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In this paper we investigate the calculation of the kinetic coeScients for a nonequilibrium mixture of
chemically reacting gases. This study is based on the generalized Chapman-Enskog method (GCEM)

proposed by Alexeev. An alternative method for the resolution of the basic linearized integral equations

of the GCEM is developed in this paper. The algorithm of this method is adjusted to include triple in-

elastic collisions and the resolution method of the integral equation with non-self-adjoint operator was

found to be the most effective for practical use. Some issues and examples of calculation are discussed.

PACS number(s): 51.10.+y, 47.70.Fw, 05.20.Dd

I. INi.RODUtvrON

Transport processes in gas mixtures with chemical re-
actions is one of the most studied problems of the modern
kinetic theory of gases. Chemically reacting-fiow studies
are necessary for a deep understanding of plasma chemis-
try, atmosphere physics, laser physics, chemical technol-

ogy, and other fields. It should be noted that the problem
of reacting-flow investigation is related inseparably to the
problem of the transport coefficient calculations. In the
past the processes in nonequilibrium gas mixtures were
considered from two points of view. First, from a "chem-
ical" point of view (since 1949, Prigogine et al. [1,2]) the
aim of these investigations was to find the perturbation of
the Maxwellian distribution function in nonequilibrium
systems and therefore to construct "non-Arrhenius"
chemical kinetics. Second, from a "physical" point of
view (mainly the initiative papers of Wang-Chang, Uhlen-
beck, and de Boer [3,4]} it was connected with calcula-
tions of the transport processes in polyatomic gases.
Later it was understood [6] that these two directions of
investigation had to be unified in the frame of a universal
theory (see also [7]). The history of the different studies
before 1982 is given in detail in Ref. [7]. As a rule all the
investigations were based on difFerent variants of the
Chapman-Enskog method (CEM); in our opinion this
method is more thoroughly developed than the others,
e.g., the moment method.

The well-known idea of Enskog is that near the state of
local thermodynamic equilibrium all the time derivatives
in the linearized Boltzmann equation should be excluded
using the hydrodynamic equations and therefore only an
implicit dependence on time exists for the transport
coelicients. The second proposition consists in the fact
that the time derivatives t}n /t}t, t}vo/t}t, t}T/t}t [where
n, vc, T are concentration of species a (a=1, . . . , ls},
mean hydrodynamic velocity, and temperature, respec-
tively] as well as the distribution function f can be per-
formed as a power series of the Knudsen number. These
two propositions must be considered in any modification
or generalization of the Chapman-Enskog method.

Let us consider the main ideas of the generalized
Chapman-Enskog method for chemically reacting gas
mixture with bimolecular reactions

A +Ap—Ay+A~,

triple collisions will be considered later. The Boltzmann
equation for such a system can be expressed as follows:

Df
Dt

= g I,(f,f )+ ,' g g "I~~(f,f), —(2)

When the. energy threshold of various conversions (ex-
citation, chemical reactions, ionization} in a moving gas
is of the order of the thermal particle energy, then it is
necessary to take into account the great number of inelas-
tic processes. In early generalizations of the CEM for
chemically reacting systems only two limit cases were
considered [1—6]: the cases of "slow" and "fast" inelastic
processes. But obviously even in the same chemical
reacting fiow the physical system may undergo several
qualitatively physical states, so the transport coefficients
should be calculated in the frame of a unified theory valid
through all these states.

The derivation of the linearized Boltzmann equation
valid over all the cases mentioned above was considered
for the first time by Alexeev [8]. In Ref. [8] and the fol-
lowing papers [9—11], the basic linearized Boltzmann
equation for reacting gases and the corresponding resolu-
tion method (titled by Alexeev as generalized CEM) were
proposed. This integral equation can be considered as an
"interpolating" equation for all the limit cases in kinetic
theory. The basic equation of the generalized CEM (in
the following A equation) has a complicated form be-
cause it contains a non-self-adjoint operator. Multiple
methods of solution of the A equation were proposed;
however, this equation remains the starting point of all
variants of the generalized Chapman-Enskog method
(GCEM) [12—22].

II. THE A EQUATION
AND GENERALIZED CHAPMAN-ENSKOG METHOD
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where I and "Irp(f,f) are the integral collision terms
corresponding to elastic and inelastic processes respec-
tively. For example [7],

"inelastic" Knudesen number Kn„. We suppose that it is
much greater than the "elastic" Knudsen number Kn, I,
Kn„))Kn,&. Therefore the distribution function could
be expanded in the series

"I'.p(f f)=f [4pf')fs f.—fp]g.pd("~'.p)dvp,

D =—+v. +F-
Dt Bt Br Bv

In Eq. (3)

(3) Knkf (k)

k=0

Substituting the expansion (6) into Eq. (5) we have as usu-
al for the zeroth approximation

s~sp ol ~771pg'V

srs5 mrm6

3

(4)

and s; is the statistical weight for energetic states of parti-
cles of the i species, g p is the relative velocity of a and P
particles, and o.rp is the collision cross section for inelas-
tic process (I). The elastic collision integral in Eq. (2) is a
particular case of the relation (3); we should only write
y=a, P=5=j and, da instead of d("crrp)

We first built the basic equation of the generalized
Chapman-Enskog method using the physical considera-
tions given in the first paper of this branch in the trans-
port theory [8]. Following this paper, we consider the
Boltzmann equation in the dimensionless form

Dt eff

I,)+ I„,Dt Kn, ~

" Kn,
(5)

where I,&
and I„are the integral collision terms for elastic

and inelastic collisions, respectively. For simplicity we
consider the reacting system with only one characteristic

I(o) Oel

which leads to the Maxwellian function f' ' and in a
common case for the first approximation

(7)

This equation has multiple interesting features. Formally
the last terms in both the left- and right-hand sides of Eq.
(7) should be neglected because Kn, ) is a small parameter.
In the left-hand side the term Kn„(Df',"/Dt ) is propor-
tional to Kn, ) only, but the term (Kn,)/Kn„)1„'" is pro-
portional to Kn, )/Kn„. Therefore with increasing the in-

elastic collision process this term could be of the same or-
der than I,'&'. On the other hand, this term leaves all con-
siderations in the limit of the first approximation and in
the case of small value Kn, )/Kn„cannot spoil the first

approximation as the out of order term.
Therefore we have in the dimensional form

D (o)

f [gf (o)~f (o)~ f(o)f (0)
]g g(b )'6)dv

r p, r, $

=g f [&'+h,' h„—h, ]f' 'f—p'g, do.j.dv, .

l

+
2 X X f [U') 'fs '(~r+hs) f fp (& +&p)]g pd("o'rp)dvp

r pr, Q

(8)

where for the first-order approximation

f =f' )(I+))) ) .

In this form, the A equation was written by Alexeev [8].
It is the basis in all the applications and modifications of
the theory devoted to the generalized Chapman-Enskog
method in the scientific literature.

Let us consider now the well-known particular cases in
the kinetic theory of reacting gases.

(i) In the case pointed out in [7] as the Prigogine one
and corresponding to "slow" reactions the last term on
the right-hand side of Eq. (8) is very small and therefore
we have

D (0)

f [(f(O)'f (O)' f(O)f (0)
]

r pr, 6

Xg pd( cr~p)dvp

1=—g f [I .'+a,' 1. h, ]f(o)f(o)g..—,d~..—~dv. .
l

We should remind the reader that in 1949 Prigogine had
formulated the well-known problem of definition of the
perturbation of the Maxwellian distribution function in
the reaction 3 + A, giving the reaction products for a hy-
pothetical case where all the formed molecules leave the
physical system immediately. In the past this hypotheti-
cal reaction was considered in chemistry as an upper lim-
it of possible perturbations, which could be realized in
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any chemical reacting system. Incidentally this opinion
was wrong; an exhaustive solution of Prigogine's problem
is developed in [7].

(ii) In the case of "fast" reactions in the system near
the chemical equilibrium [6] we have

gf ( 0)&f(0)~ —f(0)f(0)
y 5 a P

and therefore from Eq. (8)

D (0)
= g f [h'+h, ' —h —h, ]f'0'f,' 'g, do'Jdv, .

+—X X J[h~+h[ —h, hh]—
r Py5

and the tilde indicates the dimensionless value. In Eq.
(11)the term

JV~=n npg~d~ (13)

C=maxc, JV= g n
a

(14)

The left-hand side of the kinetic equation (2) can be writ-
ten

is the characteristic number of collisions per unit volume
and unit time. It is convenient to take L as the macro-
scopic length, ~L as the hydrodynamical time, and F as
the characteristic external force. We also introduce the
following notations:

Xf' 'f p' )g~d("o rp)dvp .

(iii) In the case of "very fast" reactions in the mixture
of reacting gases Kn„&&Kn, &,

Df (0)

f [hr+hs h hp]Dt 2

&f C L &f c &f

DF L C~ Br C

LF. .. —af.
+ F

C BvCa a C
(15)

Xf'0'f'p)gdp("os)dvp .

Therefore for difFerent limit cases in kinetic theory of
gases we obtain from A equation the exact integral equa-
tions. We can state now that the A equation should be
considered as an interpolating equation in kinetic theory
of gases. This equation should be applied for the calcu-
lation of transport processes in gases if it is possible to
use the Maxwellian distribution as the main term in the
expansion of the distribution functions in the mixture of
reacting gases. Thus we do not have to consider any par-
ticular limit case in the kinetic theory of reacting gases
and make any assumption for a procedure of interpolat-
ing the solutions of linearized equations corresponding to
limit cases. It is of course an impossible task.

In the following, we built a strict formal theory of the
GCEM and the method of resolution of the A equation
for any order of approximation. The dimensionless form
of the Boltzmann equation will be considered and the
characteristic scales are n for the concentration of a
species and c for the mean velocity of a molecules. The
distribution function scale is n /c . Introducing the no-
tations g p and d p for the characteristic values of the
relative velocity and the collision cross section, the mi-
croscopic reversibility principle

gg~pd("o "p)dvPvp=g'lsd("ops)dv'advs .

We obtain the estimation

@g p("d~)c cp gs('drs-)crcs

and using this relation, the collisional integral can be
written as follows:

"I~p(f,f )= ["JV~s 9~~~ 'JV~ 9~~—],
Ca

+—g g "Nrs "(PyPs 'N, P d[rP—
„ pcs CN " CN

(16)

where "N~s/N is the characteristic number of collisions
in the reaction

A +AS :A +Ap,
calculated on one particle of the mixture and the inverse
value has the order of the free mean time between col-
lisions and CN/'N„s is the mean free path. As a result
we obtain

L 1
'Nyg

CN 'Knys
(17)

where 'Knrs is the Knudsen number for the above reac-
tive collision type. We notice that

Ca Pl a~1, ~1.
C

The external force F should not be too strong

LFa 1.
Ca

and thus the dimensionless form of the kinetic equation
(2) is expressed as follows:

n L Bf c Bj LF c Bf
N «I, dt C ()I' c C

L g N~qI~J.
CN J=)

'cf"p= ff lpd('o~)dvp (12)

Taking into account that L -CvL we Snd that the left-
hand side of Eq. (16) is of the first order. The hydro-
dynamic description is possible if for each a species we
can Snd as a minimum one type of the collision for which
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Kn p « l. Equation (16) can be written in the form

Kn = min Wnyps,
I r, 13,r, 5 I

Kn=max Kn
IaI

(21)

(22)

(20)
~ p, y, 5 ny5 Il~p

In Eq. (20) the elastic collision integral is considered as a
particular case of the inelastic one. As usual the factor —,

'

is introduced to eliminate the necessary terms in the sum
by formal mutual interchanging of two indices y and 5.

Let us consider the following:

"Knr&
ryy5= O(Kn }~p r5 aP

n &

(26)

f g Knkf (k)

k=0
(27)

Let us assume now that for each o. species, there exists
Kn « 1; in this case of course Kn « 1. We can separate
all collisional processes in two kinds: "fast" processes
(for which "Knyp & Kn) and "slow" Processes.

Now we can introduce the usual preposition of the
Chapman-Enskog method connected with performance
of the distribution function f as power series in Kn:

and rewrite Eq. (20):

Kn~ Df
Kn

KI1 Xn p "dr —9y
Kn 2n

~ pr& n~& nr&
where

k=0 m=0

Expanding the collisional integral 'Ir&, we find

(X) k
ri)5(j j)= g Knk g riy5(f(m) f(k —m)) (28)

Knk Kn
&1, -O(1),

Kn ' Kn

Kn

"Knr&

Therefore we can estimate the value

(24)

(25)

The relations (21) and (22) lead to the affirmations that " .'P(f g)=
2 J .PP.P(f'ygs fsg'y)

Xnys

—f.gp+fpg. ~ y,
nayp

Xg~pd( (y~p)dvp .

Substituting the relation (28) into (23},we obtain

(29)

Kn Df
Kn Dt

y5
1 1 y5 (0)' (0)' (0) (0) — d r-y5 d2X X y5 .p&'Py f5

KI1 2 „p 5 nyp n

k Kn. Wnr'
k —) y y y ~ j ~p

hays(f
k(m)f &(k —m) +ft(k —m)f ~(m)

}
=0 py 5 Kn p Kny5

(f(m)f(k —m) f(k —m)f(m) }
— d(r-y5}d- (30)

Now we transform the left-hand side of Eq. (30). The distribution function can be written as an explicit function of the
velocity and a hydrodynamic parameter I:

f (r, ir, t)=f (It ~I,Vr, . . . , V"I,. . . ), (31)

where V ' denotes the dirnensionless space gradient of s order. As usual in the CEM on the hydrodynamic stage of evo-
lution we assume that

and

—I (r, I )=4(r, VI, . . . , V")I, . . . )
at

(32)

Knk@(k)
k=0

(33}

The expression Df /Dt on the left-hand of Eq. (30) can be expanded in a power series of Kn and initially the time
derivative Bf /Bt is transformed as follows:
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af.
at

af. a (,)
" af. (,) ar " f a -(,)-

,~, a(v"r) at, =. a(v"r) at, =. a(v"r)
(I)

'
~ ~ af(i)

y ~nmv(s)@(m) = y y /nI+m ~ .V(s)@(m)

, =,
" a(v"r) =pi =p a(V I )

(!)
k ~ V(s)@(k—I) y ~ k y y V(s)@(k —!)

.=ok=oi=o a(V r) k=0 1=0 s=o a(v"r) (34)

00—=~V(s) (I)at, =, a(v"r) ' (35)

the time derivative of the distribution function expresses
as

fa + + k+ k —ifa
at k =p I =p at

where

(36)

The colon denotes the scalar product of the correspond-
ing vectors or tensors. Introducing the operator

kkAX g k I C + C +p C
(39)Dt, , at

"'
ar 'av. '

ak if'."- (I)

y V(s)g)(k —I).
a(v')r) (40)

Now substituting Eq. (38) in Eq. (30), taking into account
the relations (24) and (25), and equalizing the coeScients
with the same degrees of Kn, we obtain integer equations
of the generalized Chapman-Enskog method (A equa-
tion), valid for the k approximation (k =1,. . . ). In the
dimensional form, these equations can be expressed as
follows:

k —I a y V(s)@(k—I)

at =p a(v')r) '

and using Eqs. (27) and (37) we obtain

(37) co

V(s)@(k—I —1).

1=0 5=0 a(v"r)

Df
Dt k=0

kfa
Dt

(38)

(k —1)

+p . f(0) [/ [h(k)]+p(k —1)]
va

(41)

and the dimensional form of the derivative Dkf /Dt can
be written as

a=1, . . . , IM

where the following operators are introduced:

f(0) 'X [h]=—g I [g~f(0'f(s '(h' +hs) —f' )fII)(h +ht))]g pd("or@)dvtI,
1

PyS
k —1

r(0) rp(k —1)— M (1 g ) M I~)rSr(0) r(0) (h(m) h(k —m) +h(m) h(k m) )—
p. '5 m=1

f(0)f(0)(h™h(k m) +h ™h(k— m) )]g d(rtrrs)—dva p a p p a ap ap p

J(ggs(0) f(0) f(0)f(0)
)g d( mrs)dv (42)

h "'=f "'If( ' h=Ih]" a=i; k=1, . . . (43)

(44)

p(k —1) 1 ~ rp(k —1)
a 2 ~ a

r
(45)

The zeroth-order approximation of the distribution func-
tion f ' ' can be found from Eq. (30) as a result of identi-
fying the coefficients according to Kn ' for the fast pro-
cesses. All the terms in the sum over r on the left-hand
side of Eq. (30) for which Kn~(('Knr~ (slow process)
must be connected with the next order of approximation.

It is interesting to notice that if any process r belongs to
the fast processes, then the last term on the right-hand
side of relation (42) is equal to zero because of the state of
chemical equilibrium for this r process. Therefore Eq.
(41) has all features of interpolation between limit cases
of kinetic theory of gases as mentioned in Sec. II when
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the A equation was discussed from the physical point of
view.

III. RESOLUTION OF THE A EQUATION

Suppose that f" (a=1, . . . , (M) is a summational in-
variant for any gas. At least three invariants can be in-
troduced

leading to the following equations:

@(k—1). y ff (0) P(&)dv
I

P +Fp. d vp
P

Br BVp

2
) — y( ) — y( )— (46)

+ g ffp' p" "PI)'dvl),
P=l

(55)

a=1

df (" 1) ()f("
+F dv

r V~

Multiplying Eq. (41) by f(~' and integrating throughout
the velocity space, after the summation over a, we obtain
k —1

(1 )s
V(s)@(k —l —1). y ff(I) q(i )dv

1=0 s=O a(v"r) . ,

(I1(k —1). y ff(0) q(i)d v
BI

= y f f~&')Z, [h("']@~(')dv~. (56)

Therefore (I)Iv " depends on h"', h( ), . . . , h(" " and
4'„" " depends on h( '. Rewrite the A equation in the
form

a=1 ff(0) [~ [P(k)]++(k —1))y(i)dv
g(k 1)L[g(k)]

where

(57)

n. =ff.dv. , (48)

(47)

As a consequence of the usual identification of n, v, T
[7,22]

pi. (0)
g (0) (k —1) ~(k —1).

bhaga

N

k —1 (1)

+(1 g ) y y V(s)(I1(k —I —1).

1=1 s=O
'
a(v')r)

v~= f~v~dv~,
1

na

2

—,'ksT =ff dv

na Ta

we obtain an additional condition

(49)

(50)

(51)

(3f(" 1) (3f("
+v +F

Br BV~

f' '8'" " k—=l 2

(0)

[g (k)
]
—~ [h (k)] @(k—1).

a a ~(()) A
& a

(58)

(59)

y ff(.0)h(.J'Q(.')dv =0 (j =1,2, 3) .
a=1

(52)
Now we state using the relations (52) and (58) that for an
arbitrary invariant g",

Equation (47} can be written using the relation (52) in the
following form: ff(0)g(k 1)y( )dV =()

P=1
(60)

gf (k —1)

= —Xf6 "1
gf (k —1)

+F dvp
P

Bv&

Suppose that h is any vector function; then the operator
L [h ] is defined by Eq. (59) where 4(„"must be deter-
mined using the set of equations (56). For L&[h ] we can
state that

ff(0) [~ [g(k))+P(k —1))y(i)dv

(53}

(y(j)—@(g)+q)( j)
A (54)

This relation (53) constitutes a linear algebraic system of
equations for the determination of N' "when the func-
tions f' ',f'", . . . ,f'" "are known.

Now we assume that

ffp'~)Lfi[h)gp dvp=0 .
P=1

In the following we prove that the relations (60) and (61)
ensure the solubility of the A equation. The formal algo-
rithm for the resolution of the A equation can be the fol-
lowing.

(i) Using a Maxwellian distribution function, we find
from Eq. (55) sI)N(0) for k = l.
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(ii) Construct the A equation (57) for k =1;4'„' is ob-

tained formally from (56) for k = 1.
(iii) Find the unique solution of this A equation by the

method to be given in the following section.
(iv) Using this solution we find @' ' with the help of

(54).
(v) From (55}we find 4z" and go into item (ii} to obtain

the A equation for k =2 and so on.
This algorithm can be used with minimal changing in

the case of ionized mixture of reacting gases with nonbi-
molecular reactions. Moreover this algorithm has a very
important feature; it provides the solution of the integral
A equation, which has a non-self-adjoint operator.

IV. KINETIC EQUATIONS FOR A MIXTURE
OF RKACi'MG GASES WITH TRIPLE COLLISIONS

A +Ap—A +A5

A +Ap+A —A5+A +Ap,

A + Ap
—Ay+ A5+ A

(62)

(63)

(64)

A +Ap—Ay. (65)

Then in the frame of a one-particle description we must

write the next system of kinetic equations [7]:

We consider now a reacting system including both bi-

molecular and trimolecular reactions:

D = g f [f"4™'f".f", ]—W, dp, dpgp, '+
r py5

5'Wy5 —
p

"8'~ p py p5

+
12 X X f [f'sfgq "Wsg f.fief—, "W'.$~]dpttd p,d p'sd p',d pq

r py 5yp

f [f fsf 'W f fp "W'~']dp8p'dp'"p'+XX f [f' 'W f fp'W—'.p]dpttdp', .
p, y, 5,y r p, y

(66)

The following remarks have to be made.
(i) In Eq. (66) we introduce the distribution function f

(a= 1, . . . , p, ) based on the momentum p of a molecule
of the a species and the probability of collision; for exam-
ple, 'Wyp denotes the process which would result in the
chemical reaction (62) for four particles belonging to the
elementary momentum interval dp, dp&, dpi', dps.

(ii} The formal factors are introduced under the sum-
mation sign in order to eliminate the unnecessary terms
in the sum by a formal interchanging of indices, for ex-
ample, in the computer calculations.

(iii) It is well known in chemical kinetics [23] that the
reaction mechanism of the colliding particles A and A&
leads to the creation of the activation complex (A &)&,

and the result of the collision of such a "quasiparticle"
( A ~}t with the particle A r gives two or three particles
A 5, A + or A 5, A +, A &. Therefore we may write

A~+Ap —+(A p)t, (A~p}t+Ar~As+Aq,

A +Ay~(A~)t, (A p)t+Ar~As+A +A~.
If the lifetime t ~ of the activation complex ( A &)t is less
than or the same order as the mean free time v. between
collisions of A& Ap Ay then the collision integrals
should be written as they are expressed in the third and
fourth terms of Eq. (66). If the lifetime t~~ is greater than
r, r& we should introduce the reaction (65) and the corre-
sponding collision integral is given by the last term in Eq.
(66}. Thus we may state that in chemical kinetics of
rarefied gases, triple collision reactions are realized as
brute (effective) reactions through binary collisions. The
inelastic collision operators mentioned above [Eq. (66)]
were introduced for the first time by Ludwig and Heil
[24). However, in the transport theory of dense gases, for
the first density correction the collision integrals should

I

be written as it is shown in the initiating works of Sengers
[25].

The principle of microscopic reversibility needs several
additional remarks. According to quantum theory for a
gas composed of electrons and other Fermi-Dirac parti-
cles, the Pauli principle must be taken into account and
therefore not more than s drdp /h, the number of such
particles, should be within an elementary volume drdp
of six-dimensional phase space. This fact leads to the
next relations corresponding to the principle of micro-
scopic reversibility

s sp "Wyp =sys5 'W 5, (67)

r 5qnP r spys sps W p =s5s s& W5 &,
(69)

h3s "W~~=s s
y y ~p ~p'

The probabilities for binary and triple collisions W~~ can
be related to the effective cross-sections for the inelastic
processes, for example,

(68}

(70)

"W~r&(mrms) dvrdvs=g &d("a~~)

for elastic collisions

(71)

W,'(m m;) dvPv, =g,do, ,

and for triple collisions

'Wr&~(m„msm ) dv~dvsdv' =g &d("cr"&~},

(72)

(73)

where g~ is the usual relative velocity of a and P parti-
cles.

Let us consider Eq. (67) from another point of view.
Multiplying (67} by dpQpsdp' dps and using the
definition (71), it follows that
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s spg pd("cr p)dp dpp=syssg'„sd("o s)'dp'dps . (74)

g p=va vp .

Noticing that dv, dvp=dGdg pand G=G', we have

s spd("oyp)(m, mp) dg, p

(76}

This is another form of the principle of microscopic re-
versibility. Equation (74} could be rewritten in terms of
the variables G and g p, where

m v +mpvpG= (75)
m +mp

than a defined value which is connected with activation
energy. This model corresponds to the principle of mi-
croscopic reversibility if the following relation holds [7]:

r6 2 r aP 2pap+apmamp= ~ r5~r&m rm&

V. SOLUTION OF THE INTEGRAL EQUATIONS
IN THE THEORY OF GCEM

In order to use the algorithm given in Sec. III, the set
of macroparameters I has to be defined:

=s ssg sd("a Ps)'(m ms) dg's . (77) I =[n, (a=i, . . . , p), vo, T[ . (83)

Introducing the spherical coordinates in the space of rela-
tive velocities g p and g~& we have

d gap= &apdgapdw d gys
=

& ysdg ysdw (78)

In the set (83}we use the usual notations, for example, vo
for the hydrodynamic velocities of the reacting gas mix-
ture

gm ff vdv,
and therefore

s spg p(m mp) d("oyj3)dg pdw'

a
Vp=

mana
(84)

=syssgys(myms) d("ayPs)'dw .

From the law of energy conservation

Using (40) and (55) and denoting k —1=j we can find
from Eq. (55) for each a species

2 &2

gap grS
Pap +Ca+ Ep=Prg +Er+ Eg,r 2

(79)

J7la

t}t

where c, , cp, c. , e& are the internal energies of the particles
a, P, y, and 5, we have

Pap& apdg ap Pys& ysdg 'ys (80)

The relation between cross sections for direct and rever-
sal encounters has the form

, d("o yps) d("o yPs)

a P j aP&aP y S &yS&ys) (81)

In Eq. (81) d("oyp)/dw is the differential effective cross
section for the reaction (62) and the relation (81) can also
be obtained by the quantum-mechanical method.

Therefore the probleID of the transport coeScient cal-
culation leads finally to the problem of cross sections for
complex chemical reactions. Strictly speaking we need
explicit relations for the probabilities of inelastic transi-
tions for every set of quantum wave functions. Of course
such a demand is not realistic. However, experiments in
chemistry usually provide data on the rate of reactions
arranged in the typical Arrhenius form and related to the
activation energy, the frequency of collision, and the ster-
ic factor (see, for example, [26]). From this point of view
we do not intend to introduce any additional propositions
about the population of the internal energetic levels of
the molecules. So the transformation of the basic equa-
tions of the GCEM theory can be organized without any
additional diSculty and with taking into account the
above-mentioned propositions. One of the possible kinet-
ic models for reactive co11ision leads to the afBrmation
that an inelastic collision can occur with a probability
defined by the steric factor 'prp if the relative velocity
along the line of centers of encountered particles is higher

Va'

ea 1+ I'+ E+—v XH
m C

+ff(0)p(j)dv

gf (j)
dv

Va

(85)

where e is the charge of the particles of the a species.
In Eq. (85) the Lorentz force is introduced in the explicit
form; therefore, the F, are another kind of forces
different from the magnetic H and electrical E fields. For
peculiar velocity V we have V =v —vp and therefore

It is easy to prove that

ea 1F+ E+—v XH
m C

gf (j)
dv =0.

(}Va

(86}

If we consider the collisional invariant mpvp, we obtain
for the left-hand side of Eq. (55) after the summation over

P [see also (32)]

We obtain the equation of continuity for the a species in
the j approximation of the GCEM

~J"a 8 8 —(J)
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ajr ~ av, () np
pvo=p ' + y mpv,

Br I t

and by using (86) the expression for g becomes

(87)
and

X Jm&Vvf Jvdvv 0=(j=0, 1, . . . )

P

y ffp(o)dj)dvp=o.
P

(89)

(90)

BjVO ()
P 5JOVO

.
VO

N r

because

(88)
Equation (90) is valid because of the microscopic reversi-
bility principle and could be proved using the explicit
form of the operator Pj)'). Consider the right-hand side of
Eq. (53):

@rj()(=—X fmVvV v& fV+ F&+ E+—vVXH " dvV .
P ar mp c p avp

(91)

The Srst term can be transformed as

g fmpvpvp fj)dvp=V P "+5,() pvovo.
P' r r

(92)

Here we introduce the tensor of pressure P j' in the j ap-
proximation. The next term is transformed in

,vo a
P ~

— 5JOPVO g
VOt & r

1
+5jo ' gppFp+Q E+ (voXH)

. P C

.p( j) (98)

ep Bfpg fmpvp ' Fp+ E '' dvp
P mp vp

= —+5 o)op Fp+ Ee&

mp

(93)

ep Bfpg f vp (vpXH).
C "p k

The energy equation could be found with the help of the
collisional invariant m pu p/2+ ep. The transformations
we need are analogical to the ones operated for the con-
tinuity and momentum equations. Hence similarly if may
be proved that

J.T
3 dT () (j)'kj)n — = 5 o—kanvo' 'q

()r N
' ' ()r ()r

—P J'. v()+ 3kjjT g (—npV j')
r ' p, r

= —5 +(v XH)„——(d"j)XH)„, (94) —(.)+ & J pFp'VJ' X&pk&'—
P=1 P=1

(99)

Q= gepnp,
P

(95)

where Q is the charge of the unit of volume and (J( is the
current density

where the following notations are introduced:

Vg= '
fVgj')dvp

n&

is the velocity of diffusion of the P species;

(100)

4= g epnpVJ(I) .
P

(96)
P

p j'= g m p fVpVpf J'dvp (101)

Thus we obtain the following expression for the right-
hand side of Eq. (91):

is the pressure tensor, which can represent the deviation
of the pressure system from hydrostatic pressure p;

~ P j —5. .pv v
() (') 8
Br "a Pq(j)= g fVp( ,'mpVp+cp)f J(j—)dvp

P=1
(102)

1+5.
O gppFp+Q E+—(voXH)

. P C
(97)

and after equating the right-hand side of both Eq. (88)
and (97), we obtain the N part of the hydrodynamic
momentum equation

is the total thermal flux and ep is the internal energy of P
species; and

g j() =ff(())p(j)dv (103)

is the production rate of a species in the chemical reac-
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tions. For example, in the zeroth approximation for the
bimolecular reactions

f(0)P(0) y y f ~ t f(0)~f(Ol~ f(0)f(0)
2 p 5 sysh

Xgpd( lJ ~p)d vp . (104)

The A part of the derivatives (().tt /{)t)„, (B.vo/{)t)„,
and (d T/{)t)„are related to the subdivision of the
operator 4(J) in (54). It can be shown that

jna =Kj'.), (105)

BJT
—,'k~n

P
(J=o, l, z, . . . ) .

p=1
(107)

For the calculation of Kj) we should obtain the solution
of Eq. (57), since

Kj() ff(0)/[h (j+1)]dv (108)

and thus the sum K)It" +Kg' gives the production rate of
the a species in the j approximation of the GCEM. As
usual in the zeroth-order approximation

y(o) P Pto) I (0) 0 (109}

where I is the unit tensor.
The solution of the A equation in the first approxima-

tion requires us to Snd the function 4z' according to the
algorithm given in Sec. III:

(o) ~ (o) ~ (o)
r(0) (0) @(0). ~ +v

~ +F . ~ p(0) p(0)

Therefore the operator of the right-hand side of Eq. (57)
has the form

g(j —&)

L [h")]=X [h"']-
na

or using (108)

IJ——(1—
—,'W'. ) y e~j',-",

p p —)
(114)

L [h]=X [h]— ff' )X [h]dv
"a

——(1——', W ) g st) J ftI 'Xtj[h]dvt) .
p=l

(115)

The structure on the left-hand side of Eq. (57) [see also
(110) and in [7], pp. 142—148,261 —263] leads to the con-
clusion that the expression for h "' could be written in the
form

h'"=t (W ) —B (W )W'W: vo'ar '
—A (W~)W BlnT

+nw y [C' '( w ) —C'"'( w )]dk . (116)
h, k

h/k

Unknown functions t,B,A, C'"' in (116) must be
found as the result of the solution of the integral equa-
tions

Let us consider now the right-hand side of Eq. (57). With
Eq. (37) and the system of hydrodynamic equations in the
GCEM approximation we have

. a .'" K()
+(1——'$V )

—g Et)KJ' . (113)

(110)

The calculation of the right-hand side of Eq. (110) is iden-
tical to the transformations used in [7] (pp. 139—141}.
We obtain the expression

g (0)

a p p=)

sc("" +(1—
—,
' W.')—y e~„",) —P."=L.(t),

na p p=)

2W'W =L [—BW'W ],
V ( —', —W )=L~[AW],

V. (8., —S.„)=L.[(C(")—C'"')W] .
1

na

(117)

(118)

(119)

(120)

As usual in GCEM we should identify the concentra-
tions n, the mean hydrodynamical velocity vo, and tem-
perature T, with the help of the Maxwellian functions f .
This fact leads to the additional conditions

where

a +
Br n

na Pa 8 lnp

n p Br

ff(J)g())dv —0 j—
1 2 3

y ff(j)@(')dv.=O, t=l, Z

(121)

(122)

)0F —g )ot)Ft)
pp p

1/2

(112) y(1)—m y(2) —~ v y(3)—m V

and to the problem of solubility of Eqs. (117)—(120) tak-
ing into account relations (60) and (61). For Eq. (117) the
additional conditions must be written in the form
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ff"'t dv =0,

f co/g'mvvdCvc O=,

P=1

f tpf p 'mpVijdvp=O .
P=1

(123}

(124)

(125)

mhn

2k T
''/2

ma 2k' T
' 1/2

a 3

f [C(k) C(k) ]W2J (0)d

(()i,k =1, . . . , 8) (135)

f A WJ' 'dv (136)

(127)

(128)

The integrand in (124) is the odd function and therefore
the part of integral for which this integrand is positive
cancels the part for which this integrand is negative; the
integral is equal to zero and the additional condition
(124) vanishes. Other relations which lead to p+1 condi-
tions for other integral equations could be organized in
an analogous manner; for example, it could be proved
that additional conditions for Eq. (118)vanish.

As in the case of the additional condition (124) it is
easy to prove that

."' .aw'w v.——O,

."' .~W v.=o,
(0) (h) ( (k) ~ 0

the coefficient of conduction

i=i mj

and the coefficient of viscosity

a
3~(kg 0'

2kp T )c ff'p'BpWpdvp .
P=1

The tensor S has the stress components

~00k ~U0'

Bx; Bxk

(137)

(138)

(139)

—2W'W =X,[BW'W],

( —,
' —W )V =Su[A W],

V. ' (S.„—5.„)=L.[(C(")—C'"')W] .
ala

(129)

(130)

(131)

Therefore on the right-hand side of Eqs. (118)-(120)
there are shorter operators [see also (115)]

In order to obtain the explicit expressions for transport
coefficients we should find the functions A, B„C'"'from
integral Eqs. (129)-(131). For the approximation of the
solution of integral equations (117) and (129)-(131) we
use the well-known Bubnov-Galerkin method [27]. As
test functions we use finite linear combinations of Sonine
polynomials multiplied by tensor functions of velocity.
For example, for the solution of Eq. (127) we suppose
that the function A, can be expanded in a convergent
series of the form

VI. TRANSPORT COEk &ICIENTS
FOR NONEQUII. IBRIUM REACTING

MIXTURE OF GASES
A = g (2 S3/2 (W )

m'=0
(140)

Equations (129)-(131) have the operator X, which
was studied in [7,24]. Therefore the formal expressions
for the velocity of diffusion V, the tensor of pressure P,
and the thermal ffux can be expressed in the usual form:

n " 1 T()lnTVu= g mkDakdk — Du
P"a k=i Pa

P =p I—271S,

(132)

(133)

, aTq= 5k&T g n V ——A,
' —. p g D d, (134)

a=i Pa

where the following coefficients are introduced: the
diffusion and thermodiffusion coefficients

The system of linear algebraic equations for the deter-
mination of the coefficients a ~ can be written as

P

g np+mpap0=0 .
P=1

In Eq. (141)

(142)

1/2P, ]5 2k' T
g g gu'p 'up~ = 4n. —

m'=OP=1 4 ma

(m =0, 1, . . . , g) (141}

An additional condition (122), which has the following
form should be added to this system:

Qup™ g (nuni [Spa [WcdS3/2( Wu } WP3/2 ( Wa }]a(+5pl [WP3/2 ( W } Wl 3/2 W ] l )
1=1

+
p g g [~pa[ cd 3/2( Wu }~Wcd53/2 ( Wa }]ul+8pl[ cd 3/2( u }~Wl 3/2 ( Wl }]al

r yS

+8pr[WP3/2(Wa} W7~3/2 (W7 }]ul+8ps[WP3/2(Wa) Ws~'3/2 (Ws )] l] } . (143)
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Analogously for the function B,
8 = g b Spy (W )

m'=0
(144)

from this point of view it could be considered as a usual
kinetic coeKcient.

The corresponding value K can be written in the fol-

lowing form:

The system of linear algebraic equations for the deter-
mination of the coe%cients b ~ becomes (148)

C(h) C(k) (h, k)S(m'I( Pr2 )a a am' 3/2 a (146)

g Q' p™bp =5n 5 0 . (145)
m'=OP=1

Here Q' p' ' can be written in the form (143) in which
we should change the complex W;S'j)2( W~) into
W W Sgj2( W ) ~ The values C'"' —C'"' are calculated by
a similar method

where for bimolecular reactions

~(0) y y f [gyg5(0)~f (0)~ f(0)f(0)
]

r py, 5

Xg~pd ( cT ~p)d v~dp,

It (1) — y y f [p'gS(0)&f (0)&(t' +t' )
r py6

(149)

TABLE I. Deviation from equilibrium of the reaction rate
for the forward w& and backward g& reaction calculated for g'

Sonine approximation (g= 1,2, 3) using the concentrations
n, =n2 =0.5n and n3 = n4 =0.45n and the steric factor

275
325
400
500
600

1.365
1.483
1.610
1.701
1.734

1.585
1.641
1.691
1.726
1.740

1.585
1.641
1.691
1.727
1.740

0.954
0.939
0.923
0.911
0.906

0.937
0.928
0.918
0.910
0.905

0.937
0.928
0.918
0.910
0.905

m'=0

where c'"'".' can be obtained from the system of algebraic
equations

' 1/2P,
k 3 2k' T

QQp cp ~
= —— (&.k —&.k@ 0

m'=0P=1 2 m

(147)

where Q' p™}are equal to corresponding values in Eq.
(143).

We emphasize that the values Q',&™contain bracket
expressions for inelastic collisions. All these bracket ex-
pressions were calculated by Alexeev for bimolecular re-
actions and could be found in Ref. [7]. Bracket expres-
sions for inelastic collisions contain integrals of inelastic
collisions. As mentioned before, the simple (well known
in chemistry) models of inelastic collisions could be used
for evaluating these integrals denoted in [7] as "Q'j&@""'.
If we introduce the energetic barrier, connected with the
relative velocity along the line of centers of encountered
particles (activation energy E) and steric factor "p,

then all "Quips'"
"' are proportional to "p exp[ E/—

(k&T)]f(E/k&T), where f (E/kpT) is, generally speak-

ing, the polynomial of high degree. It is the reason why
we can obtain a signi6cant deviation of the kinetic
coefBcient values in chemically reacting gases in compar-
ison with the results obtained without considering the in-

elastic processes.
Now let us consider the problem of the chemica1 reac-

tion rate calculation. Any chemical reaction rate is the
consequence of the common theory of the GCEM and

f(0)f(0)(t +t )]

Xg~pd( tT~p)dv dvp .

t =0,
Pa= 1, . . . , p; g npt@=0 .

P=1
(150)

Now we intend to consider severa1 examples of the trans-
port coeScient calculations. Let us consider the four
component mixture of the reacting gases:

KI
C1+H2=H+ HC1 .

Kb
(151)

Let KI ' and K&
' denote the reaction rates calculated

with the help of the Maxwellian distribution function,
therefore in the frame of the Arrehnius chemical kinetics.
%e use the following values characterizing the process:
the diameter of the molecules dc, =2 A, dH =2.9 A,

0 0

dH =1.45 A, dHC1 =3.3 A, the activation energy for the
forward reaction E&=2400/RT and the backward reac-
tion E&=2050/RT, where R =1.986 cal/molK [28].
Using experimental data [26], the model of inelastic col-
lision formulated above and the principal of microscopic
reversibility, which could be written from this model as

r @6~2 r aP~2SaSpma p ~apu ap =$&SgPl&mg P&gu &g (152)

for the temperature range 250—610 K, we obtain the esti-
mate for the reaction Eq. (151) with the components

As a direct consequence of the existence of the non-self-
adjoint operator in the proposed GCEM, only the expres-
sions of Ez' and E„' ' and no other transport coefBcient
involve part of the terms related to the second approxi-
mation. The explicit form for these values is written in

[19],but usually the contribution of the higher approxi-
mation is small. For the calculations of the coe%cients t

(a = 1, . . . , p ) we should use the solution of the system of
linear algebraic equations which contain the bracket ex-
pressions with Sonine polynomials with index 1/2. All
these bracket expressions were calculated and the table of
these expressions could be found in [7]. The system of
algebraic equations (see [7]) is @+1 times linear depen-
dent and for the resolution of this system we should add
@+1 relations [see (121) and (122)]:
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TABLE II. Ratio of the calculated kinetic coeScients to its
value taking into account the influence of the inelastic col-
lisions, ratios of the coeScients at 400 K for thermal diffusion x;
self-difFusion for Cl, y; and mutual diffusion for Cl and H&, z.

TABLE III. Convergency of. the Sonine approximation
((=1,2, 3 } in the calculation of the thermal diff'usion ratio x and
self-diffusion for Cl, y.

p H~HC1

0.05
0.1

0.0558
—0.8051

1.4410
1.8568

1.2726
1.5296

x (with p&~H '=0. 1)

y (with PgH(H '=0.05) 1.4402 1.4409 1.4410

—0.6321 —0.7729 —0.8051

(Cl:—A „H2—= A~, H:—A, , and HC1—:A~} [see Eq. (62}]

P12 0. 1 0.2 (153)

Equation (152) leads to the relation between steric factors

12 34
p34 2p12 (154)

Introduce the notation w&=K~/Kf' ', g~=Kb/Kb ', and

Kx/K, =w&lg&, where K, =El '/Kb '. Therefore w&, g&,
and Klr/K, are characterizing the deviation of the real
rate coefficients of reactions and "kinetic constant" of
equilibrium Kx from the corresponding values, which
could be found in the frame of Arrhenius kinetics.

Table I contains values w& and g& calculated for the
first, second, and third Sonine approximations. We use
the following parameters: concentrations n, /n =nz/n
=0.5, n3/n =n~/n =0.45, and p iz =0.05.

This table shows that even by a small relative share of
inelastic collisions the influence of such collisions on the
alternation of w&, g&, Kx could be very significant. Partic-
ularly, the "kinetic constant of chemical equilibrium" Ez
could be twice as great as the thermodynamic one and fits
the experimental data quite well [28].

Let us now consider the example of the possible
influence of the inelastic collisions on other kinetic
coefficients. Introduce the notations

The calculations of the values x,y, z in (155} are con-
tained in Tables II and III (for T=400 K). Several com-
ments are to be made on Tables II and III. The symbol 0
in the parentheses of Eq. (155) means that the corre-
sponding values are calculated without taking into ac-
count the influence of the inelastic processes on the trans-
port coefficients.

From Tables II and III, it could be seen that the
influence of inelastic collisions is very significant (for ex-
ample, the coefficient of thermal difFusion changes sign)
by the good convergency (Table III) of Sonine approxi-
mation.

VII. TRIPLE COLLISIONS IN THE GCEM

Now let us consider the influence of triple collisions on
the distribution function evolution in rarefied chemically
reacting gases. For the hard-sphere model of molecules
the frequency of binary collisions could be estimated as

vbin g ~d 2n

where d is the diameter of the particle. The total volume
of such two spheres is nd /3 and the volume calculated
on one particle is n ', where n is the number density of
the gas. Therefore the probability of an interaction be-
tween two encountered particles with the third particle is
-end /3 and the frequency of triple collision v" can be
estimated as

D T (pH, Hci
)

Dci(0)

Dci,a(pc(, H, }H HC1

Dci,ci(0}

CI,H2(pci, H2
H, HC1

Z=
Dci H (0)

(155)

tr bin ++ bin
0

because the density parameter sc=nd is small compared
with unity. Hence we should state that triple inelastic
collisions will not belong to fast processes. However, it is
possible to show that triple collisions could be included in
the scheme of the generalized Chapman-Enskog method
without any diSculty.

The Boltzmann equation including triple collisions can
be written in the form

ar
" ar+F av.

1= g I J(f,f}+
J=& r B,y, 5

+ —,'yy I
B y.5

3ss& m mp
J frfs f fp d ( "o~~)dvIi-

s sg m
't 3

m~mB frf sf& f f& W~~v'(m„msm ) dvP—v'dvsdv' .
mym&m

(156)

The reactions of the type (63}are neglected because in aerothermochemistry its mechanism could be considered as an
intermediate step or an activation complex in reactions (64}and (65).
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Consequently the linearized collision integral could be written in the form [analogously to Eq. (42)],
T

f."X.[h]=f 0'. y X.J[h]+ ,'y yX:ps[h]+,'y y "X:ps~[h] . .
j=1 r py5 r p y5q

Analogously

p(k —[) y p(k —i ) + y y rpys( k —i ) + y y rpysq&(k —[)
aj ap ap

j r p y, 5 r p, y, S,q

(157)

(158)

(159)

(160)

Reactions (159) and (160) can be written in a more simple form using the relations between the Maxwellian functions:

s spss m mpmz f (sof ('0

(161)

The first terms on the right-hand sides of Eqs. (156)—(158) are related to the elastic collisions. In explicit form we have
3ssh m, mf' ' "gysq'[h]= f' 'f' 'f' '(h' +h'+h' )—f' 'f' '(h +h )sss m mmSys5$~ mym5m~

X "Wypq'(m msm ) dvpdvydvsdv',
3 '3

f(0).Pysq(o) f(o) f(o) f(o) f(o)f(o) .Wy q(m m m )d„pd„d„d
ssph m mp

Sy$5$~ m ym5m~

npn

nn5
msm

m mpm 2mk&T

3/2
$5$~ Ea+ Ep+ Ey E5 E~

exp
SaSpSy kg T

(162)

Using (161) and (162) we can write the A equation involving triple collisions and in the first approximation

(}r n

+ a' a'dva+ —S'&'&'2 8'a a' p'S'&&'2 8'p vp
— a' =La h'" (163)

where

L [h]=X [h]— ff' '2 [h]dv, SI~', (—W') g ffp'Xp[h]S", q'~(Wp)dvp.
na 3na p=l

The operator X,[h ] is defined by Eq. (157) and the separate terms in (157) can be written as

f'~'X„[h ]= ff '~'f!O '( h ', +h,'
—h, —

h,. ig „P,b db d F d v, ,

f' ' "Xy~p[h] =f [gyp(h' +hs )
—(h +h p)]f ' 'f p' 'g pd("cryp)dvp,

f' ' 'P ~ )=(g q' 1)(m m m ) f( 'f ' 'W q'd—v~v'dv'dv'
aP aP y ~ q a P aP P- r 5 q '

f' ' "Xypq'[h]=(mymsm ) f [gpq'(h' +hs+h' ) —(h +hp)]f' 'fp' "Wypq'dvpdvydv&dv'

We only need to indicate the form of the operator P' ' on the left-hand side of Eq. (163)

f (o)p(o) y y (gys 1)ff(0)f(0) d( ys)d(0) o]

r p y, 5

+—g g (gp~ 1)(mymsm ) ff' —'f
p )Wyp~dvpdvydv'sdv'

r p, y, 5,g

(164)

(165)

(166)

(167)

(168)

(169)
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Writing Eqs. (167)—(169) we realize that the main idea is
to avoid an explicit description of triple collisions with
the help of the principle of microscopic reversibility,
which connects in this case binary and triple collisions.
However, we have to calculate the resulting bracket ex-
pressions.

Let us consider as an example the bracket expressions
arising in the description of triple recombination process-
es:

[WySgj'2( Wy ),W+2/2( W )]~

m
VS=G11- y g+i+

m, +m, +m, Iy

myV' =GG— y

m&
Sq

5
m&

Esp .
mg m~

Using the energy equation we have
—1/2[( ~2 2s) 5q»gsq»»2 ]1/2

and then

0(g
Sq»» & (I5sq»)

—1/2 [+~2 2e ]
1/2

(178)

(179)

(180)

(181)

and corresponding to the reaction

A. +A~-A, +A, +A, . (170}

For such a process we write the following conservation
laws for energy

m V mpVp+ +E~+Bp

m V' m V' m V'' + ' ' + ' ~ +c +c +e,y

momentum

m V +mpV p=my V'y+msV5+m+V~,

and mass

(172}

m/+mp my+m$+mq7 ~ (173}

gg =V~—V', (174)

m~V5+m V'
+'=V'—Sy= y m+m5

(175)

m V'+m&V5+m V'
0 my+ ms+m~

Then after the collision we have

(176)

Introducing the Jacobi variables, and considering the
particles As and A as a formal subsystem of the whole

system

where

pyq'=my(ms+m )/(m +ms+m ),
ps =msm /(ms+m ) .

(182}

(183)

Let us introduce the cross section o~y~(g,p,g„~,m, n),
where m=gsq"/gsq' and n=gs /gs . The relationship
between the previous and present form of the cross sec-
tion can be written as

d(r&ysq»)
aP

oy q'(g, g q/, m, n)
sq» 2d sy d3/2 gy gy

16qy Papg ap

3 p5qp
y

(184)

We have already mentioned the lack of data in theoreti-
cal chemistry about the cross section of reactions. There-
fore we should introduce any model of inelastic process-
es. In correspondence with one of these models the reac-
tion may occur with a probability defined by the steric
factor py~sq' if the energy of the translational motion of
the particles a and P along the line of centers is higher
than the activation energy. However, in all cases we need
the deflection angle of the particle path. For the reason-
able hypothesis of an isotropic deflection angles for the
arising particles, the total cross section is identical to

=gytg (185)

The bracket expression

mg+mV' =G11+ gy+,
m +m&+m

(177)
[W„'S1g)2(w,'),W~'3/'2( w". )]yp'~'

can be written in the following form:

[WyS~g)q( Wy ),W+3/'2( W )]~~q'"

where

7l~7gp 3
Wy W exP( —GG —g~)Sg)2(W )g p o p gy (g e)dgy~dmdn— dg pdGG,

16m
(186)

' 1/2
m +mp

k21
T' 2k' T

' 1/2

gap» Ny

' 1/2
Py

2k~ T

The bracket integral on the right-hand side of Eq. (186) is the coefficient by st'tq in expanding the following expression
in an infinite series of s and t:
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[(1—s)(1 t—)] ' 'f Wy W exp —(G0+g p) —W'2 —W2 g

and after integration we obtain

tyy mg
~' (g K) edgy~'dmdndN pdG0 (187)

all 3 (g
2 —)1/2

( A B +C )1/2Q —5/2 f -2 gaP f P -5q&2d 5yi

7T3 4 1 1 1 1 gaPgaP gy gy
0 0

A is(1 B—, t)
gy

2( A)Bi+ C 1 }st
+D, 1+ gy gap cos8

1

(1—A is)Bit A, s(Bit —1) 5,2
2(AiBi+Ci)st

X exp — g'p+ g ~'+D) g ~'g,pcos8
Qi Q

'Y

1

(188)

where

3181
3181+C1

B,=Mp, C, =M, —Wp, D, = Q, =1—(Ais+B, t+C, st),

with the usual notation for dimensionless masses

dm= sin8d8ditj, gy~' gp=. gag, pcos8, A, =M5+M
1/2

Ma=m /(m +mp), Mp=mp/(m +mp), . . . .

Analyzing Eq. (188), we remark that the bracket expression for triple collisions could be written as a function of the fol-
lowing collision integrals:

2
Oysq(, )(k I)= " 2+2k+ e

s
&dgap 32 5/2 ap ap ap

(R2 -) I /2
-5y&2+ 21+m + n -2 -5p&2 n /2

0 g. gap gy gy

X f cos 8sin8d8dgf cos"8ytryspq'(g p, gsq", m, n}sin8d8d(p,

where dn=sin8d8dq). Then we obtain

(189}

[W~ gg) ( W~ ) Wg(q) ( W2 )] py,5r

P
min +1

q

m=0

q
—m+1 p —m+1

Ay rfty5q(m, 0)

k=0 1=0
(190)

( 1 )k +12m
Ap = —8n n (A B +C )(m+1)/2(A B )m/2

k ~1!m! 1 1

X[(—', +k+I+m)8, (p m —1)8,(q —m ——k}Fp (A„B„C,}]+ Ft7( ))(A, B„C,),
1 1 1

(191)

Fff (A(») Ci }= p —I —m

n =k+m (p —j—I —m )!(n —k —m )!

k+1+m k(11( 1}p
—j+n —k —IAp —j —m

j=max —k —I —m

'+ — (k+1+m+ —') A' q+"B' JC'+q
l

(i —q+n )!(i—j)!(j+q n i )!——
J

J = IY18x
q n

gn —m

X (k+1+m —p+ j)!(k+I+m n)!—
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and 8, is the "cutting function"

0 if n&0
1 ifn~O'

All the bracket expressions obtained this way can be han-
dled easily using a computer for any p, q.

The calculation of the transport coefBcients with triple
collisions will be presented and discussed in future work.
We will give as an example the case of partially ionized
chemical reacting gas mixture.

VHI. CONCLUSION

In chemical reacting mixtures of gases, the inelastic
collisions can lead to a significant change in the transport
properties. The usual evaluation -exp( Elk&—T) of
such an influence is not valid because in the strict theory
this exponential term should be multiplied by a polyno-
mial in E (E=EjkttT). If the steric factor is not too
small, which is the case for inelastic collisions between an
atom and a molecule, the range where we can expect the
most significant influence of inelastic collisions is
EE- [3,7]. If for all reactions 'p «1 and E &) I, all re-
sults received with the help of the generalized Chapman-

Enskog method coincides with the classical results of the
theory of Chapman and Enskog. The simplest means to
introduce the correction of the classical theory is to use
the approximation of Prigogine [7]. For a small value of
E it is impossible to use this approximation. In this con-
nection it is interesting to notice that the above-
mentioned classical Prigogine problem concerning the
perturbation of the Maxwellian function in the model re-
action if E~O does not lead to the upper effect of the
influence of inelastic collisions on the Maxwellian distri-
bution function. Moreover if E=O for this type of reac-
tion, the perturbation of the Maxwellian distribution
function practically vanishes [7]. We believe that the cal-
culations for practical use should be based on the GCEM
because the physical system may undergo a set of qualita-
tively different chemical states during the processes.
Therefore the investigation of limit cases only leads to
many difficulties for practical use. The basic equation of
the GCEM is the A equation obtained by Alexeev. It is a
qualitatively linear integral equation in the Boltzmann
theory because this equation contains a collision integral
considered as an anomalous term in the previous theory
of the non-self-adjoint integral operator. This fact has
led in the past to a variety of solution methods of this
equation. The method given here appears to be more
efficient from a practical point of view.
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