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Some thermodynamic and transport properties of normal and supercooled water have been interpret-
ed in the framework of a dynamic extension of the polychromatic percolation model in which both the
recently reported evidence for a temperature-dependent H-bond cooperativity and free-volume Auctua-

tions within the percolative patches are included. The proposed model, which allowed us to fit the ex-

perimental self-diffusion data as a function of the temperature to an accuracy comparable to that ob-
tained by a power law, is consistent with the existence of a continuity of states between liquid and solid

phases, rather than being indicative of the presence of singularities in the supercooled region.

PACS number(s): 66.10.—x, 61.20.—p, 76.60.—k

INTRODUCTION

Many of the static and dynamic properties of liquid
water present an anomalous behavior, which is particu-
larly enhanced in the supercooled region. One of the
most intriguing questions regarding water is, how should
liquid water behave below the freezing point if nucleation
phenomena are somehow prevented? There exist essen-
tially two possibilities: The first is that the water proper-
ties retain the same trend they have just below the freez-
ing point and, consequently, a number of them undergo a
divergence at the temperature Ts= —45'C [1-6]; the
second is that these properties change their trend below
the lowest temperature experimentally reached up to now
and then connect with the properties of ice [7—11].

The principal evidence supporting the existence of a
singularity at the temperature Tz is based on the observa-
tion of a power-law temperature dependence of a number
of water properties which seem to diverge or go to zero at
the same temperature [1,2]. Among these, the transport
properties deserve particular attention since no normal-
like background corrections are required [1—6]. Actual-
ly, Prielmeier et al. [6] have shown that, in the low and
moderate regime of pressure, the power law is superior to
the Vogel-Fulker law in the interpretation of the strong
non-Arrhenius behavior of the water self-diffusion
coeScient D. Moreover, they have connected the tem-
perature Tz to the Speedy s mechanical stability limit
conjecture, which assumes a continuous spinodal line ex-
tending from the critical point to the supercooled region
[3—6]. This spinodal line, which is characterized by the
condition (dP /d V )r =0, should change direction twice
corresponding to the two intersection points with the
maximum density curve.

The most remarkable consequence of the possible ex-
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istence of a spinodal line is that a continuity of states be-
tween the supercooled liquid and the solid phase cannot
exist. In fact, if the possibility of a change in the trend of
water properties below the freezing point is disregarded,
the extrapolation of the heat-capacity (C~) data predict
that no suScient entropy should be available in order
that thermodynamic states of liquid and solid phases can
be connected [10]. Moreover, if a power-law temperature
dependence is assumed for C [1,3,4], there should be an
interval of temperatures just above Ts in which the su-

percooled liquid is much more ordered than ice, contra-
dicting the third law of thermodynamics (the Kauzman
paradox).

On the other hand, some microscopic models for liquid
water do not predict any singularity [7,10—12]; the anom-
alous behavior of the liquid properties arises from some
peculiar characteristics of the H-bond network whose
structure is, in turn, determined by the high directionali-
ty, the intermediate strength, and the cooperativity of the
H bonds. Due to the charge distribution geometry, each
water molecule should be limited to form a maximum of
four linear H bonds (LHB); therefore, five different water
species can be considered on the basis of the number of
LHB's in which each molecule is engaged (from 0 to 4).
Moreover, owing to the H-bond cooperativity, bonds are
not made or broken singly but several at a time; thus
short-lived clusters of highly bonded molecules are creat-
ed (fiickering clusters), the formation and dissolution of
these clusters being governed by local energy fluctuations
[12,13]. Quite recently, several forms of cooperativity
have been singled out (polarization dependent [12], sta-
tistical [7],geometric [14],and stereodynamic [15]).

One of the most interesting consequences of the statist-
ical correlation is that the cluster aggregation occurs
selectively between water molecules having the same
number of formed H bonds so that homogeneous mi-
croregions (patchs) are created [7]. It should be noted
that such a type of cooperativity is also effective in a ran-
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dom H-bond network. If the H bonds are assumed to be

randomly distributed, the water molecules are binomially
distributed among the five species; however, quite recent-

ly, significant deviations from such a binomial distribu-
tion have been inferred from molecular-dynamics simula-

tions, indicating that other cooperative phenomena are
operative together with the statistical correlation [16].
The final effect is the creation of cooperative patches in
which collective motions, similar to those which are
present in ice and recently observed by Raman-scattering
spectroscopy, can take place [8—10,17].

In the present work we should stress the role of the
cooperativity and of the free-volume fluctuations in the
non-Arrhenius behavior of normal- and supercooled-
water self-diffusion coefficients and show that the ap-
parent divergence of some thermodynamic properties is
consistent with the existence of a continuity of states be-
tween the liquid and the solid phase if the H-bond
cooperativity is taken into account.

In particular, we consider water as described by five

quantumlike energy levels corresponding to each of the
five water species and admit a cooperative mechanism for
the transitions from one level to another. We assume an
environment-dependent probability of forming an H bond
and obtain the water fraction distribution among the five

species by solving the appropriate five-level master equa-
tion. The resulting temperature-dependent water frac-
tion distribution is compared with the experimental den-

sity (5) and thermal expansion coefficient (a) data, thus
obtaining some relevant H-bond network parameters
which, on the other hand, are able to interpret the experi-
mental isothermal compressibility (ET) data. The water
self-diffusion coefficient is evaluated as the mean, weighed
over the equilibrium distribution water fractions, of the
diffusion coefficients D ( T) relative to each species which,
in turn, are calculated by taking into account the energy
and density fluctuations within unlike patches
[13,18—20]. The proposed model is able to fit the experi-
mental NMR water self-diffusion data to a goodness com-
parable with that obtained by fitting the same set of data
with a power law. The results suggest the possible ex-
istence of a continuity of states between the supercooled
liquid and the ice phase rather than being indicative of a
spinodal behavior or of the existence of a critical point
[21].

EXPERIMENT

Self-diffusion coefficients were measured, by a home-
made 10-MHz low-resolution (spin-echo) NMR spec-
trometer [22], with the static magnetic-field-gradient
technique, by comparing the zero-gradient spin-echo am-
plitude with the amplitude of the echo at different field-
gradient values. The field gradient was calibrated by us-

ing pure water at 25'C as a reference [23]. Temperature
control was performed by inserting the sample into a ni-

trogen flux at a predetermined temperature which was
taken constant by an ON —OFF heating controller. Water
samples were prepared with a Milli-Q system and sealed
in the test tube by parafilm and silicone glue. Spin-echo
curves, as a function of the square of the gradient intensi-

ty, were fitted by a single exponential least-squares-fitted
routine. The time of observation of the diffusion process,
i.e., the interval in which the molecules are exposed to
the gradient field, was taken constant (18 ms) in the
overall temperature range.

WATER SELF-DIFFUSION

As for the majority of the water properties, the charac-
teristic feature of the self-diffusion coefficient can be
traced back to the peculiar structure and dynamics of the
H-bond network. Due to the different environments in
which a water molecule can be found, according to the
number of H bonds in which it is engaged, the diffusional
phenomena turn out to be the superposition of different
behaviors which range from the vibrational-like behavior
of the four-bonded molecules to the rototranslational
motion of the zero-bonded ones. Recently, Bertolini
et al. [24,25] have studied the H-bond dynamics taking
into account the thermal-bath-induced transitions be-
tween the five water species and have found the self-
diffusion coefficient (D) to be expressed by the mean,
weighed over the equilibrium distribution of the water
fractions, of the self-diffusion coefficient relative to each
of the five water environments:

WATER FRACTION DISTRIBUTION
AND H-BOND COOPERATIVITY

In order to evaluate the fractions f (T,I'), let us as-
sume that water is described by five quantumlike states
corresponding to the five water species [24—26]. If the
simultaneous forming and breaking of more than one H
bond (i.e., the transitions from nonadjacent energy levels)
are statistically negligible events, the time evolution of
the water molecule fraction belonging to the jth species is
described by the following master equation:

d fo=k1of1 ko1fodt

d
dt

f1=ko1fo+k21f2 (k1o+k12)f1

dt f2 k 12f 1 +k 32f3 ( k23 + k21 )f2

d
dt f3 k23f 2 +k43f 4 ( k32 + k34 )f3

(2)

f 4=k,4f, k43f4, —
df

j=o

D, (T) and f, (T) being, respectively, the ternperature-
dependent diffusion coefficient and the fraction of the wa-
ter molecules belonging to the jth species. An attempt to
interpret the experimental data by means of Eq. (1)
should then require knowledge of (i) the distribution of
the water species, (ii) its temperature dependence, and (iii)
the diffusion coefficients for each of the five water envi-
ronments.
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where k," is the transition rate from state i to state j. The
equilibrium solution of Eq. (2), at a fixed temperature and
pressure, is given by the recursive formula

f +, (.T,P)= ' f (T,P), j=0,1,2, 3 (3}
k.

( +i)(TqP)

j + i ~ J T

the value of fo( T,P) being calculated by the normaliza-
tion condition g of ( T,P) = 1. By introducing the
probability p (T,P) that a water molecule in state j can
form an H bond, Eq. (3) becomes

T,P,(4—j)p (T,P)

(j+1)[1 p(T—, P}]

j=0, 1,2, 3 . (4)

If the H-bond breaking and forming are assumed as
statistically independent events, the probability of finding
an H bond intact does not depend on the particular envi-
ronment of the tagged molecule (pj =ps for each j), and
the equilibrium solution of the master equation is the bi-
nomial distribution [24,25]. Nevertheless, from
molecular-dynamics simulation data it has been argued
that the H-bond lifetime is strongly coupled to the envi-
ronment of the linked molecule, the bonds which connect
the four H-bonded molecules being the longest living
[16,20). Therefore, the probability p, which is directly
related to the H-bond lifetime [24,27], has to be con-
sidered environment dependent and this would result in a
nonrandom distribution of the H bonds with a conse-
quent deviation from the binomial distribution for the
water fractions. The correlation in the H-bond distribu-
tion would favor the spatial bond condensation
[8,9,16,28] and induce the formation of water patches
beyond the mere statistical effect [7]. At low tempera-
tures, patches with four H bonds increase in size and
number, allowing the system to undergo some collective
motions, similar to those present in ice and recently ob-
served by Raman-scattering spectroscopy [8,9]. More-
over, by increasing the concentration of the four H-
bonded molecules, the probability for a water molecule of
being surrounded by stable molecules increases and the
formation of an additional H bond becomes more prob-
able. The probability that a three-bonded molecule forms
a fourth bond would result as higher the greater the con-
centration of the four-bonded molecules which, in turn,
depends on such a probability. Such a cooperative mech-
anism which is, of course, limited by the therma' energy
is then enhanced in the low-temperature region [2,8,9].
Similarly, at high temperature the creation of patches of
nonbonded water molecules occurs. It should then be ex-
pected that the cooperativity would mainly affect the
probability of forming an H bond in the zero- and four-
H-bonded water patches, which are the most populated
in the superheated and supercooled regions, respectively,
and where most of the water anomalies are observed [2].
Accordingly, to take into account this H-bond coopera-
tivity, we introduce a population-dependent perturbation
in the probability of forming an H bond in the zeroth and
fourth water species, whereas the the remaining ones de-
pend only on temperature and pressure:

po(T, P)=pb (T,P) —A(P)fo(T, P),

p, (T,P)=pb (T P)

p~(T, P)=pb (T,P},

p3(T, P) =pb (T,P)+IJ(P)f4(T,P),

A,(P) and p(P) being positive functions which measure
the degree of cooperativity of the system and ps ( T,P) the
probability of finding an H bond intact under the hy-
pothesis of uncorrelated H bonds.

If we restrict our discussion to the case of the atmos-
pheric pressure, A,(P) and p(P) are constants and

ps (T,P}=ps(T). Therefore, by introducing Eq. (5) into
Eq. (4) and by solving with respect to fo, we have

4(pb ~fo }—fo

(q+Afo)

6ps(ps ~fo }fo-
f2=

q(q+Afo)

4ps(pb ~fo }fo-
f3=

q (q+Afo}

bk+b —4ac-f =

(6)

where

+(2BC K~)fo+D =0,—

where

(7)

A = —pA, (ps+6),

B=2@(1+ps)(1+ps ) @ps+Aq' —2pAq', —

C=q4 —2pq',

D =4@ (qp
—q),

It i=A, pp
K2=2A, pq ps(1+ps) —2Ap pb5,

K3=IJ, ps+A. q +2pAq pb(1+ps)(1 —2pb),

K =2q [Aq Ibpb(1+ps)] . —

To avoid the burden of notation in the above formulas,
the explicit dependence on the temperature has not been
reported.

Equation (7) is solved numerically, for each value of its

q=& —
ue

a =pq2(q+A fo),
b =ppb(pb Info)fo q'(q+~fo)

c =pb(pb A fo)fo

The use of the normalization condition +~4 of.=1 gives
the following equation for fo:

(A —K, )fo+(2AB K2)fo+(B +—2AC K3)fo—
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coefficients, in the interval 0 ~ fo ~ 1, where a single solu-
tion is always found except for the right end point of the
interval, where two solutions exist.

THK TEMPERATURE DEPENDENCE
OF THE WATER FRACTION

DISTRIBUTION: DENSITY, THERMAL EXPANSION
AND ISOTHERMAL COMPRESSIBILITY

In the preceding section we have expressed the equilib-
rium distribution of the water fractions in terms of the
probability p&, so that the temperature dependence of f
derives exclusively from such a probability. Before any
expression is worked out for pb(T), some explanation
should be made.

The use of five energy levels is a simplification; in fact,
such a description of liquid water takes into account only
the H bonds, whereas the van der Waals interactions are
also present. In this connection, it should be considered
that the zero-H-bond energy level is not the limit of the
energy spectrum but many other states, with higher ener-

gy, exist; these are related to the water vapor and dissoci-
ated liquid phases which are dominated by the van der
Waals forces. While, due to the smaller intensity of the
van der Waals interaction with respect to the H-bond in-
teraction, the five-level description is a good approxima-
tion to estimate the water fraction distribution in the
liquid phase, the determination of its temperature depen-
dence requires some consideration of the overa11 energy
spectrum. From a statistical-mechanics point of view,
the zero-H-bond energy level can be considered as the
ground state with respect to the vapor-liquid condensa-
tion process: Under the action of the van der Waals
forces, the vapor molecules condensate in a "dissociated"
liquid phase, in which all the molecules are not H bond-
ed, at a temperature T, . On the other hand, the four-H-
bond energy level can be considered as the ground state
for the liquid-solid condensation and then is totally occu-
pated as solidification occurs at the temperature To. On
the basis of these considerations, the probability pi, (T)
cannot be expressed in terms of a single Boltzmann ex-
ponential, but its form has to satisfy the following condi-
tions:

lim p&(T)= I (ice),
T~ Tf)

lim p&(T) =0 (dissociated liquid) .
T~ T

C

A simple expression containing exponential functions, as
required by activated processes, which satisfy the above-
mentioned conditions could be

E(T, —T)—
R(T, —To)(T To)—

E being a parameter that is in some way related to the
average activation energy (to work out an exact relation-
ship between E and the activation energy barrier,
knowledge of the partition function of the system is
necessary).

By introducing Eq. (8) into Eqs. (6) and (7), the expres-

sions for the water fractions are obtained as a function of
the temperature. However, these expressions still depend
on the unknown parameters A, , p, T„TO, and E. There-
fore, in order to evaluate f (T), we need to know to
which extent the system is cooperative and how much en-

ergy is necessary to activate the H-bond network restruc-
turation. A physically sound way to extract this informa-
tion would be to compare our master-equation solution
with some reliable experimental data. For this purpose,
the density 5( T) and thermal expansion a( T) data are the
best candidates since these thermodynamic quantities are
simply related to f~(T), and a large amount of good pre-
cision experimental data exist in a wide range of tempera-
tures [29,30]. In fact, the water density and thermal ex-
pansion coe%cient, for a 1-g water sample, are, respec-
tively,

5(T)=

Q VJ(T)f&(T)
j=0

8 in[5( T)]
aT

a(T) =—

(9)

V, (T) f, (T)+f&(T) V, (T)
a a

j =0.
4

g V, (T)f&(T)
j=0

(10)

where V~ ( T) is the volume of the molecules belonging to
the jth species, which turns out to be larger the higher
the number of H bonds in which the molecule is engaged
[7,16,31].

The volume of the water molecules with four H bonds
can be estimated from the ice density [25] and the
remaining water fraction volumes can be assumed to be
linear with the temperature but, due to the smaller bind-

ing energy, a square term should be added for the non-
bonded fraction:

Vo(T)= V[o1 +a (0T 273)+Pc(T——273) ],
Vj(T)= V~[1 +a (JT 273)], j=1,—2, 3

V4( T)= 1 j5;„(T) .

The temperature derivatives of the water fractions

f, (T) have been evaluated starting from Eq. (4), as re-

ported in the details in the Appendix, while the deriva-
tives of the volumes are simply calculated from Eq. (11).

To minimize the correlation between the parameters,
we have fitted simultaneously, by a simulated annealing
Monte Carlo algorithm [32], both the density and the
thermal expansion coefficient data [29,30] by means of
Eqs. (9) and (10), respectively.

Figures 1 and 2 show the best-fit curves for 5( T) and
a( T), respectively, the value of the fit parameters being
reported in Table I. The agreement with the experimen-
tal data is excellent, as indicated also by the low value of
the fit standard deviations reported in the last two lines of
Table I. The corresponding water fraction distributions
have been plotted, as a function of the temperature, and
are shown in Fig. 3, together with the relative binomial
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FIG. 1. Water density as a function of temperature. The
solid line represents the best fit, by Eq. (9), of the literature data.
The extrapolated fitting curve falls in with the ice density line at
the temperature T; (see the text).

FIG. 2. Water thermal expansion coefficient as a function of
temperature. The solid line represents the best fit, by Eq. (10),
of the literature data.

distribution for a comparison. As the temperature is
lowered, the fraction of four-H-bonded molecules, which
are the most sensitive to cooperativity efFects, undergoes
a faster increase with respect to the binomial one, in qual-
itative agreement with the molecular-dynamics-
simulation data [16]. A similar behavior is also observed
for the zero-H-bond fraction at high temperature.

In Fig. 4 the probability pb(T) is shown and compared
with the values obtained by difFerent sources. As can be
seen, the value obtained for pb(T) by our analysis is in

good agreement with the estimation made by Raman-
scattering spectroscopy.

The parameters A, and p, beside being a measure of the
extent of the H-bond network cooperativity, are also con-
nected to the water supercooling and dissociation limits
through the expressions @=1—pb(T;) and A, =pb(Tt, }
which can be obtained by imposing the conditions

f4( T; )=1 and fo(T& )=1 to Eq. (5). In our case, these
temperatures turn out to be T, =231 K and Ta =516 K
(see Fig. 3). The temperature T, falls in between the

1.0

0.5

0.0
220 280 360 440 520

T(K)

FIG. 3. Fractions of water molecules involved in zero, one,
two, three, and four H bonds as a function of temperature, ob-
tained from a random distribution of H bonds (dashed lines) and
from the model described in the text in which the H-bond

cooperativity is taken into account (solid lines). Tz and T; are,
respectively, the dissociation and crystallization temperatures
when cooperative effects are considered (see the text) ~

TABLE I. Parameters obtained (according to the text) from
the best fitting of the density (5) and thermal expansion
coefficient (a) data. Best-fit standard deviations are reported in
the last two lines. t.o

Vp

U)

Up

Ug

ap

Po
a&

Qp

Cp

E
TQ

T.

0.863 15 cm'
0.971 11 cm'
0.98230 cm
1.03788 cm
1.39186x10-' K-'
1.709 33 X 10 K
0.903 61 X 10 K
0.81245x 10-' K-'
0.71278x 10-' K-'
153AS cal mol
182.4 K
1149.1 K
0.2196
0.1404
4.1 X 10
3.9X 10-'

I

I

I p

0.5 '-

0.0
220

I

290
I

360
T (K}

I

430 500

FIG. 4. Probability of forming an H bond as a function of
temperature: Open circles, Bertolini et al. [25]; open triangle,

Hare and Sorensen [8]; open squares, Raman result from
D'Arrigo et al. [33];solid lines, pI, [Eq. (8)], and dashed line, p,
[Eq. (5)] as calculated in the text.
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homogeneous nucleation value (232 K) [2] and the
power-law-predicted stability limit (228 K) [1,2], whereas
the temperature T& is 72 K below the estimated stability
limit of superheating (588 K) [3]. It should be em-
phasized that T& represents the limit beyond which no H
bonds exist, namely, the state of dissociated liquid, and
not the superheating limit which, on the other hand, is
determined by the van der Waals interaction and is then
expected to occur at higher temperature.

Moreover, it has to be remarked that the temperatures
To and T„which appear in Eq. (8}and in Table I, would
represent the water supercooling and dissociation limits
in the hypothesis of a random H-bond network and thus
should be lower and higher than T; and T&, respectively,
i.e., the correlation between the H bond raises the tem-
perature of solidification and lowers the dissociation one.

By comparing Eq. (10), Fig. 2, and Fig. 3, it turns out

that the anomalous negative value of u below O'C can be
related to the fast increase of the four-bonded water frac-
tion which, on the other hand, is a direct consequence of
the cooperative structuration of the H-bond network. In
fact, as the temperature is lowered, the fraction of four-
H-bonded molecules undergoes a fast increase, reaching
its maximum value of 1 at the temperature T,-. The slope
of the f4( T) curve is negative and increases rapidly, upon
lowering the temperature, becoming the predominant
term in Eq. (10).

A similar behavior could be expected for the iso-
thermal compressibility also. In fact, by replacing tem-
perature with pressure on the right-hand side of Eq. (10),
a relationship for the isothermal compressibility is ob-
tained which depends on the derivative of the fractions
with respect to the pressure (see the Appendix). Actual-

ly, at atmospheric pressure we have

8 in[5(T, P)]E
T,P=1

a aVJ(TP) fj(TP)+f)(TP) VJ(TP)1 ' P 1

g V, (T,P)f, (T,P}
j=0 T, P=1

(12)

We should argue that the divergent behavior of the iso-
thermal compressibility could be related to the increase
of these derivative values as the temperature is lowered,
similar to what happens for the thermal expansion
coefficient.

The best fit of the experimental compressibility data
[34] by Eq. (12) is shown in Fig. 5. The parameters of the
fit are reported in the caption. The agreement is good ex-
cept for the high-temperature points where the fit curve
falls below the experimental data.

The value of the parameters y, which take into ac-
count the effect of the patch geometry on the probability

150

120

90

of breaking a LHB under the action of the pressure (see
the Appendix), indicates that, by increasing the pressure,
it is much easier to break the bonds in the patches with
three and two LHB's than in those with one and four
bonds. Actually, in the four-bonded patches the mole-
cules are arranged in a regular lattice; thus they behave
as a crystalline solid. On the other hand, it is reasonable
that in the patches with one H bond, the pressure princi-
pally affects the volume changes rather than the bond
breaking. This particular behavior is responsible for the
shift of the compressibility minimum to higher tempera-
ture with respect to the temperature of maximum densi-
ty: a and ET depend on the water fractions in a similar
way [see Eqs. (10) and (12}]; thus, if there were no
difference in the temperature dependence of the pressure
and temperature derivatives of the fractions, the max-
imum density and the minimum compressibility would
occur at the same temperature.

FREE-VOLUME-FLUCTUATION CONTRIBUTION
TO THE WATER SEI.F-DIFFUSION

30 & s L & I

230 320 410 500

FIG. 5. %'ater isothermal compressibility as a function of
temperature. The solid line represents the best fit of the litera-
ture experimental data by Eq. (12) obtained with the following
parameter values [see Eqs. (A6) and (A8)j:
Bp Vo( 1 ) =91.085 98 X 10 cm bar ', Bp Vl ( 1 ) = 14.16079
X10 cm bar ', Bp Vp(1)=0.622585 1X10 cm bar
Bp V3( 1 ) =2.325 875 X 10 cm'bar ', y0=0. 148 354, y 1

=0.547 805, y2=0. 055 736, and y3=0.055 736.

In the previous sections we have analyzed the principal
characteristics of the H-bond network and have estimat-
ed the distribution of the water fraction as a function of
the temperature. In order to evaluate the water self-
diffusion coefficient by means of Eq. (1), we still need to
calculate the diffusion coe%cient relative to each species.
In such a connection, we should reiterate that, due to
cooperative effects, the water molecules belonging to the
same species aggregate in patches; within those, due to
the homogeneous composition, the diffusion process is re-
gulated by mechanisms similar to those occurring in nor-
mal liquids, the contribution of the H-bond dynamics
having already been taken into account in the derivation
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of Eq. (1).
Inside each patch, in order to diffuse, a water molecule

has to break all its bonds with the surrounding molecules
and a sufficient space has to be available into which it can
difFuse [18,19,35]. Within patches of unlike species, the
water molecules have different diffusional behaviors
which depend on the number of H bonds which are en-

gaged and on the local average density. Since the proba-
bility of breaking simultaneously more than one H bond
is low, the diffusion coefficient for species 2, 3, and 4
should be very small [for species 4, it is approximately
that of the ice (=10 "cm s ')] and thus can be neglect-
ed [7,24,25]. In the patches of four- and three-H-bonded
molecules, the vibrational-like behavior should be dom-
inant. For the remaining species 0 and 1, taking into ac-
count energy and density fluctuations, the self-diffusion
coefficient DJ( T) can be expressed by [35]:

' 1/2

Dj(T)= 8.04c v 0I

X exp
1.69vo E

+
.(T)—vo RT

X10-',

(13)

where c is a numerical constant of the order of unity; E
is the activation energy threshold value per molecule for
the state j; vo is the close-packed volume per mole; v (T)
is the molar volume of the species jwhich is connected to
the volume V (T), appearing in Eqs. (11) and (A7), by
vj(T) =MV, (T), M being the molar weight. It should be
emphasized that all the molecules participate in the
diffusion process through the successive breaking of their
H bonds, which correspond to the transition between two
nonadjacent levels by multiple successive jumps. This
effect is taken into account in both the water-fraction-
distribution evaluation and the H-bond network dynam-
ics which gives rise to Eq. (1) [24,25].

By introducing Eq. (13) for the 0 and 1 species in Eq.
(1), we have fitted a set of NMR self-difFusion coefficient
data, which are the collection of published [2,23,36] and
experimental data obtained by the static field-gradient
spin-echo technique. The best-fit curve, shown in Fig. 6,
has been obtained with the following values for the fitting
parameters:

U0=7. 6097 cm mol

E0 =156.32 cal mol

E& =892.36 cal mol

The standard deviation of the fit (o =0.017) is compara-
ble with that (o i

=0.018) obtained by fitting the same set
of data by the equation

TD(T)=D Titz —10
S

4.0

~0

2.0

1.0

0.0
230 260

T(K)

290 320

FIG. 6. Experimental 'H NMR water self-diffusion

coefficient data as a function of temperature. The solid line is

the best-fit curve obtained according to the text.

DISCUSSION AND CONCLUSIONS

consistent with that found in the literature [37]. Eo
represents the non-H-bonded water interaction energy,
whereas E& represents the average energy necessary to
break one H bond.

The value of the energy E, is lower than the ligand en-

ergy of the H bond (about 5X10 calmol '). This
discrepancy should not be surprising since the activation
mechanism in liquid water is not a simple process. In
fact, it has been postulated that some strained bonds, the
bifurcated H bonds (BHB), should play an important role
in effectively reducing the water interaction potential
barriers [38,39]. The BHB's are transition-state
configurations corresponding to local energy minima
with intermediate strength between broken and formed
linear H bonds [38,40]. These transition states seem to
provide an efficient mechanism of activation and reorgan-
ization of the H-bond network, offering a path connect-
ing different LHB configurations through activation bar-
riers lower than the energy needed to break a LHB. We
can therefore speculate about the possibility that the low
value found for the energy E, is due to the effective
lowering of the energy barrier accomplished by the
BHB s. In addition, since the LHB~BHB transition is a
cooperative process [40], the presence of BHB's in water
should introduce a supplementary source of cooperativity
in the H-bond network.

As the temperature is lowered, the concentration of the
mobile water molecules decreases and the diffusion
coefficient in the patches with four-bonded molecules be-
comes the predominant term in Eq. (1). Therefore, the
diffusion coefficient of liquid water can be extrapolated to
that of the ice at the temperature T, of 231 K (see Fig. 3).
It should be emphasized that as the self-diffusion
coefficient approaches that of ice and then the diffusion
length becomes comparable with the molecular dimen-
sions, the non-Markovian character of the difFusion pro-
cess becomes important and Eq. (1) can no longer be used
[24,25,41].

the best-fit parameters (DO=0 87, T~ =225, and. y =1.66)
being in agreement with those obtained by Prielmeier
et al. [6]. The value of the close-packed volume Vo is

In the present paper we have presented a model for
liquid water which, taking into account both the H-bond
cooperativity and the free-volume fluctuations, is able to
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reproduce, to a good accuracy, some of the water proper-
ties and in particular to interpret the water self-diffusion
behavior with the same accuracy as the power law,
which, actually, is the best empirical expression repro-
ducing the non-Arrhenius behavior of D. On the other
hand, such a power-law behavior constitutes the grounds
for the stability limit conjecture, which, assuming a true
singularity at the temperature Ts, predict that no con-
tinuity of states between the liquid and solid phases can
exist [3,4]. On the contrary, our model does not predict
any singularity, but some thermodynamic properties such
as a and Kz are expected to present a maximum or
minimum in the supercooled region. In fact, the only
possibility to have a divergence in a and K~ could arise
from a divergent behavior of the derivatives Brf, and

dr f, , respectively [see Eqs. (10) and (12) and Appendix A
for the symbols). However, such a possibility should be
ruled out on the basis of the normalization condition

08k'(T, P)=0. In fact, in both Eqs. (10) and (12)
the derivatives Bkf~ appear in the term g DV Bkf, ,

which, due to the positive and finite value of V, and to
the normalization condition, remains always finite.
Moreover, if a continuity of states between supercooled
liquid and ice exists, then both a and Kz. have to change
their trend somewhere in the deep supercooled region.
Unfortunately, we are not able to make quantitative ex-
trapolations of our calculations to very low temperature,
since for T=T; two dilFerent solutions of Eq. (7) are
found. The reason for such a limitation could reside in
the simplified description of the cooperative phenomena
considered in our model; in Eq. (5) we use a perturbative
approach on the random network which proves inade-
quate when cooperative effects become very important.
However, some qualitative indications of a change in the
a and Kz trend with temperature can be traced back by
the present model.

Statistical-mechanics considerations [7,42] permit the
relation of a and Kz to the entropy and density Quctua-
tions in the sample; thus an increase of these quantities
should be indicative of the increment of the fluctuation
intensity and vice versa. In liquid water the presence of
patches with different density and entropy (the four-H-
bonded patches being the more ordered and the less
dense) induces a very high degree of inhomogeneity and
enhances, then, both the density and the entropy Auctua-
tions [7]. If the relative concentration of these patches is
changed, the intensity of the thermodynamic fluctuations
changes too. In particular, by lowering the temperature,
the 1ow-density —high-ordered tetracoordinated patches
increase in number and size with a consequent enhance-
ment of the density and entropy fluctuations [7]. Howev-
er, when the amount of four-H-bonded molecules be-
comes large with respect to that of the other species, a
further increment should result in a higher homogeneity
of the sample and then the ftuctuations decrease, reach-
ing that of the ice at T= T, . At the point of maximum
inhomogeneity, the intensity of the fluctuations shou1d be
very large but for a sample of finite size can never diverge
[42]. As a consequence of this behavior, both a and Kz.
should present a change of trend in the deep supercooled
region; the scenario should then be that of a damped k

transition in the proximity of T;. It should be noted that
such a behavior is not incompatible with the Speedy s wa-
ter equation of state, but is in contrast with its interpreta-
tion. In fact, the power-law behavior of several thermo-
dynamic and transport properties, on which the Speedy's
argument is based, is the result of the expansion of the
pressure P, along an isotherm, as a Taylor series in 5—5z
about the limit of stability defined by Kz = ~. However,
such a type of expansion may still work as an approxima-
tion if Kz has a maximum whose value is large enough,
i.e., in the case of a damped A, transition [3]. In such a
case, no divergences would occur and a continuity of
states between liquid and solid phases should exist. %e
should then suggest that the anomalous behavior of
liquid water has its origin in the particular structure of
the H-bond network and in the overwhelming tendency
to a tetracoordination of the water molecules in the su-
percooled region, rather than in the existence of a singu-
larity or of a critical point, as recently suggest [21]. As
the temperature is lowered, patches of four-H-bonded
molecules become the emerging structures in the liquid,
which is progressively driven toward crystallization at
the temperature T;. However, until crystallization is ob-
tained, the sample still presents configurational disorder,
which should prevent the Kauzman paradox [43]. More-
over, by lowering the temperature, the lifetime of the
tetracoordinated patches increases and the probability of
finding an icelike cluster of water molecules, which per-
sist for a suScient time to serve as a seed for the nu-
cleation phenomena, should approach unity by approach-
ing the limit temperature T;. This effect, which is re-
sponsible for the metastability of the supercooled state,
could also be considered to explain the correlation be-
tween the homonucleation limit temperature and the
power-law-determined Ts temperature [2—6).

It should be emphasized that the continuity of states
between the liquid and solid phases as described in the
present model is a speculative concept since it refers, due
to the homonucleation phenomena, to experimentally
inaccessible thermodynamic states. In addition, the con-
tinuity of states has to be intended only in the liquid-to-
solid direction since, due to the metastable character of
the supercooled state, once the transition to ice is accom-
plished, the sample has to be heated to O'C before the
liquid phase can be restored.
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APPENDIX A: TEMPERATURE AND PRESSURE
DERIVATIVES OF THE WATER FRACTIONS

In a simplified notation we should indicate the partial
derivatives 0/BT and 8/BP by 8k, with k =T and k =P,
respectively.

The temperature and pressure derivatives of the water
fractions can be simultaneously calculated from Eq. (4):
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r}f,(T,P)=c f (T,P)+ 8 f (T,P)
q.

functions of the pressure

I.~p~(P) ]p=1 t~pp(P) lp= 1

where

j=0, 1,2, 3 (Al) Therefore, the terms Bk}tb and Bkk, in Eq. (A2) can be
neglected and Eq. (Al) can be written as follows:

q. =1—p

4—jCJ—

and Bkp are calculated from Eq. (S):

akpo =akpb —xakfo —foaks,

~kP1 ~kP»

~kp2 ~kp»2

akp, =akpb, +pr}kf, +f,

akim

(A2)

c3f3(T,P)

1 c,f, (—T,P)
q3

Po
Zo =Cp

qo
fo(T,P)

B„fi,(T P)= W. +Z d„f. (T P), j=0, 1,2, 3

where

W =c fj(T,P},j=0, 1,2
~kPbj

(A3)

At variance with the temperature dependence, which is
simply described by the activation mechanism [pb(T)],
the pressure behavior of the water fraction distribution
arises from both the pressure-induced modulation of the
energy levels [pb (P, T)] and from the perturbation of the
H-bond network cooperativity, due to the network
geometry changes that are a result of the strains applied
to the water molecules (the cooperativity parameters A,

and }Lb are functions of the pressure}. Actually, in the
present work we are mainly interested in the value of the
derivatives Bkp at atmospheric pressure. On the other
hand, it is reasonable to assume that, at least near P =1,
the cooperative effects are not much affected by the appli-
cation of a small pressure, i.e., A, and p are slowly varying

Z =CJ J
qj

j=1,2

Z3=
1 —c3

C3
P3

2 f3(T,P)

Z4= f3(T,P) .
2

By imposing the normalization condition, which is now

0 dk f~(T,P)=0, we have

3 2 1

g W+ g Z+, W+ g Z+zZ+, Wi+Z3Z2Z, Wo .
i=o i=o i=o

I I+Zo+ZOZi+ZOZiZ2+ZOZiZ2Z3]
(A4)

The temperature and pressure derivatives of the water
fractions can be then obtained by combining Eqs. (A3)
and (A4) and by introducing the appropriate term

dkp»J(T, P). The term BTpb (T,P) is easily obtained, at
the atmospheric pressure, from Eq. (8), whereas the pres-
sure derivatives dJ pb (T,P} require exp. licit knowledge of
pbj(T, P}.

The functions p» (P, T) take into account the energy
changes of the jth state as induced by the pressure. It
should then be expected that these functions depend on
the product PV (T} but also on the geometry of the
patch, i.e., on the way in which the H bonds are organ-
ized. In particular, the probability of breaking an H
bond under the action of the pressure is expected to be
higher in the cluster with low connectivity than in the
patches with four formed H bonds which are arranged to
form a regular lattice. We should then assume that

(P —1)Vi( T,P)(T, —T)y
pb (P, T)=pb(T)exp

j=0, 1,2, 3 (AS)

where y. takes into account the patch geometry and

pb( T) is given by Eq. (8). The pressure derivative ofp„ is
then easily worked out:

Vi( T, 1)(T, —T)yJ
Ppbj(P T)]P=I Pb(T) g (7 7 )(7 7 )c 0 0

j=0,1,2, 3 . (A6)

APPENDIX B: PRESSURE DEPENDENCE
OF THE WATER FRAC. IlON VOLUMES

Concerning the water fraction volumes, we have as-
sumed in Eq. (11}a particular temperature dependence.
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The natural way to introduce the pressure in such an
equation is the following:

[t) V (T,P}],=[[t) V (P)][1+a (P)(T —273)

+go(P)( T—273) ]]t,

V (T P)= Vo(P)[1+a (P)(T —273)+P (P)(T —273) ], [t) V (T P)]t, , =[(t) V (P)][1+tz (P}(T—273)]p

j =1,2, 3 . (A8)
V.(T,P)= V.(P)[1+a.(P)(T —273)], j=1,2, 3 (A7)

V4(T, P) =1/5;„(T,P),

which reduce to Eq. (11)for P = 1.
Assuming that the expansion coefficients a and Pc are

slowly varying functions of the pressure, we set
t)t, a (P) =0, t)t Po(P)=0, and we then have

Moreover, due to the solidlike character of the patches
with four H bonds, the pressure derivative of V4 should
be expected to be very small. The additional considera-
tion that at low temperature, where the fraction of four
bonded molecules become predominant, the leading term
in the isothermal compressibility expression [Eq. (12)] is
that depending on (dt f 4) led us to neglect the compressi-
bility of the four bonded molecules and put
[t)p V4(T, P)]t, , =0.
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