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Large-scale coherence and "anomalous sealing" of high-order moments of velocity differences
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The Hamiltonian formulation of hydrodynamics in Clebsch variables is used for construction of a sta-

tistical theory of turbulence. It is shown that the interaction of the random and large-scale coherent

components of the Clebsch fields is responsible for generation of two energy spectra E(k) ~ k ~3 and

E(k) ~ k at scales somewhat larger than those corresponding to the ——', inertial range. This interac-

tion is also responsible for the experimentally observed Gaussian statistics of the velocity differences at
large scales, and the nontrivial scaling behavior of their high-order moments for inertial-range values of
the displacement r. The "anomalous scaling exponents" are derived and compared with experimental

data.

PACS number(s): 47.27.—i

I. IMRODUCrrON

A widely accepted formulation of turbulence theory
deals with a flow governed by the Navier-Stokes equa-
tions (the density p = 1):

V +v Vv= —Vp+F+vobv,

V.v=0,
where F is a forcing function having Fourier transform
F(k)%0 only in the interval k (ko~0. This means that
kinetic energy is pumped into the system at large scales
only. At large enough Reynolds number Re the flow be-
comes turbulent and, introducing the Reynolds decompo-
sition v=U+u, where U and u describe the mean and
fluctuating components of the velocity field, respectively,
the equations of motion can be formally rewritten as

+U VU+U Vu= VP+F+voh—U,

U

l'
+u Vu+u VU= —Vp'+v hu .0

If p =P +p', these equations are equivalent to the origi-
nal Navier-Stokes equations. The goal of the theory is to
evaluate both U and u.

Understanding the behavior of the small-scale velocity
fluctuations is one of the main challenges of turbulence
theory. It is usually assumed that the statistical charac-
teristics of the flow at small enough scales are indepen-
dent of the large-scale dynamics. This assumption is
basic for comparison of the theoretical predictions with
experimental data. However, as seen from the equation
for u, the small-scale velocity fluctuations interact with
the "dressed" external field U, responsible for turbulence
production. This field must be taken into account when
we are interested in such fine detail of the flow as devia-
tions from the Kolmogorov theory observed in the high-
order moments of the velocity differences, defined below.

S3=—4' .

Relation (1.1) is obtained immediately if the possibility of
the "anomalous scaling" arising from the nontrivial
dimensionality of a is disregarded.

However, dimensional arguments applied to the hi h-
order moments of velocity differences give S„(x)=x ' ~ '",
which contradicts the available experimental data when n
is large. So far the observed scaling behavior of higher-
order structure functions remains something of a mys-
tery. Numerous experiments indicate that in the avail-
able range of displacements x the functions S„(x)seem to
be rather well fitted by the power laws:

S„=[u (X)—u (X +x)]"~ x " (1.2)

where the scaling exponents g„describe deviations from
the Kolmogorov values a„=n/3. Further, it was found
that the larger the order n, the larger the deviation of g'„

from the predictions of the Kolmogorov theory.
Another unresolved problem is the shape of the proba-

bility distribution function (PDF) of the velocity
differences P(hu). It is well established that the single-

Moreover, at the not-too-small scales this field can dom-
inate the dynamics, thus considerably simplifying the
problem. Investigation of the possible effects of the
large-scale, long-living structures on the small-scale prop-
erties of turbulence is the goal of this work.

Experimental data on the second-order structure func-
tion S2(x) measured in various high-Reynolds-number
flows support the Kolmogorov prediction

Sz =—(hu) =[u(X)—u(X+x)] =Czar
i x i

where a' is the energy flux in wave-vector space. Relation
(1.1), though not derived from mathematically rigorous
theory, is readily obtained from various qualitative con-
siderations. For example, at scales much smaller than
the energy injection scale the following exact relation
holds:
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point PDF is Gaussian. In other words,

P(b, u) ~exp
2~ rms

(1.3)

for x ))L, where L is the integral scale of turbulence.
Moreover, Gaussian statistics of velocity differences are
observed for separations x/L =O(l). For the scales x
corresponding to the inertial range Id «x «L, where ld
is the dissipation scale, the experimentally observed
P(b, u) seems to be close to exponential:

P(hu) ~exp —a ib, u

~ rms

(1.4)

S2 =[@(X)—e(X+x)]'~xo . (1.5)

Relation (1.5), showing that the e fluctuations are evenly
distributed in space, has never been observed in numeri-
cal or physical experiments. Instead, observations sug-
gest

S2 ~x (1.6}

with the "intermittency exponent" p ranging from 0.1 to
=1 depending on the experimental conditions, Reynolds
numbers, etc. Relation (1.6} shows that the dissipation
rate of kinetic energy is concentrated in the localized
areas of space having a "spotty" nature. This is often in-

terpreted as spatial intermittency of strong turbulence.
Theoretical understanding of this behavior is a major
challenge. Accurate experimental verification of (1.6) is
very difficult and at the present time we cannot even be
sure that a scaling relation of the type (1.6) exists at all,
though it is clear that experimentally observed S'2(x) de-
creases with x more slowly than predicted by (1.5).

Since the dissipation rate appears in the expression for
the Kolmogorov energy spectrum, it is tempting to try to
incorporate the e fluctuations into Kolmogorov-like con-
siderations and express the deviations from the K41 scal-
ing observed in the high-order moments of velocity
differences in terms of the intermittency exponent p.
This has been done in various models, often rather loose-
ly related to the Navier-Stokes equation of motion. How-
ever, the Gaussianity of the large-scale velocity fluctua-
tions has not been addressed by any model of intermitten-
cy known to me. It is remarkable that in various experi-
mental situations, differing by geometry, production
mechanisms, Reynolds number, etc., the observed PDF

with the dimensionless coefficient a=0(1). Relations (1.3)
and (1.4) represent the most dominant feature of the PDF
of velocity differences in the inertial range.

No less interesting is the behavior of the fluctuations of
the local value of the kinetic energy dissipation rate
e=v(i3u, /Bx ) . The Kolmogorov theory (K41) simply
neglected the e fluctuations assuming e(x) =const. It was
later suggested [1] that the e fluctuations may be respon-
sible for the experimentally observed deviations from
Kolmogorov scaling. It is easy to show that if turbulent
transport coefficients obtained from the K41 phenome-
nology are used for construction of a dimensional argu-
ment, the resulting correlation function is

of velocity differences was so close to Gaussian at the
scales x/L =1. In my opinion the universality and
robustness of this quantity is most surprising and very
difficult to explain. In this paper I modify the Clebsch
formulation of statistical theory of strong turbulence,
developed in Ref. [3], to include the large-scale coherent
structures, sometimes responsible for turbulence produc-
tion. It will be shown that the interaction between
coherent and random components of the Clebsch fields is

responsible for the observed Gaussian statistics of the
large-scale velocity differences and for the nontrivia1
behavior of the high-order moments. The results will be
compared with experimental data. This paper is organ-
ized in the following way. In Secs. II and III, closely fol-
lowing Ref. [3], the formulation of hydrodynamics in a
Clebsch variables is introduced and the Kolmogorov en-

ergy spectra corresponding to the constant fluxes of con-
served quantities are derived. In Sec. IV the interaction
of the large-scale coherent and random components is in-

troduced, and it is shown that the theory reduces to the
many-body problem in a strong external field. The in-

teraction of the velocity fluctuations with coherent struc-
tures is responsible for two additional solutions at scales
larger than those corresponding to the Kolmogorov
range. The expressions for the probability distribution
function of velocity differences, which is Gaussian at
large scales and close to exponential at smaller scales, is
derived in Sec. V. In Sec. VI the derivation of the dissi-

pation rate correlation function, developed in Ref. [3], is

presented. The discussion of experimental data and a de-
tailed comparison with the outcome of this paper are
presented in Sec. VII.

II. FORMULATION OF THE PROBLEM

We consider a fluid flow driven at the very large scales
1»L~oo. Somewhere at the smallest scales 1~0 an
energy sink is assumed, so that a statistically steady state
can be achieved. The flow is described by the Navier-
Stokes equations:

+v Vv= —Vp+F+v Av
Bt

V v=0,
subject to initial and boundary conditions. We assume
that the force F(x, t) is an arbitrary deterministic func-
tion of position and time acting at large scales only. In
various flows F corresponds to the deterministic contri-
bution to the pressure gradient. For example, the flow in

a pipe driven by gravity is equivalent to the flow driven
by a constant pressure gradient. When the Reynolds
number Re&Re, this equation gives a laminar velocity
profile UI (x, t). At Re & Re, the laminar velocity profile
is modified due to the interaction with turbulent velocity
fluctuations.

It is customary to describe the dynamics of the inter-
mediate scales by the Euler equation (the density p= 1):

Bv +V PU= ~Pat

V-v=O .
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The Clebsch variables are defined as the Euler equation can be written in a Hamiltonian form:

v=A, V@+V/ . (2.2}

Using the incompressibility condition, the potential P can
be expressed through A, and p:

Q
= —V V.(A.Vp)

and thus

. Ba(k) 6H
1

Bt Qa «(k)

where the Hamiltonian K is

H 4 f Ti2 34a '(ki )a '(k2)a (k3)a (k4)

X5(k, +k2 —k3 —k4)dki, dk2dk3dk4 .

(2.9)

(2.10)
v= —V VX(VA, XV@),
co=Vs, XV@ .

(2.3)

(2.4) The interaction potential is

The Clebsch variables are transported by the flow and the
Euler equation can be represented as

Ti2 34 = T(klk2, k3 k4) = P13q 24+g i4P23

where

(2.11)

+v V@=0, SA,= +v VA, =O . (2.5)

It follows from Eq. (2.3) that the velocity field does not
uniquely define the Clebsch field (A,(x, t),JM(x, t)). In fact,
a set of pairs of the Clebsch variables (A, , (x, t),p;(x, t))
can be used to express the velocity v(x, t):

M
v= g A,;V@;+V/

and

M
co= g VA, ;XV@;, (2.7)

where M is the number of Clebsch pairs necessary for the
complete representation of velocity field.

The equations of motion for each pair (A, ,p, ), given by
(2.5) with the subscript i specifying the pair, can be writ-
ten in a Hamiltonian form since A, and rL4 are canonical
variables. The Hamiltonian and the corresponding equa-
tions of motion are given below. The minimal number of
canonical pairs needed to describe an arbitrary flow de-
pends on the topology of the field v. It is a plausible con-
jecture that M=2 is sufficient to represent a wide class of
turbulent flows. Indeed, the velocity field in a three-
dimensional incompressible flow has two independent
components. This field, however, cannot be described by
one pair of Clebsch variables due to the constraint
v a3=0 which tells us that, in fact, we have only one in-
dependent Clebsch variable. Introducing the second
Clebsch pair we create two independent variables,
suScient for the description of the general velocity field
with nonzero values of the local helicity. In this paper
we will discuss only the case of M=1 which corresponds
to zero helicity fv co dx =—0, following directly from the
definition (2.4). This restricts applicability of the analysis
to 6ows in which the vortex lines do not have any knots.
However, the results of this work may be readily general-
ized to the case of M=2 corresponding to an arbitrary
topology.

Introducing the complex variables a (k}and a'(k},

k2 —k2
qr(ki, k2) =yi2 =ki+ k2 —(ki —k2)

k, —k2
(2.12)

In these variables

v= pqq gaqaq g q . (2.13)

Equation (2.14) conserves the total energy, since it is a
Hamiltonian equation of motion. In addition, it con-
serves an infinite number of integrals of motion

fF(A, ,p)dr=const. These integrals do not have simple

interpretation in terms of the velocity field. In the
present paper we concentrate only on one of the integrals
of motion:

+p x= a' a =const . (2.15)

The parameter N has the dimensionality of action and
can be called the "hydrodynamic action" or number of
quasiparticles (elementary excitations) describing tur-
bulent flow. The relation (2.15) has the most important
impact on what follows, so the elucidation of the physical
meaning of the "quasiparticles" or waves and of the topo-
logical consequences of this conservation law remains a
very important task. Due to the negative sign of the Aux
of the number of particles, their source is expected to be
at the small scales.

The function p(ki, k2) is a discontinuous function at
k, =k2 since the diagonal elements of y(k, k) determine
an arbitrary mean velocity in the flow v(k=O). So, in
what follows we set p(k, k) =0.

Substituting (2.10)—(2.12) into (2.9) the equation of
motion for the "creation-annihilation" operators a (k) is
readily derived:

i =— T q, 34a' 2a 3a 4
. Ba(k) 1

t 2

X5(k+ k2 —k3 —k4)d k2d k3d k4 . (2.14)

p(k) = —[a (k)+a'( —k)],1

2

k(k}= [a(k) —a'( —k)],
2

(2.8}

III. RANDOM-PHASE APPROXIMATION.
KINETIC EQUATION

Let us single out the diagonal contributions to the
equation of motion (2.14}:



2890 VICTOR YAKHOT

i —co(k)a (k) =f T(k, k2, k3, k4)a '(k2)a (k3)
.Ba(k}

X a (k4)5(k+k2 —k3 —k4)

where

J4=J&k k &
=(a*(k)a "(kz)a(k3)a(k4)} . (3.9)

where

Xdk2dk3dk4,
Writing the equation of motion for J4 as

(3.1)
BJ4 —(a '(k (a "(k, (a ((:,(a (k, (]) (3.10)

co(k) = f T(kk2, kk2)a '(kz)a (k2)dk2 (3.2)

and the symbol ' in the integral in (3.1) means that the di-
agonal contributions with k =k3, k2 =k4 are not includ-
ed. It will be shown in what follows that the integral

and expressing the time derivatives in (3.10) using (3.6)
we obtain in the random-phase approximation in the long
time limit t~ ~

co(k) =f T(k, k, , k, k, )n (k, )dk, , (3.3)
X5(co(k)+co(k3) —co(k3) —co(k4))

with

n (k)= (a'(k)a (k)) (3.4)
with

X dk~dk3dk4, (3.1 1)

i —co(k)a (k ) =S,. Ba(k)
(3.5)

where the collision integral S(k) is defined by the right
side of Eq. (3.1). In the zeroth order of the expansion in
powers of the nonlinear interaction S we have

a0(k t) a (k)e
—i'(k)t (3.6)

converges when calculated on the solutions n (k) of the
kinetic equation derived below. This means that the
main contribution to (3.3) comes from the region k =k2.
In this work we are interested in statistically steady solu-
tions n (k), so co(k) =const is time independent. Thus we
introduce the mean-field approximation [3]

J4=n 34n( n+2n)kn2np(n3+n4) ~ (3.12)

Here n (k;) =n;. The 5 function in the collision integral
in (3.11),describing energy conservation per collision, ap-
pears in the equation of motion as a result of iteration:

J4 = (a "(k, )a'(k2)a (k3)a (k4) )

X f dt exp[it [co(k& )+co(k2) co(k3) co—(k4)]]—

in the limit of large time t. The kinetic Eq. (3.10} and
(3.11) has been analyzed and solved by Zakharov in the
context of the weak turbulence theory (see the excellent
review in [2], and references therein). It has been shown
that if

The bar over co(k) defined by (3.3) is omitted in what fol-
lows. The statistical ensemble can be constructed by in-
troducing an infinite set of realizations differing in the
values of the initial phases (p(k) in (3.6):

co(k) ~ k

there exist four scaling solutions:

(3.13)

a (k, t)=~a(k)~e'"'""+'~'"' (3.7)
n (k)=const, n (k) ~ 1

co(k)
' (3.14)

The key element of the theory of weak turbulence, adopt-
ed in Ref. [3] for consideration of strong turbulence, is
the assumption that all phases p(k) are uncorrelated, i.e.,

and

n(k)~k (3.15)

(a (k) ) = ( a (k) ~e'~'"'
& =0,

(a (k)a (k') }= ( ~a (k)
~

~a (k') ~exp[i(p(k)+(p(k')] ) =0,
( a (k)a '(k') }= ( ~a (k)

~ ~a (k')
~
exp[i'&(k) —(10(k') ] )

=n(k)5(k —k') .

All odd-order correlation functions of the fields a (k) are
equal to zero in this random-phase approximation (RPA).
As was mentioned above the averaging is performed over
the ensemble of initial phases tt}(k).

To derive equations of motion for the "occupation
numbers" n (k), let us multiply (3.5) and the correspond-
ing equation for a *(k) by a '(k) and by a (k), respective-
ly. Then, the equation of motion for n (k) reads

with

4 4—a
x =—+d x = +d .

1 3
~ 2 (3.16)

a= —x+d+2= —x+5 (d =3) (3.17}

and the expressions for n (k) can be obtained in a closed
form:

n~k ' a= —' (3.18)

The solutions (3.14) correspond to a fiuid in thermo-
dynamic equilibrium, while the relations (3.15), (3.16) de-
scribe a nonequilibrium flow. From the definition of co(k)
given by (3.3) we find readily

Bn (k, t)
Tkk, k k Jkk, k k

and

n ~k 4, (z=l . (3.19)

X5(k+k, ,
—k2 —k3)dk2dk3dk4, (3.8) It can be checked easily that the total energy can be evai-
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uated from the following relation:

E = Jco(k)n(k)dk, (3.20)

The relations (3.18) and (3.19) generate two solutions,

E(k) ~ &2/3k 5/3 (3.21)

and

E„(k)~ Pk (3.22)

where P denotes the "particle" flux in the wave-number
space. It has also been shown [2] that, while the energy
flux is positive, i.e., the energy is cascading from the larg-
est to the smallest scales, the flux of particles is in the op-
posite direction: from small to large scales (inverse cas-
cade). The importance of this fact will be discussed
below. Thus, as follows from (3.21) and (3.22), the small-
and large-scale dynamics in turbulent flows are character-
ized by two different energy spectra. This is a completely
new development which is discovered due to our use of
the Clebsch variables. It is clear that the energy spectra
(3.21) and (3.22) can readily be obtained from dimension-
al considerations which do not require one-loop approxi-
mation and kinetic Fqs. (3.11) and (3.12).

Strictly speaking, Clebsch variables are formally
defined for the inviscid Euler equation. However, it has
been shown [3] that using the definitions (2.3), (2.4), the
viscous hydrodynamics can be described by Eqs. (2.5)
with the source term

I, =O(/vs, A, ),
where g=O(b, Leo/co) is a complicated functional of
the vorticity field co. If g can be considered as a Gaussian
random function, then this term represents the small-
scale source of the "quasiparticles, " consistent with the
results presented above. In the Fourier space
I, =O(vk a (k) ), which can be assumed small in the iner-
tial range. This fact is important for the application of
the Clebsch formulation of hydrodynamics for investiga-
tion of the turbulence problem.

Another problem with the Clebsch formulation is its
nonuniqueness: any velocity field v can be represented by
an infinite number of different Clebsch fields (A, ,p). At
the present time we do not know how to solve this prob-
lem, and therefore we neglect it for the time being and
hope that one day the way to calibrate the Clebsch repre-
sentation will be found.

which defines the energy spectra in terms of the Clebsch
variables:

E(k)=4~k 'co(k)n (k} .

tions. For example, the exponential distribution of the
velocity difFerences is readily understood: The assumed
PDF of the Clebsch field P (a;a ' }=e " . Since
u =O(aa') then P(U)=exp( —U/U, ). The actual
derivation is rather difFicult due to the complex form of
the matrix element y&2 entering the expression of the ve-

locity field in terms of Clebsch variables but the origin of
the exponential distribution is clear from the above di-
mensional considerations. This theory failed to explain
the experimentally observed Gaussian statistics of veloci-
ty differences at the large scales and the "anomalous scal-
ing" of the high-order moments S„.

Let us reflect on the approximations involved in the
derivation of the spectra in the preceding section. The
close-to-Gaussian probability distribution of the Clebsch
field is, at first glance, the crudest of all since it assumes
weak interaction between modes a (k). Still, this approxi-
mation qualitatively explained the experimentally ob-
served close-to-exponential distribution of the velocity
differences at the small scales.

Random-phase approximation was a key element of
the theory developed in Ref. [3). This approximation,
which disregards the possibility of generation of the
large-scale coherent structures, can serve only as a crude
model for the small-scale dynamics. In reality turbulence
is produced as a result of hydrodynamic instabilities of
the large-scale ordered flows (structures) characterized by
very strong phase correlation. The well-known examples
include traveling waves and streaks in wall flows, convec-
tion rolls, Karman vortex streets in jets and mixing lay-
ers. Taylor vortices etc In al.l these cases the structures,
though strongly interacting with the random component
of the velocity field, preserve the phase correlation even
in high-Reynolds-number flows. The organized motions,
reflecting the physical mechanisms of turbulence genera-
tion, create large-scale shear acting on the small-scale
component of velocity fluctuations. This shear is not a
result of pure nonlinear interaction and can be considered
as a "dressed" external field. The dynamical conse-
quences of the large-scale coherent component are not
taken into account in the theories based on the random-
phase approximation. Let ko denote the wave vector or
set of wave vectors corresponding to the basic flow struc-
ture. Then, the random-phase approximation cannot be
valid for k~k0~0. To incorporate coherent structures
in the theory we relax the random-phase approximation
and introduce

(a (k) ) = g A (k)5(k —ko),
I

(a'(k) ) = g A '(k)5(k —ko),

IU. LARGE-SCALE COHERENT STATE
AND EQUATIONS OF MOTION

and

(a(k}a'(k)) = Q N05(k —ko)+n(k),
All results described in the previous sections were de-

rived in the RPA combined with the mean-field approxi-
mation introduced in the work of Yakhot and Zakharov
[3]. This theory used the unjustified assumption of the
close-to-Gaussian statistics of the Clebsch variables and
led to the explanation of various experimental observa-

where No = ( A (k 0 ) A '(k 0 ) ) correspond to the coherent
components of the Clebsch field while the modes a (k)
with k & ko describe fluctuations and can be considered
in the random-phase approximation so that (a (k})=0.
This wi11 be discussed in what follows. Although the de-
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when k «k, , the velocity definition in terms of the
Clebsch field reads

v(k) =Vo+ [ A" (ko, k)a (
—k)+ A( —ko, k)a "(k)]

+ f (p„),a,' a, „dk, (4.1)

where k0=0(L ) and ko can, in principle, slowly vary
in time so that (ko) =0. The coherent component of the
velocity field Vo, derived from the definition (2.13), calcu-
lated on the coherent contributions to the Clebsch field
A (ko), is

Vo=gy„; „;A (k())A '(k~0),

where the summation is carried out over the wave vectors
ko forming the coherent state. The vector

k(k k())
A(ko, k)= g k()

— A (k()) .
k

tailed structure of the ordered component can be very in-
volved and vary from flow to flow, here, as a first step, I
consider a simplified model and investigate consequences
of the very existence of the large-scale coherent mode.
Taking into account that

k, (k k, )
y(k k )=k— =k

2

H2= f dk(~A(kok}~ a(k)a*(k)

+—,
'

{ A (ko, k)a (k)a ( —k)

+[A'(ko, k)] a'(k)a'( —k)J),

H3 = J dk 0( A(ko, k) P~ z (,[a '(q)a (q —k)a (k)

+a*a*a+ ]),
H4=S .

The same result is derived directly from the Hamiltonian
(2.10): as in the Bogolubov theory of weakly interacting
Bose gas, the linear in a(k) contributions are absent
when ko «1 and k =0(1) due to the impossibility to
satisfy momentum conservation.

In general the large-scale field A(ko, k), which is to be
obtained as a solution of the full dynamical problem, is a
functional of a (k) and the derivation of A (k;a (k)) is a
very difficult task. First, we consider the simpler case of
low-Reynolds-number flow, in which the coherent com-
ponent of the velocity field does not strongly differ from
the laminar velocity profile UL (x, t) We ca.n neglect the
dependence of A(k(), k) on a (k) and treat the large-scale
coherent component as an external field.

Due to quadratic in a (k) contributions to the Hamil-
tonian, the equations of motion have linear terms:

= A (ko, k) l'a (k)+ —
[ A "(ko,k) ] a *( k)

This relation introduces some violation of both isotropy
and homogeneity, always present at the large scales in
real-life flows. This anisotropy is not essential for the re-
sults derived below, since one can introduce an ensemble
of the large-scale coherent structures and average the re-
sults derived for each realization over directions of ko [4].
In many flows the large-scale structure has rather compli-
cated topology and the anisotropy introduced by it is
small. To proceed further we need information about
physical properties of the large-scale coherent structures
which has to emerge as a result of solution of the entire
dynamical problem. Since at the present time we cannot
develop a comprehensive theory, approximations based
on a sensible physical picture are to be invoked. The
coherent structures, often generated at the transition to
turbulence, are long-living solutions of the dynamical
problem and thus it is reasonable to assume that they are
stable or marginally stable in the limit a (k)~0. In other
words,

5H
fia (k)

when a ( k )~0. This means that the linear in
a (k) contributions to the Hamiltonian of the kind

fdk 0( Vo. A(ko, k)a(k)) =0 can be neglected. Thus the
Hamiltonian, which does not include linear in a (k) con-
tributions, can be written as

H =Ho+H2+H3+H4,

Ho =g(p„; „,-(p„, „qA *(k 0 ) A *(k~o ) A ( k J(, ) A ( k ([ ),

IL

and

i —=~A(ko, k)~ a "(k)+—A (ko, k)a( —k). (}a (k) z „ 1 2

=IL

The physical meaning of IL can be understood readily.
Let us introduce the Reynolds decomposition of the ve-

locity field:

v=U+v',

where U and u' correspond to the mean (coherent) and
fluctuating velocity fields, respectively. This decomposi-
tion is difficult to realize in unsteady flows and it is used
here only to illustrate the physical origin of the external
field in the Clebsch formulation of hydrodynamics.
Then, the Euler equation (2.1}can formally be rewritten

c)v +v'-Vv'+I, = —Vp'
Bt

and

+U.VU+I = —VP +F,
Bt

where

I, +IU =U-Vv'+v'. VU

and p'+P =p. It is clear that these two equations are
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equivalent to the Navier-Stokes equations at the scales
I »ld.

Taking into account that

(k kjv)(k. ko)
A (ko, k)= g k() k~v

— A(k()) A(kv)

=0 g VUJ

we come to the conclusion that the linear contribution to
the equation of motion for a(k} comes from the large-
scale shear. This result is expected, since it is this shear
which strongly contributes to the turbulence production
in the Navier-Stokes equations. Thus the introduction of
coherent and fluctuating components of the Clebsch field
is equivalent to the Reynolds decomposition of the veloci-
ty field. It is clear from these relations that A can be
treated as external field only if IU is small enough to in-
troduce large deviations from the laminar solution UL .

If the amplitude of A (k} is large the interaction Ham-
iltonians H3 and H4 can be taken into account perturba-
tively. The small coupling constant will be introduced
below. Using the Bogolubov transformation [1,5]

a (k) =uc (k)+ vc '( —k)

and

a*(k)= u 'c'(k)+ v'c'( —k)

the expression for H2 can be diagonalized:

H2= e c c'

with

e (k)=u' —vv',

u'=[i A (k„k)~']'

v=A (ko, k),
where /Ai =[A, i +/A2[ +/A3i and A =A(+A@
+ A 3 Prom these expressions we can see that for the
general structure of the field A(ko, k), the dispersion rela-
tion e (k))0 and thus the coherent state is linearly
stable as was assumed when the linear contributions to
the Hamiltonian were neglected.

In a general case of high-Reynolds-number 6ow
A(ko, k)= A(kv, k, a(k)) and the equations of motion,
derived above, are incorrect. Following the theory of
superAuidity, let us use the particle conservation law
(2.15) and express A (ko } in terms of the external param-
eters of the problem and fluctuation a (k):

g A (ko)A (kj(3)=NO —fa'(k)a(k)d k,

where No =const, independent of a (k). Due to the com-
plexity of the matrix elements yk k. we cannot exactly ex-
press the Hamiltonian H in terms of No and a (k}. How-
ever, the particle conservation relation can be used to es-
timate various contributions. The dangers of this ap-
proach are clear but at the present time this is all we can
do. Thus

H2= jt dk(Na(k)a'(k)

+—'
t A (ko, k)a (k)a ( —k)

+ [ A '(kv, k) ]2a '(k)a '( —k) ] ),
where

N=0(k()Nv) .

The corresponding O((ko/k) ) correction to H4 is small
in the limit kv~0. Using the same estimate we can ex-

press the operators A (k) in H(3 in terms of No and A (k).
The resulting Hamiltonian has constant O(koN0} term
and the a (k)-dependent contributions which simply
modify all factors in H2. The magnitudes of these factors
can be important for the results of this work since, in
principle, they can modify the frequency shift we are try-
ing to calculate.

In the theory of weakly interacting Bose gas the con-
densate is considered at k0=0 and the corresponding
operators are taken as c numbers, so that A = A ' =v N.
In this case the frequency shift is equal to zero. This
gives rise to phonons, characterized by linear in wave-
number energy spectrum (v(k) ~ k. In the theory of tur-
bulence the coherent state cannot occupy k(3=0 since the
finite shear is necessary for the turbulence production.
Thus some violation of translational invariance is always
expected at the large scales.

As was shown above, the particle conservation law
gives some information about the product A (k)A'(k).
In order to say anything about A we have to solve the
corresponding dynamic equations describing the large-
scale coherent component of the Clebsch field. At the
present time we cannot do it. However, it is reasonable
to assume that

Based on the particle conservation law, we estimate

e (k)=N iA (ko, k, a(k))i =O(k(3N )&0.

If the large-scale flow is produced by the nonlinear in-
teractions without the large-scale symmetry breaking
external field, then it is possible that e (k) =0 and the re-
sults of this work should be modified.

In what follows we take the frequency shift
0:—e(k) =koNo and, to avoid introduction of a new no-

tation, set a (k) =—c (k). This approximation totally
neglects the geometric structure of the coherent state and
the fact that it depends not only on the wave vectors ko
but also on the angles between vectors k and ko. So, in
what follows the dispersion relation e (k) is taken into ac-
count in an average way, which is sufBcient for the quali-
tative theory of "weakly interacting Clebsch gas"
developed in this paper.

Since the

fluctuations

from the coherent state
(a (k})= (a*(k))=0 the Fourier component of velocity
(v(k) )=0 for k large enough. Thus I assume that the
field a(k} is isotropic and homogeneous. This assump-
tion should come out as a result of a dynamical theory
showing that anisotropic perturbations of the coherent



2894 VICTOR YAKHOT

state decay while the isotropic ones survive. This can be
done easily considering linear stability of a basic flow of a
given structure in Clebsch variables. However, in fully
developed turbulence, the coherent and random com-
ponents strongly interact: the large-scale turbulence-
producing eddies are influenced by the small-scale veloci-
ty fluctuations and the resulting "turbulent profiles" arise
from the complicated interactions. So, in this work I will
not consider the nature of the coherent state and simply
postulate its existence. As will be clear from what fol-
lows some of the consequences of the interaction between
organized and random motions are of a general nature in-
dependent of the detailed structure of large-scale eddies.

The mean-field equations of motion for the Clebsch
variables are derived from the approximation Hamiltoni-
an introduced above:

i —[co(k}+2NDka ]a (k) =S .
. Ba(k) 2 (4.2)

Let us show that in the kinetic equation approximation,
considered in this work, the 0 (aa } contributions are
negligibly small due to the absence of the resonant in-
teraction on the dispersion relations co( k ) +const.
Indeed, repeating the derivation of the kinetic equation
we find an additional contribution to (3.8) of the type

Bn (k, t) =Im f TI, I, I, J& z I, 5(k —k4 —k3)dk3dk4,

(4.3)

with

JI, I, & =J3=0((a'(k)a(k3)a(k4))) .

Using the results of the preceding section we derive after
the iteration

J3 ~ f dt exp[it [co(k3+k&)—co(k3)
0

—co(k4) —2%0ka]],

which disappears in the limit t ~~ due to the absence of
the resonances. It can be shown [3] that elimination of
the nonresonant terms can be done rigorously by intro-
duction of the new operators a(k) =a (k)+s where the
linear shift s is chosen in such a way that the third-order
contribution disappears from the resulting equation for
a (k). In the case considered in this work this leads to a
simple multiplication of the matrix element (2.11}by a
constant factor which does not modify the scaling rela-
tions derived in this paper.

Thus the kinetic equation corresponding to (4.2) is ex-
actly the same as one derived in the preceding section
since the constant nonlinear frequency shift disappears
from the conservation laws. Solutions (3.18) and (3.19)

The O(aa} terms on the right side of the equation of
motion coming from H3, violating particle conservation,
are neglected in (4.2). However, they are very important
since it is only due to these terms the constant nonlinear
frequency shift in (4.2) cannot be removed by the trivial
transformation

—iN k2f
b (k) =a (k)e

stay intact but in addition to the energy spectra (3.21)
and (3.22) we also have

E,(k) ~k (4.4)

E4(k) ~ k (4.5)

V. PROBABILITY DISTRIBUTION
OF THK VELOCITY DIFFERENCES

Let us consider the probability density of the velocity
difference

corresponding to energy and particle conservation laws,
respectively. The origin of these spectra is clear: in gen-
eral E(k) =E'~ n (k)/r(k) where I' is the corresponding
flux and v is the characteristic time scale. Due to the in-

teraction with the "external field, " we now have an addi-
tional wave-number-independent time ~=const, leading
to the energy spectra (4.4) and (4.5). We will see below
that the —,

' spectrum is indeed observed in shear flows at
scales larger than those corresponding to the —', Kolmo-

gorov range. Since the limit k~0 is dominated by the
——', spectrum the second E ( k }=k spectrum will not

be considered in what follows. If Q=X0k0 is not small,
then the expansion parameter of the theory
rt =to(k)/0 —+0 when k ~0 since the dispersion relations
corresponding to both spectra E3 and E4 are co(k) ~ k

with a&0. In this case the solutions E3 and E4 are
asymptotically exact. Let us estimate g for some well-

known cases of turbulent flows. The mean dissipation
rate e =u, , /L where u, , is the root-mean-square ve-

locity of turbulent fluctuations and L is the integral scale.
The characteristic frequency of the coherent structure is

simply given by the large-scale shear Q=S = U/L where
U is the characteristic velocity of coherent motion. Us-

ing these estimates we obtain rt=u, , /U. In wall fiows

g=10 ' —10 in typical laboratory situations and, ac-
cording to the data g~0 when the Reynolds number
Re~ ~. The same estimate is applied to other wall flows
and wakes behind bluff bodies. In Bernard convection

g =Ra ' ' in the experimentally covered range of varia-
tion of the Rayleigh number 10 (Ra & 10' . In this flow

U is the mean velocity of the coherent vortex ("wind")
observed in high Ra flows. According to theoretical ar-
guments in this case too, q~O when Ra~ ~. The ex-
istence of a small parameter in this formulation of the
theory of turbulence means that the fields a (k) and a '(k)
are close to Gaussian when k~kp~O. However, in jets
the parameter g=10 ' and does not seem to decrease
with increase of the Reynolds number. The experimen-
tally observed close-to-Gaussian large-scale statistics of
velocity field in this kind of flows should be related to nu-

merical smallness of g and, unlike the wall flows, the ex-

tent of the range where the Gaussian statistics is observed
should not grow with Reynolds number.

The expansion parameter g(k)=O(1) when k~ ~.
Sti11, this parameter will be considered small in what fol-
lows. This restricts the results of this paper to not-too-
large wave numbers. The limits of validity of the theory
will be discussed be1ow.
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U(X,x)= u (X+x)—u (X)

=kO3]/NO f [a (k)+a'(k)](e' —1)dk

+f (p(k„kz)a (k])a(kz)(e ' ' —1)

Xdk1dk2, (5.1)

where we have omitted the subscript x denoting the x
components of the velocity and wave vectors. It is well
known that the odd moments U "+' are not equal to zero
and that the PDF P ( U)AP ( —U). However, this asym-
metry is not very strong and it is absent when x denotes
displacement in the direction perpendicular to the x axis.
In this work we shall discuss the behavior of even mo-
ments only, leaving investigation of the odd-order mo-
ments to future publications. It is clear from the above
definitions that

quadratic contribution to (5.1) is small, the Gaussian
averaging can be done exactly with the result

I=exp( —a U, /2),

which after substitution into (5.4} yields the experimen-
tally observed Gaussian distribution function

P(U) ~exp( —U /8U, )

for large values of the displacement x /L ~1. Now let us
set for the time being N0=0 and try to evaluate I. Due
to the complicated functional shape of the matrix ele-
ments (p(k „k2), this is a rather difficult task. Expanding
the exponent in I and examining the series in powers of a
we find that the second-order term is equal to

I2= —
—,a U2 2

The fourth-order contribution is

with

U=U +UR a4
I4= (3U]]+6JV4),

24

=O(x'")—=px'"
and

U,'=4N, k,' f n (k)(coskx —1)dk

(5.2)

UR %k, k ~ 1 Pl 2 2 2cos 1 2 x 1 2 where 6Jll'4 denotes six off-diagonal contributions to I of
the kind

A4 f ] 2g 3 ] p3 6f 3 6n, n2n 3n 6dk, dk2dk3dk60 0 0 0

(p; =]p(k;, kj )(e ' ' —1) .
' 4/3

x=o(x'")—=q—
L (5.3)

All others are obtained from this one by permutation of
the subscripts. It can be shown easily that the 2nth-order
term in the expansion has the form

The proportionality coefficients p and y are given by
p=e and y=Nokoe'~. It will become clear below
that in many cases Noko =S, where S is the shear due to
the coherent state which dominates the large-scale dy-
narnics. The probability distribution function P(U) is
defined as

P(U)~ f5[U —u(x)+u(x+r)]dX

or, using the integral representation of the 5 function

P(U) a: f dae(avt e b'av(xr

Introducing the ensemble of fiuctuating Clebsch fields
and assuming that the space and ensemble aver~'ging pro-
cedures are equivalent leads to

P( U) = f da eiaV(e iaV(O, x)
~ (5.4)

Our goal is to evaluate

( e
—i V(O,ax) )

Assuming further that the statistics of the Clebsch fields
a (k) and a '(k} are near Gaussian for k )ko, we can an-
alyze the expression for I with U(x) defined by (5.1). In
principle the result of Gaussian averaging can be formal-
ly expressed in terms of the corresponding determinants.
The resulting formulas are very involved and it is diScult
to extract any useful information from them. Here I will
expand I in powers of iaU(x) and evaluate the outcome
of Gaussian averaging. First of all it is clear that if the

( —1)" 2n (2n —1) U2„
2n

2& ~
2n —2 2 R

2n (2n —1)+G2„2 JV3„

P ( U) a- exp
3/ZU

This relation resembles the experimentally observed
P(U) for small separations x/L «1. The exact evalua-
tion of the function I is a difBcult problem because the
number of contributions to I„ involving various combina-
tions of wave vectors grows very rapidly with n. This in-
dicates the possibility to evaluate I„ for n &&1 using sta-
tistical methods of diagram calculations. Here I assume

where 83„2 and 62„3denote the number of the corre-
sponding contributions to I2„2. Neglecting the off-
diagonal contributions we can sum up the remaining
series with the result

—1
a2U2

I =—1+
2 2

If all terms in the expansion are assumed to be equal,
then we have the same result with the coefBcient —', re-
placing —,

' in the above relation. Substituting the expres-
sion for I into (5.4) and evaluating a simple integral yields
the exponential probability distribution function
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that when n is large the contribution of the off-diagonal
terms is small due to the cancellations stemming from
proliferation of cos[(k, —ki)x]. So, I select an infinite
subset of contributions to I with the correct asymptotic
properties:

0.6—

—(1/2)a U

I=
I+a U„/2

The relation for P ( U) reads

—(1/2)a U

P(U)= f dae'
1+a Ua/2

(5.5)
0.4—

0.2—

It follows from the above considerations that this expres-
sion should be used only for the calculation of the high-
order moments of velocity differences U " with n»1.
Substituting (5.5) into the expression for P(U) gives

fP ( U)d U= 1. Evaluation of the moments of velocity
differences

U'"= I P(U)U "dU

using (5A) and (5.5) is done readily. The result for the
normalized moments R„ is

0—
I I I i I I I i I I I

-3

log—X
L

pn
R z„=(2n —1)!!

n

where

P"= te
0 L

2/3

(5.6)

(5.7)

OJ

C
OJX

0—

The parameter C0=2y/2P and P„=(P')". In the limit
x/L ) 1 and if the constant Co is large, this expression
gives R„=(2n —1)!! corresponding to the close-to-
Gaussian statistics of the velocity differences. When
x/L «1, Rz„=(2n —1)!!n!indicating strong deviations
of P ( U) from Gaussian. In wall fiows, y =S and
P=1/2e'i L i where the shear S=U/L and e=u'/L
with U and u denoting the mean and rms fluctuating ve-
locities, respectively. Not too far from the wall region of
a boundary layer fiow, U=(10—20)u and CD=10—20.
Some of the normalized moments Rz„, given by (5.6) and
(5.7), are plotted in Fig. 1 (CO=20). The most striking
feature of the plots is that the transition between these
two asymptotic values of R„ is very slow, covering almost
two decades of the displacement x variation. Moreover,
the transitional region can be accurately represented by
the power law R„=x ~" with the "scaling exponents"

This power law is compared with the experimental
data in Table I where the experimentally observed [6)
values of the "exponents" g„are presented. Relations
(5.6) and (5.7) show that intermittency is the consequence
of interaction of coherent and random components of the
Clebsch field. With decrease of the length scale, the role
of this interaction diminishes and PDF undergoes transi-
tion from Gaussian to close to exponential. At the very
small scales x /L —+0, the normalized moments
R„(x)~const=(2n —1)!!n!. However, this limit might
be beyond experimental reach since proximity to the dis-

-2 I

-3.0 -2.5 -2.0

log —"
L

-1.5

FIG. 1. (a) Typical form of the normalized moment

R &„(x} plotted for n =3. (b} Compensated moments

x~"Rz„{x)/(2n —1)!!.The values of (2„ for n=2, 3, 4, and 5

are given in Table I.

4
6
8

10
12

Experiment [5]

0.14+0.038
0.34+0.042
0.60+0.037
0.97+0.037
1.15+0.13

Present

0.13
0.33
0.70
1.10

Extrapolation

0.15
0.39
0.69
1.04
1.42

TABLE I. Deviations of the scaling exponents of the mo-

ments of velocity differences from predictions of the Kolmo-

gorov theory.

Exponents g&„
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sipation range, not considered in this work, can strongly
infiuence the small-scale behavior of the moments R„. It
follows from (5.7) that even in the same flow the mea-
sured deviations from the Kolmogorov scaling can vary
from point to point depending on the ratio S/e' if the
displacement is measured in the units of the integral scale
X =x/L.

The results of this work can be explained in a very sim-

ple way. Let us consider, for example, the familiar case
of a shear flow. At the large scales the dynamics are
dominated by the shear S and the cospectrum of the an-
isotropic state k v;(k)v (k)=e'~ k n(k)Q where the
characteristic frequency is Q=S. With the expression for
n (k) derived in this work, the —, energy spectrum is readi-

ly obtained in the interval ko & k &S3~2e '~2. The
anisotropy-generated —', scaling of the cospectrum does
not enter the expression for the energy spectrum. How-
ever, it does not disappear from the expressions for the
high-order moments leading to the nontrivial behavior of
R2„(x). I believe that this mechanism is quite general
and the long-living anisotropic large-scale fluctuations
can produce similar effects in statistically isotropic Aows.
Indeed, if the large-scale shear has complex topology, the
arguments leading to the ——', cospectrum E,2(k) =k
do not work since the problem loses strong anisotropy,
which is the essential part of the derivation. In addition,
the introduction of the large-scale superensemble, dis-
cussed in Sec. IV, makes the results of this work applica-
ble to the statistically isotropic Qows which are slightly
anisotropic in each realization. These physical assump-
tions are rejected in the scalar expression for the conden-
sate contribution to the dispersion relation in the equa-
tion of motion (4.2).

According to this theory, anomalous scaling is not
necessary to explain the experimental data and the mea-
sured "scaling exponents" are the artifacts of signal pro-
cessing. I illustrate how deceiving the data can be with
the following consideration: The moments of the velocity
differences grow by factor =n! when x/L decreases by
two orders of magnitude. Using a familiar extrapolation,
the "exponents" g„are found from the trivial relation

100 "=n!, so that

,' log, vn!—. (5.8)

This formula is compared with the experimental data in
Table I.

VI. DISCUSSION
OF THE EXPERIMENTAL DATA

According to the theory presented in this work the
large-scale coherent state, contributing to turbulence pro-
duction in some Qows, is responsible for the observed
close-to-Gaussian probabi1ity distribution of velocity
differences at large scales and the nontrivia1 behavior of
high-order moments S„. To begin to test the main pre-
dictions of the theory we have to look for the energy
spectrum E(k}~k ~ at scales somewhat larger than
those corresponding to the —', inertial range spectrum.
Experimental investigation of the large-scale dynamics is

not a simple task. In a typical experiment the signal is
acquired as a time sequence v (x, t) at a given point x.
The correlation functions are measured in the frequency
domain:

F(co)=J F(k, co+k.U)dk,
0

where the integration domain is limited by the box size
O(kv '} and U is the mean velocity. The function
F(k, co) =k "F(co/k') where the scaling exponents x and z
differ from flow to flow (the dynamic exponent z =—', for

Kolmogorov turbulence). The spectra correlation func-
tion is given by

F(k)= f F(k, co)da),

with the integration domain limited only by the data ac-
quisition time which often can be made as long as
desired. It is clear from these two expressions that when
co »O(koU) and the integrals converge, the expressions
for F(co) and F(k}are simply related since co= k. This is
called the Taylor hypothesis, which is very often used for
interpretation of the data. However, this hypothesis fails
at the large scales where ro&koU since in this case r0

disappears from the problem, giving F(co ) =const, ob-
served in all experiments in the frequency domain. A few
experiments conducted in both space and time domains
revealed substantial differences in the large-scale behavior
of the correlation functions.

The energy spectra, measured by high-Reynolds-
number How generated in the large NASA Ames wind
tunnel [7], showed Kolmogorov —,'energy spectrum over a
decade of the wave-number variation. However, the cos-
pectra E, z(k) revealed a well-resolved range of the —,'
spectrum at the larger scales, in accord with the predic-
tion in this work. As was mentioned above, the appear-
ance of this spectrum in a shear flow is not surprising due
to an additional scale-independent time constant. In
another experiment [9] the second-order moment S2(x),
measured in physical space using a particle-tracking tech-
nique, was bet fitted by the —', power law at the small

scales and by 4 exponent at the large values of the separa-
tion x. The results are shown in Fig. 2. We can see that
when fitted by the Kolmogorov relation Sz =0 (x ~

) the
experimental and fitting curves barely touched each oth-
er. However, the data were well represented by the
dependence Sz=ax +bx ~, exactly as predicted in
this paper. Even more striking confirmation of the pre-
dictions derived in this work can be found in the state-
of-the-art (864 resolved Fourier modes) direct numerical
simulations of the Taylor-Green vortex conducted by
Brachet [8]. The calculated energy spectrum is presented
in Fig. 3. We can see that the large-scale part of E(k) is
dominated by the —', scaling regime while the —,'Kolmo-
gorov spectrum can be found at the larger values of wave
numbers.

In the Navier-Stokes equations different components of
the velocity field are coupled via nonlinear interaction. It
is a small miracle that the third-order structure function
of the x component of velocity field can be expressed in
terms of the x components only. This miracle is unlikely
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ro& to happen in the high-order correlation functions which
means that the S„'s with large n are composed of contri-
butions obeying different scaling laws. Examples of the
experimentally observed compensated high-order mo-
ments are presented in Refs. [10—12]. From comparison
of the graphs of Fig. 1 and those shown in Refs. [10—12]
we conclude that the high-order moments, derived in this
paper, though not obeying any real scaling laws, exhibit
much more of a "scaling range" than the experimentally
observed ones.

VII. CONCLUSIONS
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FIG. 3. The energy spectrum E(k) from direct numerical
simulations of the Taylor-Green vortex by Brachet [8].

FIG. 2. Second-order structure function Sz(x) Ref. [9] mea-
sured in the laboratory boundary layer. (a) Fitted by the Kol-
mogorov scaling; (b) the same data 6tted by S2 =ax' '+ bx

The large-scale processes in all real-life turbulent flows
are dominated by powerful, well-organized, long-living
coherent structures. These structures participate in tur-
bulence production and influence both global and small-
scale features of the flow. It is always assumed in devel-

oping the theory of turbulence that in the so-called iner-
tial range the large-scale processes and those happening
in the viscosity-dominated dissipation range can be safely
neglected. The role of the large-scale coherent state in
the statistical properties of velocity functions has been
analyzed in this work and it has been shown that, indeed,
the influence of the coherent state diminishes with de-
crease of the length scale. However, the transition is very
slow and experimentally observed behavior of the high-
order structure functions can be mistakenly perceived as
obeying nontrivial scaling laws.

The theory presented here is based on the assumption
that even at the relatively high Reynolds numbers the
coherent state in the external-field-driven flow reflects
properties of this field. In principle, it is plausible to as-
sume that the instability of the laminar velocity profile
leads to a mean field having nothing in common with the
laminar state of the flow due to the strong nonlinear in-
teraction between coherent and fluctuating components.
In this case the details of the external field are forgotten
even in moderate-Reynolds-number situations. In my
opinion, in the real-life flows this is not the case. The
coherent structures, emerging at the transition to tur-
bulence when Re=Re„persist even when Re&&Re, .
This fact is readily understood: If the effect of the small-
scale velocity fluctuations on the large-scale flow features
can be described in terms of an eddy viscosity, then it is

possible to show that the relevant effective Reynolds
number Re=u, ,l. /v, ff=O(1)=Re, . Thus the large-
scale flow is always transitional and is strongly influenced

by the driving mechanism. This fact can be easily
verified for the wall-shear flows, convection, jets, and
mixing layers by simply using the data on the turbulent
intensities ( u, , ) in the definition of the turbulent viscosi-

ty v,fr=u, u /(BU;/c)x ). In all these cases the effective
Reynolds number is close to critical and that is why the
large-scale Row features resemble organized structures
characteristic of transitional Aows. Experimental mani-
festation of this fact can also be found in the data on the
energy spectra as a function of dimensionless frequency
f. For example, in the wake behind the cylinder the
spectrum E(f) has a very sharp maximum at f=0.2 in-

dependent of the Reynolds number in a very wide range
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of Re variation. A similar feature can be found in Benard
convection where the characteristic velocity of the large-
scale coherent vortex (wind) scales with the Rayleigh
number as U =Ra'~ which corresponds to the simple re-
lation U ~ &gL where g is the gravitational acceleration
driving the flow. As we see, the external field g plays a
very important part even at large Ra. These facts, in my
opinion, support the main assumption that the coherent
state can be treated as an external field.

According to the theory developed here, the existence
of the large-scale coherent state explains the experimen-
tally observed Gaussian statistics of the velocity fluctua-
tions. Indeed, the Gaussian field cannot participate in
the energy transfer from large- to small-scale fluctua-
tions. This means that only the fluctuations v(k) with
k &(S3/F)'~t&&ko can give substantial contribution to
the efFective transport coefficient. The same estimate
holds for the rate of diminishing of the large-scale gen-
erated anisotropy with decrease of the wave number.
The anisotropy of the velocity fluctuations makes the en-

ergy transfer from large to small scales more difficult,
which is another reason for the relatively weak contribu-
tion of the large-scale velocity fluctuations to the efFective
transport. Thus there exists some scale separation,
characterized by the small parameter u, /U « 1 justify-
ing the concept of turbulent viscosity which is so success-
ful in the modeling of the large-scale features of turbulent
flows.

The main unresolved problem with the Clebsch formu-
lation of statistical hydrodynamics is nonuniqueness: it
follows from (2.4) that any transformation
A,~f (A, ,p),p~g(A, ,p, ) with

af ay
Bp,

does not change the velocity field. The parameter

N'= f (f'+P )d'xANo .

This is a problem since No is an important parameter of
the theory determining the constant frequency shift Q.
At the present time we do not have a rigorous way to
gauge the Clebsch field and determine No. However,
the only large-scale physically relevant frequency
Q=Noko=S which can be serve as an estimate for No
since ko=O(1). Thus the large-scale dynamics are

strongly influenced by the interactions of the fluctuating
and coherent components of the Clebsch field.

It is possible that this is only a part of the picture. The
viscosity-dominated small-scale dynamics can produce
another mechanism of deviation from Kolmogorov scal-
ing. The physical reasons for this can be illustrated by
the definition of the high-order moments of velocity
differences:

S,„=11[u (X;)—u (X;+x)]

in the limit when all X;~X and 2 &i &2n. We can see
that S2„are mixed quantities, involving not only inertial
range separation x but also dissipation range displace-
ments X;—X,~0. Thus S2„are not pure inertial range
properties of the flow and corrections to the Kolmogorov
scaling are expected. If this is so, then we can predict a
crossover from the large-scale "scaling, " dominated by
the coherent structures, to another one reflecting inter-
mittency of fully developed turbulence due to the viscous
contribution to the equations of motion.

To conclude this paper I would like to mention that
the E, 2

~ k ~ has been obtained by Lumley [13] and

by Nelkin and Nakano [14] on the basis of dimensional
considerations applied to the boundary layer flows. It
has also been demonstrated by Katz and Kontorovich
(see Ref. [3]) that a similar solution arises as a small per-
turbation to the Kolmogorov spectrum caused by weak
linear anisotropy. It is shown in this work that the long-
living large-scale coherent structures should lead to the —',
energy spectrum at large enough scales even in statistical-
ly isotropic flows. Moreover, interaction of coherent and
random components is responsible for the close-to-
Gaussian statistics of the velocity field at large scales and
for the deviations from the Kolmogorov scaling of the
high-order moments of velocity difFerences.

ACKNOWLEDGMENTS

I would like to thank K. R. Sreenivasan, M. Brachet,
and R. Benzi for sharing with me the results of their ex-
periments on the "anomalous exponents. " Most interest-
ing and illuminating discussions with R. H. Kraichnan,
A. Polyakov, V. Zakharov, L. Kadanoff, G. Falkovich,
M. Nelkin, Y. Sinai, A. Libchaber, L. Smith, and S.
Orszag are gratefully acknowledged. The work was sup-
ported by DARPA and AFOSR.

[1]L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Per-
gamon, Oxford, 1962).

[2] V. E. Zakharov, G. Falkovich, and V. S. L'vov, Kolrno
gorov Spectra in 8'eak Turbulence (Springer-Verlag,
Heidelberg, 1993).

[3]V. Yakhot and V. Zakharov, Physics D 64, 379 (1993).
[4] This argument is due to G. Falkovich.
[5] The detailed calculation of the diagoualization of a quad-

ratic Hamiltonian in a more general case is given by V.
Zakharov, Phys. Lett. (to be published).

[6] K. R. Sreenivasan (private communication).

[7] S. G. Saddoughi and S. V. Veeravalli (unpublished).

[8] M. Brachet (private communication).

[9]K. R. Sreenivasan (private communication).
[10]F. Anselmet, Y. Gagne, E. J. Hopfinger, aud R. A. An-

tonia, J. Fluid Mech. 140, 63 (1984).
[11)Y. Gagne, Ph.D. thesis, University of Grenoble, 1987.
[12]K. R. Sreenivasan (private communication).
[13]J. Lumley, Phys. Fluids 10, 855 (1967).
[14] M. Nelkin (private communication).


