving with
the fluid particle [1—3].

When the Bow is laminar, the velocity vector field

u(x,y, t) of a two-dimensional incompressible inviscid
fluid How can be determined from a stream function
4( xy, t) and the equations for an infinitesimal fluid ele-
ment (called a jluid particle) become a Hamiltonian
dynamical system where the stream function plays the
role of the Hamiltonian. It is now well established that
for the time-dependent stream function the particle tra-
jectories can display chaotic dynamics, even though the
Eulerian flow is laminar [4]. Such a flow is said to exhibit
chaotic aduection

In this paper we consider the planar periodic vortical
flow in which there are four hyperbolic saddle points con-
nected by heteroclinic orbits [5]. This is an interesting
model for certain convection problems as well as the ax-
isymmetric Taylor vortex flow and the Rossby ~aves of
geophysical fluid dynamics [6]. With a time-periodic per-
turbation the separatrices break down and form a global-
ly connected stochastic layer (called the stochastic web).
Fluid particles diffuse chaotically along the stochastic
layer, which can be regarded as a stochastic process in a
coarse-grained scale. This stochastic transport occurs on
the global scale along the two-dimensional squarelike lat-
tice of the stochastic web and is studied in terms of the
separatrix map.

The separatrix map is an approximate map describing
the dynamics of the energy and the phase near the
separatrices of the periodic Hamiltonian system, first in-
troduced by Chirikov [7], which allows an efficient and
systematic study of dynamics near the stochastic web.
Escande first used the separatrix map for the transport
problem [8] and Weiss and Knobloch used it to study nu-

merically the anomalous diffusion of the Quid particle

along modulated traveling waves [1]. In spite of the wide
usage of the separatrix map for studying Hamiltonian
transport problems [8—10], however, the validity of the
separatrix-map analysis has not been firmly established
yet. In this paper, we test the validity for the separatrix
map as a general method for studying transport in a
Hamiltonian system with the planar periodic vortical
How as an example. We follow Weiss and Knobloch to
construct the separatrix map for the planar periodic vort-
ical Bow and use it to estimate the width of the stochastic
web and the diffusion constant analytically, extending the
analysis of Lichtenberg and Wood on the Hamiltonian
system of charged particles in a magnetic field [9].
Analytical results are in good agreement with numerical
results from direct integration of the original Hamiltoni-
an vector field and iterations of the separatrix map.

First we compute the analytical form of the separatrix
map for the energy and phase coordinates, by introducing
a set of Poincare sections and applying the Melnikov
theory. We show that the separatrix map provides a first
order approximation to true dynamics near the separa-
trices. We also show that if the period of the perturba-
tion T is small, the stochastic layer is sufFiciently wider
than the splittings of stable and unstable manifolds and
the separatrix map can describe the structure of the sto-
chastic layer away from the separatrices very well. We
find that Greene's residue criterion [11]for the separatrix
map gives a quite accurate estimate for the width of the
stochastic layer.

A problem may arise when the orbit approaches the
separatrix since the error of the separatrix map grows
indefinitely [12]. We will show that this can be overcome
by assuming that the phase is a random variable for dy-
namics near the separatrix. This model with a random
phase is different from the model of Lichtenberg and
Wood where both the energy and the phase are random
variables. %'e find numerically that the random phase
model gives the same statistics for separatrix crossings as
ones from simple iterations of the separatrix map and
direct integrations of the original Hamiltonian equation,
so that the averaged quantities such as the difFusion con-
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stant can be explored through the random phase model.
The random phase assumption leads to the two-
dimensional correlated random walks [13], where in a
coarse grained level the global dynamics can be described
by stochastic jumps from one cell to another. The theory
of correlated random walks with a correction due to ellip-
tic islands in the stochastic layer gives an analytic esti-
mate of the diffusion constant to the first order.

For area-preserving maps, two methods have been
widely used for studying transport. One is the Markov
chain model suggested by Mackay and co-workers [14,15]
and the other is the lobe dynamics developed by Rom-
Kedar, Leonard, and Wiggins [16,17]. In the Markov
chain model, the phase space is divided into several re-
gions separated by partial barriers and transport between
the regions is modeled as a Markov chain, in which each
region is represented by the states, and the transition
probabilities are proportional to the area of the turnstile
lobes. Using the lobe dynamics, one can compute the Aux

across the separatrix and transport rates by calculating
the area of intersections between images of two turnstile
lobes. These two methods, when applied to the time-T
Poincare map, require time-consuming numerical evalua-
tion of the area of the turnstile lobes for each parameter
values [18], so that it is difficul to apply them to study
the asymptotic transport dynamics such as the global
diffusion because of long computation time and large nu-
merical errors. The separatrix map has the advantage
that its numerical iteration is quite rapid because the map
depends only on the Melnikov function and the period of
the unperturbed orbits that can be calculated and stored
in advance even in the absence of analytic expressions for
them [1]. In particular, with the random phase assump-
tion the statistical properties of transport can be easily
obtained by simple iterations of the separatrix map.
Moreover, as the period of perturbation T decreases, the
advantages of using the separatrix map increases since
one iteration of the separatrix map corresponds to a large
number of iterations of the time-T Poincare map.

In Sec. II, we introduce the model Hamiltonian
describing the flow with the vortex lattice with saddle
connections under time-periodic perturbations. We show
the formation of the globally connected stochastic web by
computing the Melnikov function and applying the
Smale-Birkhoff theorem. We also construct the separa-
trix map and provide an error analysis on the separtrix
map. In Sec. III, we describe the structure of the global
stochastic layer and calculate the analytical form for the
width of the stochastic layer by using the residue cri-
terion on the separatrix map. In Sec. IV, based on the
random phase assumption, the diffusion constant is com-
puted by applying the theory of correlated random walks.
We compare analytical results with those from numerical
simulations. Finally, we end with concluding remarks.

II. THE MELNIKOV METHOD AND THE
SEPARATRIX MAP

A. The model

%(x,y, t}=H(x,y)+sH, (x,y, t),
where

1H (x,y) = sin(2nx )cos(2my ),2'

H, (x,y, t) = cos(cot ) [sin(2my )+cos(2mx ) ] .1

2'

(2)

This stream function corresponds to the near-integrable
Hamiltonian system with time-dependent perturbation of
period T=2n /co and the equations of motion for fiuid
particles are given by

—sin(2m x }sin(2ny )+s cos(2ny )cos(cot )
—cos(2mx )cos(2my ) +s sin(2mx )cos(tot )

or, in a vector form,

q =JF(q)+sG(x, y, t),
where

(3)

(4)

0 1 x
-10 F= aH

Hi

and G—:

B. The Melnikov method

For a system with a saddle connection under a time-
dependent perturbation Melnikov devised a method for
finding the transverse intersection of stable and unstable
manifolds [19]. Let q, (t) be the heteroclinic orbit of the
unperturbed system. The distance between the stable and
unstable manifolds along the direction normal to the un-
perturbed heteroclinic orbit at q, ( to } is given by—

This equation describes a two-dimensional periodic vorti-
cal flow under time-dependent perturbation. This flow is
obviously doubly periodic, yielding a flow on the torus.
Viewed as a Bow on the torus, the unperturbed system is
an integrable Hamiltonian system with heteroclinic orbits
connecting four saddle points. On the torus, there exist
four vorticies whose boundaries are the heteroclinic or-
bits. The values of H are zero on the heteroclinic orbits
and have a definite sign for each vortex. The phase por-
trait of the unperturbed system is shown in Fig. 1. Under
the periodic perturbation the heteroclinic connections
break down and the stable and unstable manifolds be-
tween two adjacent saddle points in general do not coin-
cide with each other and intersect transversally.

As a model for a two-dimensional time-dependent How
we consider the following stream function [5]:

M(to)

IIF(q. ( —to)}ll
' (5)
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Hence we see that the Melnikov function is periodic with
period T and has two simple zeros per period and, there-
fore, by the Melnikov theory the stable and the unstable
manifolds intersect transversely. If the system has a
transversal intersection of the stable and the unstable
manifolds, the Smale-Birkhoff homoclinic theorem proves
the existence of chaotic orbits [21,22]. It is straightfor-
ward to extend this theorem to the heteroclinic case [5],
to prove that our system has a chaotic orbit under a
periodic perturbation H, (q, t). In fact, the chaotic orbits
form a stochastic layer along the separatrices and the
Quid particle can be globally diffused along the connected
stochastic layer. %e note that the T dependence of
Mo(T) is of the form, exp( —1/T), as proved by Holmes
Marsden, and Scheurle [23]. Therefore, the separatrix
splittings are exponentially small in the small T limit,
yielding the exponentially thin stochastic web.

C. The separatrix map

FIG. 1. The phase space of the unperturbed system in Eq. (3)
with a=0. The system is doubly periodic in x and y and the
separatrices are globally connected.

As discussed in the Introduction, long-time asymptotic
behavior of chaotic transport can be efficiently studied by
the separatrix-map method. In order to construct the
separatrix map, we choose two saddle points, qo=(0, —„')
and q != (0, —', ), connected by the heteroclinic orbit

where
~~ ~~

is the Euclidean norm in R and M(to) is the
Melnikov function

1 2 exp( 2mt )—
q, (t) = 0, arccos2' 1+exp 4~t— (12)

M(to)= f F G(q, (t), t+to)dt . (6) We also choose three different surfaces of section

The Melnikov theory says that if the Melnikov function
has a simple zero, then the stable and unstable manifolds
intersect transversely at q, ( t )o+0—( )a[20].

The Melnikov function for our Hamiltonian vector
field can be computed explicitly. Along all unperturbed
horizontal connections we have

2exp( 2at)—
sin(2mx ) =+

1+exp 4n t—
and along all vertical connections

X'= {(x,y)) ~x ( &5,y =
—,'],

~o = [(x»llx I &»y =-,'+ lx I], (13)

where 5 is a small positive value. Suppose that these sec-
tions are chosen for each separatrix. Suppose also that
q(t) is a perturbed orbit such that q(s„)EXO, q(t„)EX',
q(s„+,) C XP, and q(t) crosses X' of the next separatrix at
time t„+j, as shown in Fig. 2. The change of the energy
H from q(s„)to q(s„+&

) along q (t) is given by
2 exp( 2n. t)—

cos(2n.y ) =+
1+exp —4m. t

Then the Melnikov function in Eq. (6) becomes

M+ (t, )=+f-,cost@(t+t, )dt
exp( 4mt)—

—~ [1+exp( 4mt)]— .

hH= f dt=E f F G(q(t), t)dt .
dt S

From the relation dx/dt =OH/By, t„+&is given by

(14)

CO
sinh

4

. cos(cot),
"'" 'aHt„+,=t„+ (q(t), t) 'dx .

q( t„) Qy
(15)

or

M ( to ) =+MD( T)cos to—, T=2m. =2"
CO

where

Mo( T)= csch
1 7T

2T 2T

(10)

We call the map S,:(H, t„)~(H+bH,t„+,) the exact
separatrix map, which describes the exact dynamics of
the energy H and the time (or phase) t. Here (H, t) plays
the role of a new coordinate system in the planar Quid

space near the separatrix. Now we approximate q (t) by
the heteroclinic orbit q, (t) and t„+, t„bythe—period of
an unperturbed solution qo(t) with HO=H+bH. Then
EH=eM (t„),where M —(t„)is the Melnikov function
in Eq. (10). Then an (approximate) separatrix map is
given by
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which is used throughout the rest of the paper to explore
chaotic transport.

III. THE STRUCTURE AND THE WIDTH
OF THE STOCHASTIC LAYER

e(t +i)

q, (t —t„)
„

Hn+1
=S*(H„,t„)=

H„+sM*(t„)
t„+,' T(H„+sM-*(t„))

where T(h) is a period of an unperturbed orbit with
H =h. It can be shown that

FIG. 2. A sketch for the construction of the separatrix map.
The orbit q, {t}is the heteroclinic orbit of the unperturbed sys-
tem and q (t) a perturbed orbit. The sections XH and X' are the
Poincare sections for the coordinates (H, t).

A. Properties of the separatrix map

In order to study the dynamics in the stochastic layer,
it is important to understand the structure of the stochas-
tic layer first. The stochastic layer is composed of not
only chaotic orbits but also other complex structures
such as elliptic islands which exist away from the separa-
trices and become relevant to transport when T is small.
We will show later that these structures can be described
very well by the separatrix map. From Eq. (19) we see
that the value of H changes roughly by the amount
sMc(T) as a fluid particle moves along a separatrix.
When T is small, we will show later that the width of the
stochastic layer is significantly larger than sMc(T).
Therefore the values of H have a definite sign for a long
time even for chaotic orbits, which corresponds to oscil-
lating dynamics confined in one cell. In order to study
oscillations in a single cell, it is convenient to introduce
the composite separatrix map S=S+OS OS OS+ be-
cause one iteration of S corresponds to one oscillation
confined in a cell if the sign of H does not change. The
map S+ are defined on the cylinder with a form similar to
the area-preserving twist map [26]. The map S* are
different from the twist map in the sense that it has a log-
arithmic singularity at H =0 and its twist conditions de-
pend on the sign of H'. However, similarly to the area-
preserving twist map, S*have generating functions given
by

0(s )
S,(H„,t„)=S*(H„,t„)+ (17)

for ~H„~=0(s). Therefore, S is valid for small s, that
is, near the separatrix [12]. We note that if T is small,
then the change of H is exponentially small, so that the
validity of S+ does not appear to be justified. However,
the numerical observation shows that 8(s ) error term is
also exponentially small, justifying the use of S+. How-
ever, this issue is a mathematically difficult problem and
is not fully understood yet [23-25].

Near the separatrices a straightforward computation
for our system in Eq. (3) yields

T(H) = K( 1 4' H )=——ln—
2 2 2 2
7r ~IHI

for/H[ «1, (18)

where K( ) is the complete elliptic integral of the first
kind. Therefore, we get the separatrix map for our sys-
tern

G(t, t')=sgn(H') e +' ''T- csch sin t,

(20)
where sgn(H') denotes a sign of H' and G(t, t') satisfies

H= (t, t'), H'= —,(t, t') .aG , , aG
(21)

dt Bt'

With the help of generating functions, it can be shown
that the twist map has complex dynamical structures
with periodic orbits, quasiperiodic orbits forming invari-
ant circles, chaotic orbits, and cantori [26]. The cantori
are the invariant Cantor sets in which the motion is
quasiperiodic and they typically exist in the stochastic
layer [27—29]. With the generating function in Eq. (20),
the method of proving the existence of periodic and
quasiperiodic orbits for the twist map [26] can be easily
applied to the map S to show that there exist periodic or-
bits and quasiperiodic orbits which do not cross the
separatrix, so that elliptic islands and invariant circles are
confined in one cell.

H'
=S*(H,t)=

H+eMc( T)cos
2'
T

t+ ln
1 2

~/H'/

(19)

B. Periodic orbits and residues

The composite separatrix map S has infinitely many
fixed points of rotation number 2m /1 near the separatrix
(H, t ), satisfying
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M —(t)=0 and T(H)=2mT,

where m is a large positive integer, or, equivalently,

-=T 3 —=2 m~Tt= —or —T and 0=—exp
4 4 2

(23)

M+(t )+M t+ +M t+
2

The map S also has fixed points of rotation number
(2m +1)/1 near (H, t), where

theorem that a simple zero of M ~'(t) corresponds to a
periodic orbit with period m T. Therefore the fixed points
of S correspond to periodic orbits of the original Hamil-
tonian flow. In Fig. 3 we plot the phase portraits of S
and the time-T Poincare map near a saddle point, whose
elliptic island structures show that correspondence be-
tween the resonance bands of the time-T Poincare map
and the fixed points of S.

In order to know the stability of a periodic orbit of S, it
is necessary to check the residue of the periodic orbit.
Given a periodic orbit of period q, its residue R is defined

by

3mT
4 R =

—,'(2 —Tr[8~]), (26)

and

T(H)=(2m+1)T . (24)

These two classes of the fixed points of rotation number
m/1 correspond to the zeros of M ~'(t), the subharmon-
ic Melnikov function [30],since

M "(t)=M+(t)+M t+-
4

+M + mT +M +3mT
2 4

(25)

for sufficiently large m. By using the subharmonic Melni-
kov theory it can be proved from the implicit function

where B~ is the Jacobian matrix of the qth iterate of the
map S. For the twist map it is known that for each ra-
tional p/q there exists at least one periodic orbit of rota-
tion number p/q with non-negative residue R z . For
the map S, numerical observations indicate that the non-
negative residues of the periodic points of sufficiently
large rotation number are greater than 1, so that they are
hyperbolic. If the rotation number is not suff][ciently

large or periodic points of S are sufficiently far away from
the separatrix, their non-negative residues are less than 1,
that is, they are elliptic, so that such fixed points of S cor-
respond to resonance bands of the time-T Poincare map,
as seen in Fig. 3. This fact is explicitly shown for the
fixed points of rotation number 2m /1, at which the Jaco-
bian matrix B of S is given by

a 1 —a, l —a I a

b 1+ah b 1 —ab b 1 —ab b 1+ah

1 —3a b —a 2a b —2a b —a b
—4b —4ab2+2a b3+a3b 1 —Sa b +a3b +a4b (27)

where

'll 1
a =+ csch and b=+ e

T 2T 4~
(28)

Therefore, the residue can be calculated exactly as fol-
lows:

c csch

R2 yi:4(8a b a b ) (29)

From the condition R2 &&
& 1, the elliptic islands or the

resonance bands of rotation number 2m/1 should be
found in the region of

transport along the stochastic layer. A rigorous estimate
for the width can be obtained by applying Mather's
method to the separatrix map. If an invariant circle is a
closed loop that encircles the cylinder we call this the ro-
tational invariant circle (RIC). The boundaries of the sto-
chastic layer are the outermost RIC of S, which deter-
mines the width of the stochastic layer. Birkhoff showed
that the RIC of the twist map is a Lipschitz graph

[ Y(t), t] of some continuous function Y [31]. Using the
fact that the RIC is a Lipschitz graph, Mather obtained
the criterion for the nonexistence of the RIC for the stan-
dard map [32]. An application of his method to our
problem gives the following rigorous lower bound for the
half width Wi, (see Appendix A):

'H[ &
2(&3—1)T'

(30) ) 3 E, 7T
Wz — csch

T2
(31}

C. The estimate of the width of the stochastic layer

It is necessary to calculate the width of the stochastic
layer to compute the diffusion constant of the global

But in order to calculate the diffusion constant accurately
the above lower bound is not sufficient. Therefore, in or-
der to estimate the width more accurately we use the
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Greene's residue criterion f1 1] for the existence and
nonexistence of the RIC:

Criterion G. iven two neighboring rationals p/q, p'/q',
i.e., pq' —qp'=+1, there exists no rotational invariant
circles of rotation number between p/q and p'/q' if the
residue R &

and Rp /q are significantly greater than 0.25.
If the residues are significantly smaller then such circles
do exist.

From the residue criterion we know that the boundary
circle is located between two elliptic periodic orbits cor-
responding to neighboring rationals with non-negative
residue near 0.25. Since in our case the boundary circle
determining the stochastic layer is located between two
elliptic islands of rotation numbers 2m /1 and
(2m +2)/1, which are very close, we can get an estimate
of Wz by applying the residue criterion on R2 &, and

R2 +2&, though 2m� /1 and (2m +2)/1 are not neighbor-

—10

—12

—14

ln (W)

-18

-20

22

-2.75 -2.35 -1.95

ln (T)

-1.55

l I I (I

H'

J~

//////

,R
/

/
/

/
/

/

0.75015

FIG. 4. The width of the stochastic layer with @=0.02. The
analytical results from Eq. (32} are shown in a dotted line and
the numerical results from the direct integration and the itera-
tions of the separatrix map in squares and crosses, respectively.

0.75005 ing rationals. The condition R z &,
&

—,
' gives the

halfwidth of the stochastic layer Wz

0.74995
1 7r

csch (32)

0.74985

which is a much better estimate of the halfwidth than one
in Eq. (31). We note that the ratio between Wz and

eMo( T}in Eq. (11) is given by

0.5 0.50008

X

0.50016 2

sMO(T) (V 10—&6)T ' (33)

7.4x10
which indicates that Wz is significantly larger than
eMo(T) when T is small. Figure 4 shows the comparison
between the analytical estimate in Eq. (32}and the results
of numerical simulations by direct integrations of Eq. (3)
and iterations of the separatrix map in Eq. (19), which
shows excellent agreements between various estimates
over a range of T.

0 IV. THE RANDOM PHASE MODEL
AND THE GLOBAL DIR I LJSION CONSTANT

A. The random phase assumption

-7.4x10
0.0213 0.0425 0.0638

FIG. 3. The phase portrait of the time-T Poincare map near
a saddle point is shown in (a) and the phase portrait of the corn-
posite separatrix map S in (b) with a=0.02, and T=0.085.
These phase portraits, though in diferent coordinate systems,
show clearly the correspondence between island structures.

%e now consider the problem of the calculation of the
global diffusion constant in the stochastic layer. Typical-
ly, a Auid particle in the stochastic layer displays chaotic
oscillations in one cell for some periods before crossing
the separatrix and displaying chaotic oscillations in a
neighboring ce11. Therefore it is natural to consider the
global motion in the stochastic layer as the random walks
over the cells. Lichtenberg and Wood [9] used this idea
to calculate the diffusion constant for charged particles in
a periodic magnetic field along the stochastic web with
the assumption that dynamics in the stochastic layer is
completely random, that is, the phase space within the
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stochastic layer is equally populated on each step of the
separatrix map. But this assumption is not adequate for
the case of small T because the changes in H per one
mapping step is limited by eM0(T) which is significantly
smaller than the width of the stochastic layer. As an al-
ternative we consider only t as a random variable, which
is called the random phase assumption F. rom Eq. (19) we
see that if ~H'~ ~0, then t' t ~—OD, so that this assump-
tion is reasonable near the separatrix.

With the random phase assumption we have a random
model describing the dynamics of H as follows:

Pg

'P'

H'=H+eMO(T)cosg, ~H
~

( Wh

where g is a random variable in [0,2m].

B. The difT'usion and correlated random walks

(34)

', vPl
j

When the sign of H changes the fluid particle crosses
the separatrix. Since the crossing is regarded as one ran-
dom walk step, it is important to know that statistics of
the separatrix crossing. The random model gives a set of
probabilities P; that a next crossing occurs at the ith
iteration of the map after a separatrix crossing. We note
that P; does not depend on eMO(T) and Wi, for small i
because Wi, is significantly larger than eMQ(T) in our
consideration. Due to the square lattice geometry of the
separatrices dynamics of H leads to dynamics of fluid
particles from one cell to another. Since each cell has
four separatrices, the probabilities for separatrix cross-

ings P;, give a set of new probabilities P, , Pz, P3, and P4
for a particle moving from one cell to the neighbor
through one of four separatrices enclosing a cell (see Fig.
5).

The random phase assumption is not correct in the re-

gion with elliptic islands. Therefore, it follows that the
tails of the distribution of P s for the random model and

the separatrix map can be diferent since there exist orbits
con6ned in one cell for a very long time due to the sticki-
ness of elliptic islands and the effect of cantori as partial
barriers for transport. But the P s are almost indepen-

dent of the structure of the layer since the tails of the dis-

tribution of P; contributes almost uniformly to P;, so that

P; is mostly determined by the distribution of P, for small

FIG. 5. The correlated random walk model for the global
transport describing the cell to cell dynamics. The dashed ar-
row represents the entering direction of a fluid particle into a
cell and P; are the transition probabilities to the neighboring
cells.

i which are related only to the dynamics near the separa-
trix. Table I provides a comparison between values of P;
and P; computed numerically by the separatrix map, the
direct integration and from the random model in Eq. (34)
for various values of T with c.=0.02. Note that the
dependence of P; and P; on T is small and two sets of
values from the separatrix map and from the numerical
integrations show excellent agreements.

The di6'ering values of P s in Table I imply that the
random process over the cell is not a random walk but a
correlated random walk in which the transition probabili-
ties depend on the entering direction and the rotating
direction of the cell. The fluid particle is more likely to
exit through the separatrix which it followed closely ear-
lier. This correlation over two successive steps causes
fluid particles to persist in the similar direction along the

TABLE I. The probabilities of the separatrix crossing at the ith iteration P; and the probabilities of the fluid particle jumping from

one cell to another, P;, i =1,2, 3,4 are computed by numerical simulations with the separatrix map and direct integrations of
Hamilton s equation of motion for a set of periods, T. They are compared with values given by the random model in Eq. (34), which

shows good agreement.

E.=0.02

The
separatrix
map

0.085
0.1

0.16

Pl

0.362
0.336
0.368

Pz

0.113
0.112
0.109

P3

0.073
0.073
0.090

P4

0.048
0.050
0.043

0.482
0.489
0.479

0.218
0.214
0.209

P3

0.168
0.165
0.183

P4

0.132
0.132
0.129

The
numerical
integration

0.085
0.1

0.16

0.362
0.364
0.366

0.113
0.111
0.109

0.073
0.073
0.088

0.048
0.050
0.043

0.481
0.487
0.478

0.215
0.211
0.209

0.165
0.162
0.181

0.130
0.131
0.130

Random model 0.363 0.112 0.075 0.048 0.480 0.215 0.170 0.135
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L.„,=(u'+ v'& =f,L„'N, (35)

where L, is a length of one random walk step and the an-

gular bracket represents the ensemble average. The ran-
dom model probabilities P„P2,P3, P4 in Table I yield

f, = 1.4 with L, =—,'.

C. The calculation of the diffusion constant

In order to know the time dependence of LMs we need

to know the average period of chaotic oscillations within
the stochastic layer, r,„,and the average number of ran-

dom walk steps of particles after J iterations of the
separatrix map, n (J) If w. e know these quantities, a
straightforward argument gives

n (J) 4
LMs f,L, —

7
(36)

and the difFusion constant D

LMs, n (J) 4D= =fL,
t ' ' J (37)

where r,
„

is obtained by averaging T(H) over the separa-
trix layer

—ln H
~~2 2

o m- m.H

=2
1 —ln + ln sinh

677 7r

17 2( 10— 6)T
(38)

In order to perform an accurate calculation we need to
exclude the elliptic islands within the layer, so that Eq.
(38}yields values slightly smaller than accurate ones, but
this difFerence is negligible in calculating the difFusion
constant. Remarkably, n (J)/J is determined only by

zig-zag path for a few steps. The correlated random
walks still lead to the normal Einstein diffusion where the
mean square distance is linearly proportional to the num-

ber of steps. The effect of correlation conspicuously ap-
pears in the speed of the difFusion, so that the correlated
random walk leads only to modi6cation of the difFusion

constant. The ratio of difFusion constants between the
correlated and uncorrelated random walks is called the
correlation factor denoted by f, [13]. If the (u, v) are the
coordinates of a particle after N random walk steps, the
mean square distance of the two-dimensional correlated
random walk is given by

the ratio between the area of the stochastic layer and the
area crossing the separatrix under one iteration of the
separatrix map, so that we get

n (J) 2aM&(T)T

J nS(e, T)
(39)

1 S(eT)
v10—vg W„T

S(e, T)T .
h
n.

mh
4

(40)

which is proportional to the ratio between the total area
of the stochastic layer without elliptic islands and 2W& T.
When T is small o(e, T) does not depend much on the
parameters. If T is not sufficiently small, then o (e, T) de-

pends on T in a complicated manner. Table II shows nu-

merically computed values of o (e, T) for various values of
T, which indicates that o(e, T) is roughly constant. This
table also provides a comparison between the values of
n~(J)/J obtained by the relation

n (J)
J

T
o(e, Tbr

(41)

and the numerical evaluations by the direct integration,
which confirms the validity of Eq. (39).

The numerical observations in Table II suggests that
o (s, T) =2.3, so that we get

S(e, T)=2.3—csch (42}

Therefore, the analytic estimates of LMs and D are given

by

where S(e, T) is the area of the stochastic layer in the
phase space of the separatrix map. This is proved in Ap-
pendix B. This property implies that the global difFusion

constant is not afFected by the stickiness of elliptic islands
and the cantori in the stochastic layer except the area
considerations of the elliptic islands in the phase space of
the separatrix map.

We compute S(s, T) by subtracting the area of the el-

liptic islands within the stochastic layer from the area of
the region between two boundary circles determining the
stochastic layer, 2WI, T. Therefore, we define a quantity

by

TABLE II. The area S(c,T) is computed numerically with a=0.02, from which n (J)/J is comput-
ed by using Eq. (39) and compared with the results of numerical simulations.

1—n (J) from Eq. (39} Numerical values of —n (J)1
fW

0.075
0.1

0.13
0.16
0.2

2.270
2.238
2.433
2.265
2.363

0.01052
0.01422
0.01701
0.02249
0.02694

0.01075
0.01475
0.01778
0.02299
0.02786
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~MS A~s
T 4

tr E, T rr T~„ 0029
0.004

(43)
e'rr . vr

2 1 —ln — +ln sinh
2( 10— 6)T 2T 0.003

0 )26

MS fc
t 23

0. 002
0 1000Q 20000

2 1 —ln +ln sinh
2( 10— 6)T 2T

.'. 0023
(44)

with the correlation factor f, —1.4 from Table I.
Figure 6 provides a comparison of LMs obtained by nu-

merical simulations with the separatrix map and the
direct integration using the fourth order Runge-Kutta
method with the time step of 0.005. The ensemble aver-
age is done over 1900 fluid particles initially distributed
uniformly in the stochastic layer for the direct integra-
tion and over 10000 fluid particles for the separatrix map
with 10000 iterations of the separatrix map. The LMs
from direct integration shows larger fluctuations due to
the smaller number of ensembles taken for the average.
After same transient behavior, the slope of two curves
converge, which demonstrates good agreements between
results of the separatrix map and the direct numerical in-

tegrations.
In order to get an accurate value of the diffusion con-

stant, fluid particles must be distributed uniformly in the
stochastic layer. But due to the effect of the islands and

200000 400000 600000 800000

FIG. 7. The plot of the number of iterations n versus the
diffusion constant D computed from the separatrix map when

c, =0.02 and T=0.1, which shows the extremely slow conver-

gence. The inset shows the initial comparison between the
diffusion constants from numerical integration and the separa-
trix map.

the cantori it may take a very long time for fluid particles
starting near the separatrix to fill the ~hole stochastic
layer uniformly. Numerical results indicate that it needs
at least 10 iterations for our parameter values to achieve
this uniformity, which results in the extremely slow con-
vergence of the diffusion constant, as seen in Fig. 7. Con-
sequently, it is diScult to get the accurate diffusion con-
stant by the direct integration with our computational

60
I I I /

/
/

,'0
/

/
/

/
/

/
/

/
/

/

/O
0/
/

/

gO
0

A&

0. 007

40

LMs 0.005-

20
0.003

0.0010
0 40002000

0.210.150.12
FIG. 6. The plot of the number of iterations, n, versus LMs

from direct integrations of Hamilton's equation of motion and
iterations of the separatrix map with v=0.02 and T=0.125.
The curve from direct integrations (below) shows more Auctua-
tions since the size of the ensemble is about five times smaller
than one from the separatrix map.

FIG. 8. The diffusion constant computed from Eq. (44) is

shown in a solid line and one from iterations of the separatrix

map in diamonds, which are in excellent agreement.



49 SEPARATRIX-MAP ANALYSIS OF CHAOTIC TRANSPORT IN. . . 2909

power since computational efforts increase as T de-

creases. Therefore the separatrix map is used heavily in

studying the diffusion numerically. The initial values of
diffusion constants from direct integrations and iterations
of the separatrix map are shown in the inset of Fig. 7,
which are in good agreement and exhibit similar conver-
gence behaviors. Figure 8 shows the comparison between
the analytical results from Eq. (44) and the numerical
ones from iterations of the separatrix map. The numeri-
cal results are obtained from the ensemble average over
10000 fluid particles distributed in the stochastic layer
iterated 10 times by the separatrix map. The analytical-
ly and numerically computed diffusion constants show
excellent agreements, confirming the validity of the use of
the separatrix map and the random phase assumption.

V. CONCLUSION AND DISCUSSIONS

In the planar periodic vortical Qow described by the
time-dependent stream function, fluid particles can be
transported along the globally connected stochastic web.
By considering the separatrix map and applying the
theory of twist maps to the separatrix map we get analyt-
ic expressions for the width of the stochastic layer and
the global difFusion constant, which are in good agree-
ments with numerical simulations.

Since the separatrix map yields a large error in the
phase t near the separatrix, it may appear that it cannot
describe the long-time dynamics of one fluid particle.
But, since the phase t can be regarded as a random vari-
able, the separatrix map gives the accurate probabilities
for separatrix crossings, so that the use of the separatrix
map for studying the transport problem is valid. In par-
ticular, when T is small, there are several advantages of
using the separatrix map. It gives a quite accurate esti-
mate for the diffusion constant because the dynamics is
described by the model with random phase. Remarkably,
the long-time correlations near the invariant circles or
the cantori do not have a direct influence on the diffusion
constant except that their areas have to be counted out.
This fact was also mentioned by Lichtenberg and Wood
[9] in the context of the random model. The random
phase assumption leads to the global transport modeled
by correlated random walks from one cell to another. In
fact, the difference of the diffusion constant between the
original Hamiltonian system and the separatrix map is
mainly due to the errors in the transition probabilities of
the correlated random walks, the average period of
chaotic oscillations v;„,and the areas of the phase space
available for global transport and the regions that cross
the separatrix by one iteration of the map, which can be
obtained accurately with very small errors (from Table
II}.

For the case of small c and T, the diffusion is a normal
Einstein diffusion and no accelerator mode has been
found, the existence of which changes the nature of the
diffusion to anomalous. It should be interesting to study
the limit of large c to pursue the possibility of finding
these modes by looking at the phase portraits and numer-
ica11y computing the diffusion constants as a function of c,

[2].
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APPENDIX A

S*(r,Y, (r)}= [g, (t), Y, +,(g, (t))] . (Al)

For a notational convenience, we omit the subscript i of g
and assume that the RIC is located in the region with
H')0. With the generating function G(t, t') for the
periodic vortical flow in Eq. (20) we have

[G(t—, t)+G(r, f')) =0,
dt

where t=g '(t), t'=g(t), or,

2 27f[g 1(]) t )+ 2 2m[t —g(t) j
m'

(A2)

5 sMO( T)cos t =0 . (A3)
2~

By difFerentiating (A3), we obtain

—2' —1 +2mH' 1 — +8 sin t =0,dg dg . 21l'

dt T

(A4)

or

dg ', dg 2'
2nH +2nH' =2'(H+H')+B sin t,

dt dt T

where

B= sM, (T), H= (r, r'),2m BG
T Bt

(A5)

and H'=— 6
, (t, r') . (A6)t'

We note that H'=HE M s(T0)c [(o2sn/T)t] and hence
H=H' when t =—,'T.

Let L be the larger of the Lipschitz constants of g and—1g, i.e.,

(A7}

Applying Birkhoff's theorem to each S+ in Eq. (19) it is
easily seen that the rotating invariant circle (RIC) of S is
a Lipschitz graph and there exist four difFerent Lipschitz
functions Y, ( t), (i = 1, . . . , 4) representing the images of
the RIC of S under successive iterations of S*. Follow-
ing Mather [32], there exist almost everywhere
difFerentiable Lipschitz homeomorphisms g;:T ~R,
i GZ~= I0, . . . , 3] such that
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In view of the definition of L, it follows that
—1

L
—1& dg (L L —1& g

dt dt

From (A5) and (A7) we get

2ttHL '+ 2trH'L ' ~ 2'(H +H') B,—
and when t =3T/4,

(A8)

(A9)

"-( )=
I

1
(Bl)

where n (x;J) is the frequency that a point x crosses C
while S is iterated J times and

I UI is the area of U.
From the definition of A we have a recurrent relation

on n(x;J)

different sides of C. The average number of crossing C
after J iterations of S, denoted by n,„(J),is given by

L '&1—
4mH

(A10)

From the definition of L and the theory of functions [33],
we also get

n(x;J —1)+1 if xEA
n(x;J}= '

n(x;J —1) if xKA

and, in particular, when J =1

(B2)

dg (t) dg '(t)
L =max ess.sup, ess. sup

dt ' '
dt

(Al 1)
(B3)

2ttHL '+2ttH'L ~ 2'(H+H')+B .

In particular, when t =3T/4, we get

(A12)

Here ess.sup means "essential supremum" in the sense of
measure theory. From (A5), (A8), and (Al 1) we get

Thus n,„(J) has a following recurrent relation

,„(J) I (;J —1)d
1

UyA

+ f [n (x;J —1)+1]dx1

A

L '+L &2+
2mH

(A13)
=n„(J—1)+ (B4)

Since the function L '+L is a monotone increasing
function for L & 1, with the initial condition

ol

4mH —B 4mH & + B
4mH 4mH —8 2mH

(A14) n,„(1)=
I

Consequently, we have

(B5)

H B=E, 2csch
3 3'

Sm ST2
(A15) n,„(J)—J

I

For our system, we have

(B6}

APPENDIX 8

Let S be an area-preserving map on the cylinder
T'XE=(E/Z) XE and U be an open invariant set with
finite area. For a rotational circle C contained in U we
define the subset A of U by the set of points which cross
C by one iteration of S, that is, x and Sx are located on

which yields

n,„(J)
J

2sMo(T)T

trS(s, T)

I Ul =S(e, T) and
I
A

I

= sMo(T),
2T

(B7)

(B8)
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