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The energy dissipation term appearing in the transport equation for turbulent subgrid-scale kinetic en-
ergy k is studied experimentally. Special attention is directed at the scaling properties of its moments,
which are described using the multifractal formalism. In large-eddy simulations, the dissipation is usual-
ly modeled in terms of k. Therefore, the scaling of moments of & is studied as well. It is found that the
latter variable displays a slightly more pronounced level of intermittency than that of the dissipation, a
discrepancy whose impact on simulations is difficult to assess a priori. However, it is shown that the
scaling of the expected value of dissipation conditioned upon the local kinetic energy differs markedly
from the model prediction. The equation for the probability density function is used to illustrate the im-
portance of correctly predicting this conditional expected value. An alternative model is proposed that
employs the inverse strain-rate magnitude as a time scale.

PACS number(s): 47.27.Gs

I. INTRODUCTION

The phenomenon of spatial and temporal intermittency
of the small-scale structure of turbulence has attracted
considerable attention over the last decades. The starting
point has been a prediction based on the Kolmogorov [1]
theory, for the longitudinal velocity structure function of
order p, in (locally) isotropic turbulence:
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Here € is the rate of molecular dissipation of kinetic ener-
gy, as defined as

€=2vS;S;; ,
where (2)
1 | Ou;  Odu;
S. == |—+—
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is the rate-of-strain tensor, v is the kinematic viscosity,
and e, is a unit vector in the 1 direction. For p =3, and
assuming (local) isotropy, Eq. (1) can be rigorously de-
rived from the Navier-Strokes equations (yielding
c3=—1%). For other values of p, no analytical results are
known to exist [2]. Experimentally, there is ample evi-
dence (see, e.g., Ref. [3]) that the original prediction
§, =p /3 does not hold for large values of p. In addition,
the dissipation rate was observed to be highly intermit-
tent [4]. In view of such observations, the phenomeno-
logical grounding of Eq. (1) was expanded to relate the
properties of {A,u?) to those of the box-averaged dissi-
pation €, [5,6]. The latter is defined as

e (x)=—5 [ ex)d% 3)
r Q,(x)
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where (1,(x) is a d-dimensional cube (a linear segment in
most experimental measurements) of size 7, centered at x.
The suspected relationship between the two variables
reads as follows:

(A,uP)~c,((e,rP7) . (4)

A considerable amount of evidence supporting this rela-
tion has accumulated (compare results of Refs. [3,7-10,
etc.]). Other studies have focused directly on statistics of
A,u conditioned on local values of €,. This issue is in-
spired by Kolmogorov’s refined similarity hypothesis [5]
(also Obukhov [6]), which implies that the conditional ex-
pected value scales as

(|Aulle,)~(re ). (5)

The latter expression has recently received a considerable
amount of experimental [11-13] as well as computational
[14] support.

Traditionally, the variable €,(x) is interpreted, rather
loosely, as a surrogate for the spectral energy flux that
occurs at scale 7 and location x. The underlying question
that is being posed, implicitly or explicitly, is the follow-
ing: “Given the spectral flux of energy, how do other
variables of the inertial range (such as velocity
differences) behave?” In reality, by using €, as a surrogate
for the energy flux, the question that has been addressed
is “given the flux at dissipation-range scales, what is the
behavior of the inertial-range variables?”

The purpose of the present paper is to revisit these fun-
damental questions from the point of view of modeling
for the large-eddy-simulation (LES) of turbulence. The
underlying aim is to interpret relationships such as Eq.
(4) as closures for small-scale variables. However, the
question of practical relevance will be shown to be
reserved from that reviewed above, i.e.,, we will have to
ask ‘“given a variable in the inertial range, how do the
dissipative-range variables behave?” As will be shown in
Sec. II, the dissipation-range quantity of interest in the
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context of LES differs slightly from €,. This serves as
motivation to reexamine the scaling properties of this
new variable using experimental data, which is done in
Sec. IV. Also, the dissipation results are compared to the
scaling properties of the subgrid-kinetic energy, which is
commonly used as a model for the dissipation term.
Kolmogorov’s refined similarity hypothesis is then re-
vised in Sec. V from the point of view of modeling for
LES. Concluding remarks are presented in Sec. VI.

II. DYNAMICS OF SUBGRID-SCALE
KINETIC ENERGY

Filtering of the Navier-Stokes (NS) equation for an in-
compressible fluid gives rise to the LES equations

% o 6)
ox,
oi; ou;
d _— = — .E + + 2—_
3 a; ax, ax 8+, | +vVa;, (7

where an overbar represents a field convolved with a spa-
tial filter of characteristic width A (or some anisotropic
filter with widths A; in each direction, i=1,2,3). The
subgrid-scale (SGS) stress tensor 7; is defined as

TR T TRt T @)

In order to numerically solve Eq. (7) on a computational
mesh with a grid size of order A, one needs a SGS model
for 7,(x,?) (for a review of LES, see, e.g., Ref. [15]). The
most common approach is to postulate, for the deviatoric
part of 7;, an eddy-viscosity closure, in which the eddy
viscosity v is computed based on the local magnitude of
the resolved rate-of-strain tensor S",-j (the Smagorinsky
model):

V==2v;8, , vr=(csA)S]| . 9)

lj ’
However, when the turbulence is highly unsteady, it has
been recognized that some dependence on a fluid
element’s past history should be taken into consideration.
This can be accomplished [16,17] by expressing the eddy
viscosity in terms of the subgrid-kinetic energy k,,

szckAVk_A N
where (10)
ka=Huyu,—u u,),

and writing an additional transport equation for this new
variable (k,) [18]. The transport equation for k, is ob-
tained by multiplying the NS equations by u,, filtering,
and subtracting the LES equations multiplied by #, (see,
e.g., Ref. [19]). It reads

aEA _ aEA _ BQ]-
at +uj axj —7) 6A ax] . (11)
Here
P=—7;8,; (12)
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represents the production of SGS kinetic energy, and can
be self-consistently expressed using the closure for ;.

The vector Q; represents flux of k, due to turbulence and
viscous action, and does not occupy our interest here. It
is itself usually modeled using an eddy-viscosity Ansatz.
Arguably, the biggest challenge for modeling in Eq. (11)
comes from the term &, which represents the dissipation
of k due to molecular viscosity. It is defined as follows:

Ey=2v(S, S,

S —S0aSog) - (13)

pPq=prq

As opposed to all other terms in Eq. (11), it is dominated
by the smallest of the unresolved length scales of tur-
bulence. Comparison of Egs. (3) and (13) illustrates the
fact that if the overbar filtering is interpreted as a box
filter in physical space, then 6, equals €, except for an
additive term 2‘VSMSM As outlined in Sec. I, much
empirical data exists regarding €,. However, not much is
known about &,, a state of affairs not quite satisfactory
given the direct practical relevance of 6, for the simula-
tion of turbulent flow. One of the questions we wish to
address (Sec. IV) is whether &, displays the same statisti-
cal and scaling features as €,. Although standard, high
Reynolds number, scaling arguments suggest that the
second term on the right-hand side (rhs) of Eq. (13) must
be small compared to the first, the question is worth
answering based on real data. The study of scaling
features is performed here using the standard multifractal
formalism [20-22, 7], in which moments of &, are
characterized by their scaling exponents with respect. to
the filter width:

(63)
(65)7

Here Dg is the set of generalized dimensions of the dissi-
pation ﬁeld Once Df is known, one can also obtain the
spectrum of singularities f(a) of this intermittent field,
by Legendre transformation [21,22].

Returning to Eq. (11), the strategy typically employed
to model the dissipation term is to replace &, by &3,
where

- 6
A (q 1)(Dq d)

L

(14)

k3/2
8A c(; A * (15)

Therefore, another question that needs to be addressed is
to what degree does 6% display properties that are similar
to those of &, or €,. Arguably, the more features they
display in common, the better are the chances that the
modeling embodied in Eq. (15) can yield realistic time
evolutions of the SGS kinetic energy, once the LES equa-
tions are integrated. Thus, in Sec. IV, a study of the mul-
tifractal properties of &% is undertaken.

While the comparison of intermittency characteristics
of real and modeled rates of dissipation will provide some
insight about the goodness of a model, it is difficult to
ascertain what effect an eventual agreement (or disagree-
ment) of & statistics would have on an actual LES. On
the other hand, some progress can be made by attempting
to find necessary conditions that the model must obey in
order to produce correct flow statistics during LES [23].
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In the present context, let us inquire about necessary con-
ditions on the model for &, so that the LES produce the
correct joint (single-point) probability-density function of
resolved velocity and SGS kinetic energy. This joint
PDF is denoted by f(K,V;x,t), where K is the argument
corresponding to the SGS kinetic energy (a realization is
denoted by k,) and V is the argument corresponding to
resolved velocity (whose realization is, as before, denoted
by @). The transport equation that is obeyed by the joint
PDF can be deduced by standard methods [24,25] ap-
plied to the LES equations [23],

A Ly of -3
R e TARARTLO
a

3 S (P=V-QK, V)]

3
+a—K[f(6A|K,V)] . (16)

Here A j is the (filtered) force per unit mass, i.e., the en-
tire right-hand side of Eq. (7). The above equation is to
be understood as representing the joint statistics resulting
from an ensemble of realizations of a real turbulent flow.
As in Ref. [23], one can write a similar equation for the
joint statistics that would result from a LES. There, the
last term would involve the model expression for 6, in-
stead of the real dissipation. Clearly, in order for the
LES to reproduce the correct joint PDF and the other
terms appearing on the rhs of Eq. (16), at least the equali-

ty
(64K, V)=(&XIK,V) (17

must hold (up to a constant with respect to k). The
above expression is thus a necessary condition. Similar
arguments have been made in Ref. [23], in more detail
but in a different context. It follows that the average rate
of dissipation conditioned only on k,,

(6alka)= [(64lky, VIF(V)EV, (18)

must be predicted properly (for notational simplicity we
now employ k, for both the argument of the conditional
average and for the realization). If (&,]k, ) is not pre-
dicted correctly, the joint conditional average cannot be
correct in all values of its arguments.

In summary, if

then we can state unambiguously that it is not possible
for the LES to simultaneously reproduce the correct joint
PDF of (,k,) and the terms on the rhs of Eq. (16). Thus
the conditional expectation { &,]k, ) is seen to have spe-
cial relevance to LES. It is interesting to notice that the
conditioning is reversed from that of the studies to date
on Kolmogorov’s refined similarity hypothesis: Here we
are given an inertial-range variable (k,) and inquire
about the small-scale variable & .
The prediction of the model of Eq. (15) is simple:

C C
(E*k)=—"S(Kk3|ky=-Cp3 20)
A A A
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It is thus of interest to perform measurements of the real
conditional average and compare with this prediction.
This task will be described in Sec. V.

III. EXPERIMENTAL DATA

Two sets of experimental data were employed for this
study. The first consists of measurements obtained in the
wake of a circular cylinder. Details of the experimental
set up and instrumentation are given in Ref. [26]. The
measurements were taken on centerline, at 100 diameters
downstream of the S-cm-diam cylinder. The measure-
ments consist of a temporal record of the fluctuating
streamwise velocity component, obtained with a submini-
ature hot-wire sensor. The mean velocity was 27.3 m/s ,
the (longitudinal) integral scale was L, =0.19 m, and the
Kolmogorov scale (estimated from usual isotropy as-
sumption) was 7=0.13 mm. The Taylor scale Reynolds
number was Re; ~480. As shown in Ref. [26], the result-
ing energy spectrum displays a considerable inertial range
with a —3 slope, and collapses well with the universal
curve, including much of the decay in the dissipation
range. A total of 1.3X10° data points are used for the
present analysis, representing a total length correspond-
ing to about 3.0X 10? integral scales. The second set of
data corresponds to single hot-wire measurements in the
atmospheric surface layer (at a height of L =18 m), per-
formed at Yale University. The data set is the same as
that documented and analyzed in Ref. [7]. The micro-
scale Reynolds number is estimated as Re; ~1500. How-
ever, only a limited record length (corresponding to
~18L) is available. As discussed in Ref. [26], this pre-
cludes acceptable convergence of high-order moments.
However, the data will be employed to illustrate trends
when they are robust with respect to record length, i.e,
for the conditional averages. We employ Taylor’s frozen
flow hypothesis and interpret the time record as a linear
spatial cut through the flow. This is an acceptable prac-
tice, since the relative turbulence intensity is low.

Data processing

As outlined in the last section, our goal here is to study
the scaling of moments of the dissipation rate &,. As is
traditionally done, a one-dimensional surrogate of 6, is
constructed based on the experimental hot-wire data.
Also, we immediately normalize the variables with their
ensemble average. Thus, we compute

aul aﬁl 2
N B ox ox, o
(6a) |4=r 2 (8w, |
Al |g=1 du, o1,
< x| Ox, >

The filtering overbar denotes linear filtering of the one-
dimensional (1D) data record, with a filter size A. Two
types of filters were considered, with no appreciable
difference in results: the Gaussian filter
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FIG. 1. (a) Measured time trace of the streamwise velocity
u,. The time trace is interpreted here as a spatial signal along
the x, axis using Taylor’s hypothesis. (b) Measured one-
dimensional surrogate of the rate of dissipation of turbulent
kinetic energy. The signal is normalized by its mean value. (c)
Measured signal of the % power of the subgrid-scale kinetic en-
ergy. The filter width was A=L, /15, where L, is the longitudi-
nal integral scale.
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and the top-hat filter
FA(x)=% , if |x] <—§— , and zero otherwise . (23)

The derivatives are computed using finite differences
from consecutive samples of velocities.

Figure 1 shows a segment of the velocity signal (a) of
length corresponding to six integral scales L, (~20
cylinder diameters ~5.0X 10°). In 1(b) the normalized
dissipation rate computed according to Eq. (21) is shown.
The filter size for this signal is A=L, /15, and the Gauss-
ian filter was used. The signal displays a high level of in-
termittency, which we have observed to strongly increase
with decreasing filter size. In 1(c), we show the local
kinetic energy k, also to be discussed in Sec. IV.

IV. SCALING PROPERTIES OF 6, and 63

The moments of the dissipation

6y |*

(| |)

are computed for a range of values of A and of g. These
moments are plotted in Fig. 2 for the wake flow, in such
a fashion that the slope corresponds to Df . This slope is
obtained by (least-squares) linear regression, in log-log
units. The range over which the fit is taken (shown by
the solid lines) corresponds to standard estimates of the
location of the inertial range; A >30% and, here, up to
A~L,/3. For negative g, the range is restricted to
A > 607. The resulting Df curve is shown in Fig. 3 (solid
line). The error bars represent the change in slope
if the fit is performed in different ranges (between
15<A/7 <300 and 100<A /7 <2000). Thus the error
bars give some qualitative indication of the sensitivity of
the exponents on the choice of scaling range. The corre-
sponding singularity spectrum is obtained through the
standard Legendre transform [22,7], and is shown in Fig.
4. The symbols represent the average curve through pre-
vious results [27], obtained from the standard dissipation

i FIG. 2. Log-log plot of gth-order moments
of dissipation of SGS kinetic energy as a func-
tion of filter width, obtained in the wake flow.
The results are plotted so that the slope corre-
sponds to Df . Different symbols are for
different values of g (circles: g=4; squares:
q=2.4; triangles: q=0.8; diamonds:
q=—0.8; stars: ¢g=—2.4). The solid line
shows the least-squares error fit in the inertial
range.
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FIG. 3. Solid line: Moment exponents of
G, the (1D surrogate of) dissipation of SGS
kinetic energy, for the wake flow. Dashed line:
1 moment exponents of k3%, the (1D surrogate
of) model for dissipation of SGS kinetic ener-
gy, for the wake flow. Error bars give some in-
dication associated with the selection of the

scaling range.

variable €, rather than . No significant difference is
seen between the two variables, except in the low-
intensity region. There the experimental uncertainty is
quite large however. The overall agreement between the
scaling properties of 6, and €, is not entirely surprising,
given the fact that the difference between the two
(representing the viscous dissipation of the large scales) is
quite small.

Next we examine the scaling properties of the model
for dissipation based on SGS kinetic energy. For this
purpose, we require a one-dimensional surrogate of k,.
We approximate it in terms of the streamwise velocity
component. Also, since it is really the 3 power of k we
are interested in, we compute the following quantity:

62 " = 2

=1 24)
(6% |a=1 (ud—(u;)®)

1.0
0.9F
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f(a)
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FIG. 4. Solid line: singularity spectrum of &, obtained from
Legendre transformation of the previous curves. The dashed
line shows the results corresponding to the modeled dissipation
k3%. The symbols are the average results corresponding to the
standard definition of dissipation €,, as reported in Ref. [5].

Figure 1(c) shows a segment of this variable. Compar-
ison with 1(b) suggests that the two variables display
some degree of correlation, while &, is slightly more in-
termittent. We recall that in a LES, the relevance of
Ex=c.k¥*/A is that it serves as a model for &,. Of
direct interest in this context is the correlation coefficient
between the two variables. It is computed based on the
data in the wake and atmospheric surface layer and is
displayed in Fig. 5, as a function of filter width A. As can
be seen, there is a level of correlation of about p~0.6. It
is noteworthy that this correlation is significantly higher
than what is typically observed when comparing real and
modeled subgrid stresses using the eddy-viscosity models
[23].

Next, the g moments of the expression in Eq. (24) are
computed. The procedure is exactly as in the last section,
and the resulting log-log plots are shown in Fig. 6 for the
wake flow. The slopes are obtained in the same fashion
as explained in the last section, and are depicted in Fig. 3
with the dashed line. After Legendre transforming the
results, the singularity spectra are obtained, which is
shown in Fig. 4 as the dashed line. At the left side of the
curve (representing the scaling of high-intensity points of
the signals) a small difference between the results is ob-
served. It implies that k3/? is slightly more intermittent
than &,. This is consistent with our earlier qualitative
observations based on the signals themselves. On the
other hand, the low-intensity regions display some
difference in their scaling behavior, arguably outside ex-
perimental uncertainty. Again, k3/? is more “patchy,” in
the following sense. Regions where k3’2 is very close to
zero (large a’s) are more prevalent than those where 6, is
very close to zero.

V. CONDITIONAL AVERAGES

In this section, we study the conditional expected
values

(kpl6,) and (6E,lk,) .

The first is very similar to the variable studied in recent
studies of Kolmogorov’s refined similarity hypothesis. Its
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FIG. 5. Measured correlation coefficient be-
- tween local dissipation &, and local kinetic en-
ergy k,, as a function of filter width A. Re-
sults are shown for the wake flow (circles) and
. atmospheric flow (squares).
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expected scaling (neglecting small intermittency correc-
tions), based on the refined similarity hypothesis, is

(kpl6y)~A3633 25)

We have computed this conditional average from the
data, for both the wake flow and the atmospheric flow.
The results are shown in Figs. 7 and 8, respectively. For
reference, the dotted line has a slope equal to 2. As can
be seen, the scaling implied by the refined similarity hy-
pothesis is corroborated very well by the present data.
This conclusion is valid for a large range of A values.
These results are also consistent with recent findings of
[11-14], with the difference that we now corroborated
the hypothesis for the variables of present interest, k,
and 6.

However, as outlined in Sec. II, the quantity that is of
direct relevance in the context of LES modeling of the
SGS kinetic-energy equation is the second (reversed) ex-
pected value {6,|k, ). When this quantity is computed
from our data, the plots in Figs. 9 and 10 are obtained,
for the wake and atmospheric flows, respectively. The
scaling { 6,|k, ) ~k3/%, which is expected both from the
(reversed) refined hypothesis and from the model dis-
cussed before, is displayed by the dotted lines (with slope

10*

3) in Figs. 9 and 10. As is quite clear, the data are not
consistent with this scaling. The observation is made for
all filter sizes, for the two filter types considered and for
both flows at widely different Reynolds numbers. The ob-
served trend means that the rate of dissipation depends
more weakly on the kinetic energy than assumed by the
refined similarity hypothesis and/or by the modeling in
terms of k3’2, Some dependence of the slope on A is seen
for the wake flow. Since the dependence is much weaker
for the atmospheric flow, it is possible that it is a Rey-
nolds number effect.

V1. CONCLUSIONS

An experimental study of scaling of small-scale vari-
ables in turbulent flows has been performed. Instead of
focusing on traditional variables such as structure func-
tions, box-averaged rates of dissipation, and conditional
averages of velocity increments, we have examined simi-
lar variables which have more direct applicability to
modeling of turbulent flow through large-eddy simula-
tion. It was found that the rate of dissipation appearing
in the LES transport equation was very similar to the
traditional box-averaged dissipation, €,. Among others,
this observation endows previous studies on €, with in-

_ 10 - T T
¢ 2 s
Z~ 10°% P E
N E o 3 FIG. 6. Log-log plot of gth-order moments
k& : of SGS kinetic energy (to the 3 power) as a
Vi 107" E function of filter width, obtained in the wake
~ a ] flow. The results are plotted so that the slope
N Ll corresponds to D). Different symbols are for
g 107 3 different values of g (circles: g =4; squares:
v qg=2.4; triangles: ¢=0.8; diamonds:
N . .
VMool ] q=—0.8; stars: g =—2.4). The solid line
= 107% * E shows the least-squares error fit in the inertial
< * % range.
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FIG. 7. Conditional expected value of the
SGS kinetic energy, measured in the wake flow
using the 1D surrogate variables. The condi-
tioning is done as a function of the local value
of the dissipation rate &,. Different symbols
correspond to different filter sizes (circles:
A/n=20; squares: A/7=50; open triangles:
A/n=130; diamonds: A/n=330; stars:
A/n=800). The dotted line has a slope of 2
and represents the scaling implied by the Kol-
mogorov refined similarity hypothesis.

FIG. 8. Conditional expected value of the
SGS kinetic energy, measured in the atmos-
pheric surface layer. Different symbols corre-
spond to different filter sizes (circles: A/n=9;
squares: A/n=23; open triangles: A/7=60;
diamonds: A/n=140; stars: A/7n=360). The
dotted line has a slope of 2.

FIG. 9. Conditional expected value of the
rate of dissipation of SGS kinetic energy &,,
measured in the wake flow using the 1D surro-
gate variables. The conditioning is done as a
function of the local value of the SGS kinetic
energy k,. Results for different filter sizes are
denoted by the same symbols as in Fig. 7. The
dotted line has a slope of 3.
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FIG. 10. Conditional expected value of the
i rate of dissipation of SGS kinetic energy &,,
] measured in the atmospheric surface layer.
Results for different filter sizes are denoted by
the same symbols as in Fig. 8.
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creased practical relevance.

A comparison was then made between the scaling
properties of the dissipation rate and an expression based
on the SGS kinetic energy k,. This expression has been
employed to model the dissipation term, which is not
known during LES. The comparison was made in terms
of their multifractal spectra [both variables are (quasi)
“singular” measures]. It was found that they displayed a
correlation which is higher than that observed for the
eddy-viscosity closure at the level of the stress tensor.
The degree of intermittency of k3> was shown to be
higher than that of the dissipation, but by a small
amount. It is not clear how this discrepancy would
influence the outcome of a LES.

The transport equation for the SGS kinetic energy was
employed to derive an equation for the joint PDF of k,
and resolved velocity. One of the terms appearing in that
equation is the average rate of dissipation, conditioned 0:1
SGS kinetic energy and the resolved velocity vector. It
was shown that in order for the LES to properly repro-
duce all statistics at this joint PDF level, the correct pre-
diction of the expected value { 6|k, ) is a necessary con-
dition. However, the measurements displayed a scaling
(6,lks)~kB more in line with B~1 (or even lower)
than with a value of B=3. This unexpected scaling
means that LES employing k>/2/A as a model for the dis-
sipation will produce errors in some statistics at the joint
PDF level [either in the joint PDF itself, and/or in the
other conditional expectations appearing in Eq. (16)]. As
a check of consistency of our data with previous work,
we found that it displays the expected scaling of the re-
versed conditional expectation, (k,|6,) ~63/3.

We now point out a possible remedy for the modeling.
Clearly, on dimensional grounds the value f=1 is a
necessity if we want to express 6, only in terms of the lo-
cal value of the kinetic energy and the filter width.
Another (local) variable on which &, could depend is the
resolved strain-rate magnitude |S|. Dimensionally, one
could thus write

kRIS —2¢

.~ —————
6i~c AZB—D

(26)

10

It is recognized that for B=1, the dissipation term would
exactly mirror the scaling of the production of SGS
kinetic energy -—T,-j,S—'ij, once the eddy-viscosity expression
(9) is employed for the stress. Since in an equilibrium
condition the two should display the same mean value, by
setting =1 the two terms would cancel each other out
exactly. This is not a desirable feature for a model. The
choice B=1, on the other hand, appears to be worthwhile
to explore. Therefore a possible model is 63 ~ck AlS1,
whose physical interpretation is simply that the time
scale is now computed based on the resolved strain
rate (~|S|™!) and not based on the SGS kinetic energy
(A/ky ).

If k, and |S| were statistically independent, then the
conditional average (k,|S||k,) would scale as k,.
However, based on our experimental data and on the as-
sumption that |S|~|3@,/dx,|, we find that |S| and k,
are quite correlated. As a consequence, the conditional
average (k,|S||k,) scales approximately (again) as
~kL® and not as ~k}. One could, on the other hand,
obtain the time scale at a larger scale according to ||
(where the circumflex denotes a filter of width, say, 4A or
8A). The correlation between k, and |§ | is small, and we
find that the scaling exponent of {k,|S||k,) with k,
approaches 1. Thus a proposed model for the dissipation
is 63 ~ck,|S|, where the strain rate is filtered at a scale
mA (m=4).

In terms of future studies, it would be of interest to
check present results using 3D (or 2D) filtering instead of
1D filtering employed here. There could be differences in
scaling due to the dimensionality of the filtering (see, e.g.,
Ref. [28]). This goal could be achieved by analyzing re-
sults of direct numerical simulations (3D), or by analyz-
ing experimental results obtained from particle displace-
ment velocimetry (2D) [29].
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