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Generation of swirl due to symmetry breaking
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We study symmetry breaking in a meridional steady motion of viscous incompressible fluids by con-
sidering the case of a laminar axisymmetric “vortex dynamo.” Using a linear and subsequently a non-
linear analysis we demonstrate the feasibility of a supercritical pitchfork birfurcation from an initially
“trivial” nonswirling flow solution to one with a steady (clockwise or counterclockwise) swirling regime
as the Reynolds number exceeds a critical value. This agrees with recent experimental results for a flow
inside a conical meniscus, as observed in electrosprays.

PACS number(s): 47.15.—x, 47.20.Ky

I. INTRODUCTION

The appearance of swirl in initially nonswirling flows
due to some instability is a striking and intriguing case of
symmetry breaking. Conservation of angular momentum
implies that the generation of swirl is possible only if spa-
tially separated regions of positive and negative angular
momenta (with zero total) are formed. When the nega-
tive (or positive) angular momentum is either transferred
to ambient bodies or diffused to infinity, the positive (or
negative) part becomes dominant in the fluid motion.
The direction of rotation (clockwise or counterclockwise)
is determined purely by the initial disturbances.

Swirl generation as a result of symmetry breaking can
take place in the formation of strong atmospheric vor-
tices, flow in a bathtub, whirlpools, and rotational motion
of astrophysical objects. It has also been observed in
several experiments. Torrance [1] studied thermal con-
vection in a sealed can with a temperature gradient along
the sidewall corresponding to stable stratification and a
local source of heat at the center of the can bottom. In
this case, a pure meridional circulation develops and an
ascending jet is formed near the axis. At certain parame-
ter values, the jet undergoes symmetry breaking and be-
gins to rotate. Another example is the flow into a sink lo-
cated at the center of the bottom surface of a rectangular
box [2]. In this case, a swirling motion is observed when
the flow rate exceeds a threshold. The motion of surface
waves in a glass of water oscillated horizontally along a
straight line [3] becomes rotational at certain values of
amplitude and frequency of oscillation.

More recently, generation of swirl has been noted in
Zeleny-Taylor cones [4]. Zeleny [5] found that the men-
iscus of a conducting liquid at the exit of a capillary tube
becomes conical when the tube is charged to a sufficiently
high potential. Taylor [6] explained the conical nature of
the meniscus to be due to a balance between electrical
pressure and surface tension action when the liquid is at
rest. In the vicinity of the cone apex (of a length scale
three orders of magnitude lower than the capillary diam-
eter), the liquid surface is disrupted and a thin jet or
spray erupts. Experiments [7] have shown that, contrary
to earlier conjectures, the flow inside the cone is circula-
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tory and not unidirectional. Finally, Fernandez de la
Mora, Feria, and Barrero [4] “have made numerous ob-
servations of vigorous swirl inside Taylor cones, for
which there appears to be no obvious external forcing.”

Theoretical predictions of spontaneous rotation to date
have been related to unsteady motions [3,8] or turbulence
[9,10]. In this paper, using bifurcation analysis of steady
solutions of the Navier-Stokes equations, we demonstrate
that swirl can be generated in an axisymmetric laminar
flow.

II. PROBLEM FORMULATION

We consider steady flow of a viscous incompressible
fluid that possesses a conical similarity and admits the
representation:

v,=—w(x)/r,
vg=—vif(x)/(r sinf) ,

vy =vI(x)/(rsind) ,
(1)
p=p.t+tpq(x)/r?,

Y=vri(x),
x=cosf .

Here, (r,0,¢) are spherical coordinates; r is the dis-
tance from the origin; 6 and ¢ are polar and azimuthal
angles (Fig. 1); v,, vy, vy, p, p, and ¥ are the velocity
components, pressure, density, and Stokes stream func-
tion, respectively; and 9, I', and ¢ are dimensionless
stream function, circulation, and pressure (the prime
denotes differentiation with respect to x).

The Navier-Stokes equations allow solutions of the
form (1) and can be transformed to a system of sixth-
order ordinary differential equations (ODE’s) given by

(1=x22YV —dx(1—x2)y" =2+ L(1—x2)(4?)"
)
and

(1—x2)T" =yI" . 3)
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capillary tube

electric field

FIG. 1. Schematic of the problem. Coordinates, a typical
streamline, and shear stresses are shown.

At the cone surface, i.e., x =x_, the boundary conditions
are

¥=0, (4a)

¥’ =Re, (4b)
and

I"+2Ix, /(1—=x2)=0 . (4c)
At the flow axis, i.e., x =1,

¥=0, (5a)

¢’ is bounded , (5b)
and

r=o0. (5¢)

Equation (4a) represents the impermeability of the cone
boundary, and (4b) introduces the Reynolds number
Re=—rv,./v; v,, is the radial velocity at the cone sur-
face and the negative sign is chosen to ensure that Re is
positive for a flow converging to the apex along the sur-
face. Re characterizes the intensity of the meridional
motion which is driven by the radial shear stress

7o, =2 Re(1+x, )pvi(rising) ! .

Condition (4¢c) implies the absence of the azimuthal shear
stress

Tos=[T"+2Tx, /(1—x2)]pv?/r? .
Figure 1 also shows a schematic of the basic meridional

flow. It is convenient to introduce an auxiliary function
F satisfying

(1—x?)F'""=2TT" . (6)

After division by (1—x?2), Eq. (2) may be integrated three
times to obtain

(1—x2)y +2x¢p— Ly?=F . (7)

Using the conditions from (5) in the above equation, we
find

F(1)=F'(1)=0. (8)

Equation (3) with conditions (4) and (5) has the trivial
solution I' =0. Our goal is to find a nontrivial solution.

III. SOLUTION OF THE LINEAR PROBLEM

The necessary condition for a bifurcation with swirl to
occur is for the problem [(3), (4c), and (5c)] to have a
nonzero solution at a given 1 when the influence of I (a
measure of swirl) on ¢ is neglected. As the value of i has
to be prescribed, its nature itself needs to be analyzed
first. To simplify Eq. (7), we introduce a new variable 7,
such that

Y=—201—xHT"/T . 9)

For I'=0, from (4b), (6), (7), and (8), F=Re,(1—x)?
where

Re,=Re(1+x,)/(1—x,) .

Therefore, (7) reduces to

T"+1F(1—x%)7T=0, (10a)
with the conditions
T(x,)=1, T'(x,)=0. (10b)

The first condition in (10b) allows T to be normalized
to unity, while the second follows from (4a) and (9). Sub-
stituting (9) in (3) and integrating once, we get
I"=T"(x,)T 2. For the linear problem, the normaliza-
tion I'(x,)=1, together with (4c), yields

S(Re)=T()=1-2x,(1—x2)7' ['T7%x . (1)

Thus, (5c) gives the condition for swirl generation:
S(Re)=0. Since at Re=0, F=0 and T =1, it follows
from (11) that

S(0)=(1—x,)/(1+x,)>0

because |x,.| <1. Thus, Re, is the value of Re for which
S(Re) changes sign. It is evident from (11) that this does
not occur when x, <0. Now we show that S changes sign
for some x_ = 0.

To achieve this, we introduce F;=(1+x)?F/4 and
note that F| < F because x <1. Then, replacing F by F,
in (10) yields

T) +(Re./8)T{=0, Ti(x.)=1, and Ti(x.)=0,
(12)
which has the solution
T,(x)=cos[(Re, /8)"%(x —x,)] .
T,(x) has a zero inside the interval (x., 1) when
Re>Re!=272/(1—x72) .

Let us define v¥,(x) to be the solution of (2) with F re-
placed by F,; and the same initial condition, ¥;(x.)=0.
From the theorem on differential inequalities,
¥,(x)=9¥(x). The integral form of (9) gives

T(x)=exp |~ [ “¢(x)(1—x?)'dx
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For T(x)<T,(x), there exists a Re* <Re}; hence, T(x)
has a zero inside the interval (x_, 1), when Re>Re*. Itis
clear from (11) that as Re—Re*, S(Re)— — «. Since
S(Re) is a continuous function of Re for Re <Re*, there
exists an Re, <Re* for which §=0. This completes the
proof.

Numerically, the linear problem is solved by integrat-
ing (3) and (7) for a given F=Re,(1—x)? from x =x, to
x =1 as an initial-value problem with the initial condi-
tions: ¢¥(x,.)=0, I'(x,)=1, and

Mx,)=—2x,/(1—x2) .

At x=1, conditions (5a) and (5b) are automatically
satisfied, and we look for a Re=Re, at a fixed x, when
I'(1) becomes zero. Also, we integrate (10) up to the first
zero x; of T(x). For small Re, x, > 1; x, decreases as Re
increases, and we look for Re=Re* when x, =1.

Figure 2 shows the results of numerical calculations of
Re, and Re* as functions of x.. As Re approaches Re*,
the so-called “collapse” of meridional flow occurs [10]
when the axial velocity becomes infinite as convergent
convective transport of axial momentum dominates over
viscous diffusion. Thus, the curve Re*(x,) is the bound-
ary of existence of regular nonswirling solutions; for
Re>Re*, there is the sink-type singularity on the axis
[10]. However, at a smaller value of Re, i.e., Re=Re,,
the swirling regime bifurcates and the flow avoids the col-
lapse (shown in Fig. 5). The Re,(x,) curve is terminated
where it meets the curve Re*(x,) at x.=0; this agrees
with the above result that self-rotation is impossible for
x.<0.

The following numerical calculations are made for a
cone angle 8, =45° (i.e., x, =0.707). This angle is chosen
not only because it is the mean of the limiting cases (0°
and 90°), but also because it is within the range of most
experiments of liquid menisci in electrosprays. Although
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FIG. 2. The critical Reynolds numbers for the self-rotation
(Re,) and collapse (Re*) versus x., where x.=cos~%(8,). 6, is
the cone angle.

2883
10 - - 1
[aZd 2 L
v ! T,
5 05
0 0
-5 -
0 2 o 40° \|

FIG. 3. Angular distributions of the radial velocity of the
primary flow (1) and the neutral disturbances of circulation (2)
at Re=Re,. 0,=45°.

Taylor predicted 6. =49.3° for the equipotential surface
of highly conducting liquids (at rest), the experimentally
observed range is 32° < 6, < 46°; the variation is due to the
influence of charged droplets [11].

Figure 3 shows the dependence of the dimensionless ra-
dial velocity rv,/v (curve 1) and circulation for a per-
turbed neutral state (curve 2) on the polar angle 6 for a
primary nonswirling flow at Re=Re, =6.3. Both func-
tions are smooth and monotonic with moderate deriva-
tives, thus showing that the case is far from being singu-
lar (for example, at x, =0.707 in Fig. 2).

IV. SOLUTION OF THE NONLINEAR PROBLEM

To solve the nonlinear problem, we integrate the sys-
tem (3), (6), and (7) as an initial-value problem from x =1
to x =x, by adding the the condition (5) and starting
with tentative values of ¢'(1), I''(1), and F''(1). Note
that, due to singularity, ¥'(1) cannot be found from (7)
and has to be prescribed (for details, see [10] where sys-
tem (3), (6), and (7) and its solutions were studied in
another context). Then, using the shooting method, we
choose 9'(1) and F''(1) to satisfy =0 and (4c) at x =x_.
The value of I''(1) remains a free parameter which impli-
citly defines Re. For I''(1) <<, the solution of the non-
linear problem is almost the same as the linear one.
Therefore, we use the results of the linear problem to
start the shooting procedure and iterate till convergence
is achieved.

Figure 4 shows the dependence of I',=I'(x,) on Re
(curve 2). Line 1 corresponding to the primary solution
is shown by a dashed line for Re > Re, because we expect
it to become unstable after bifurcation. As the abscissa in
Fig. 4 is the line of symmetry, we have supercritical
pitchfork bifurcation of the secondary regime. The other
two curves in Fig. 4 relate to the problem when both T,
and Re are given but condition (4¢c) is omitted. Curve 4
indicates the collapse boundary, to the right of which the
solution is singular. Curve 3 is the boundary between
one- and two-cell regimes; the sketches below and above
the curve illustrate the meridional flow. The swirling re-
gime remains unicellular near the bifurcation point as
long as curve 2 is below curve 3. At the point of intersec-
tion of the two curves, an internal flow separation occurs
at the cone axis. As Re is increased further, an additional



2884 V. SHTERN, M. GOLDSHTIK, AND F. HUSSAIN 49

40 -

P ——— . — ——

0 Re. 20

L
Re
Re

FIG. 4. Dependence of circulation I'. on the surface on the
Reynolds number for the primary (1) and secondary (2) solu-
tions. Curve 3 separates one- and two-cell regimes (see inserted
sketches) and curve 4 is the collapse boundary. 6,.=45°.

recirculation zone appears leading to a two-cell regime.
This separation means that the axial velocity v,, be-
comes negative. This is shown in Fig. 5 where
Re,=rv,, /v is plotted as a function of Re for the pri-
mary (curve 1) and the self-rotation (curve 2) regimes.
For the primary region, Re, grows monotonically as Re
increases and becomes infinite as Re-—~Re* (the asymp-
tote Re=Re* is shown). However, for the self-rotation
regime, Re, starts decreasing just after the bifurcation
and changes its sign at Re=13. The dependence of 6,
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FIG. 5. Dependence of the radial velocity at the axis (Re,)
and separation angle 8, (see Fig. 4) on Re for the primary (1)
and the secondary (2,2') solutions. 6,=45°. 1’ corresponds to
the collapse value Re=Re*.

the angle of the conical surface separating the recircula-
tion cells (see the upper sketch in Fig. 4), on Re is shown
by curve 2’ in Fig. 5 for Re> 13.

Unlike the primary solution, the swirling regime can be
extended to arbitrarily large Re. We have made the cal-
culations up to Re=400, the results for which are shown
in Fig. 6. We choose this value because it corresponds to
the experimentally recorded Re for swirling motion [4].
The observed angular velocity is near 100 Hz, and taking
into account that the capillary diameter is 1 mm and
v=10"°% m?/sec (water), one obtains I',=314. Our cal-
culations at Re=400 yield I', =213, which agrees well
with experiments within an order of magnitude. As the
experimental results are only estimates and not measured
values, the agreement may be judged as good.

The value Re=400 is large enough for the formation of
an inviscid core near the axis and a boundary layer near
the cone surface; these are evident in Fig. 6. This figure
shows that the core occupies approximately half of the
angle interval considered and corresponds to a potential
nonswirling inflow with a nearly uniform distribution of
the radial velocity. This potential solution

¥, =—[—F"(1]"*(1—x)

follows from (3), (6), and (7) after substituting I'=0 and
neglecting the linear terms in the left-hand side of (7).
The near-surface boundary layer consists of an outward
flow (fan jet) from the cone apex centered near
0=0,=36.5" and inflows on both sides of the jet. Thus,
for large Re, the rotation and the outflow are localized in
a near-surface boundary layer.

Although the experiment definitely shows rotational
motion, there is no experimental evidence of the near-axis
separation and inflow predicted by our theory. Possibly,
the inflow does occur but cannot be observed by the visu-
alization technique used in the experimental study. We
feel that additional experiments involving velocity mea-
surements are necessary for obtaining an experimental
evidence of this separation.
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FIG. 6. Angular distribution of the normalized radial veloci-

ty (v, /|v,.|, solid curve) and circulation (I /T, broken curve) at
Re=400. 6,=36.5 is the boundary between the recirculation
cells. 6, =45°.
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V. DISCUSSION

Thus, we have found that the “trivial” solution corre-
sponding to nonswirling steady axisymmetric laminar
flow can undergo bifurcation into a swirling flow without
the influence of any external body or surface sources of
swirl. This result needs to be discussed in a more general
context—the so-called problem of vortex dynamo, i.e.,
swirl generation, in nature and technology. The question
arises: Is the rotation merely a consequence of initial
conditions or is there some mechanism which generates
rotation (dynamo)?

Rotation, as a consequence of initial conditions, can
occur in the flow considered here if there is a weak rota-
tion at the boundaries. In such a situation, the converg-
ing motion of the fluid will accentuate the weak rotation
without any contribution from instabilities. However,
under certain favorable conditions, instabilities cause
symmetry breaking in the form of a dynamo. This possi-
bility of the establishment of a laminar axisymmetric hy-
dromagnetic dynamo was shown in [12] and, for tur-
bulent flows, a vortex axisymmetric dynamo was reported
in [9,10]. In the present study, a laminar vortex dynamo
is obtained; however, this needs interpretation.

At first sign, this vortex dynamo seems to contradict
the maximum principle for circulation in an axisym-
metric flow with a given meridional velocity field. The
principle requires the circulation to be the maximum at
the boundary, and if I'=0 at the boundary, then self-
rotation is impossible. However, in the problem analyzed
above, a different condition—zero azimuthal shear stress,
Tgs—0—1is applied at the surface. While this condition
admits the trivial solution I' =0, it also admits a nontrivi-
al solution. In this solution, I' is maximum at the cone
boundary in accordance with the maximum principle.
However, the boundary does not serve as a source of
swirl here. Note that the important limitation is that the
self-rotation can occur only for cones with angle 6, <90°
which corresponds to a convex liquid surface.

Additionally, it might appear that the laminar vortex
dynamo contradicts the Cowling ‘“‘antidynamo” theorem
[13]. However, it should be noted that Cowling’s
theorem, which claims the impossibility of axisymmetric
self-generation of magnetic field (analogous to the genera-
tion of swirl here), includes the condition that the mag-
netic field decays as » ~3. For the conical similarity class
considered here, this condition is not satisfied since the
velocity decays ~1/r and there is a nonzero circulation
as r — . Thus, a vortex dynamo is feasible.

This observed bifurcation of the self-similar swirling
regime can be interpreted as a result of either a spatial or
a temporal instability. We can expect that for small Rey-
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nolds numbers the regime without swirl is stable. Ac-
cording to the general theory of bifurcations [14], after a
supercritical pitchfork bifurcation, the primary regime
loses stability and the secondary regime is stable. Note
that a detailed analysis of stability problems requires
finding the solution of non-self-similar, (at least) two-
dimensional problems; this is difficult even for the linear
case. In the case of spatial instability, one can consider
the transport of an outer rotation to the inner region of
self-similarity. If the circulation I is given at r =r; and
a similarity region (SR) exists for r; <r <r,, it is expected
that at Re<Re,, the circulation will decay to zero in
some neighborhood of r =r; and will be absent in the SR.
However, for Re > Re,, circulation is transported inside
the SR and reaches a value I', corresponding to the self-
similar solution. It is important to note that I", depends
on Re but not on I',. In such an interpretation, the bifur-
cation found implies a strong concentration of angular
momentum in a small region of physical space; this may
be important for technical applications and predictions of
natural phenomena.

In the temporal case, as mentioned in the Introduction,
establishment of swirling secondary regimes can be relat-
ed to nonsimilar unsteady disturbances with regions hav-
ing different signs of circulation. If the “negative” region
is positioned near the outer boundary (say, the rim of the
capillary tube), then the boundary absorbs a negative an-
gular momentum, and the positive circulation becomes
dominant in the flow. We consider this to be more ap-
propriate for rotation in the Zeleny-Taylor cones.

Possible applications of the self-rotation phenomenon
include electrosprays which are used in a variety of rapid-
ly growing industries—from paint spraying and jet print-
ing to fuel atomization and biotechnology. Here we
would like to speculate on possible meteorological appli-
cations. Clouds have been known to have conical forms
just before generation of tornadoes. A draft of cold air
can induce a convergent motion near the cloud surface
and create conditions favorable to self-rotation. Similar
conditions leading to the development of whirlpools can
occur in low pressure regions of oceans (causing a convex
ocean surface) with thermoconvection instability (provid-
ing an ascending air flow) which induces radial converg-
ing winds that, in turn, drive a converging motion of wa-
ter near the ocean surface.
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