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We study the effects of time and space correlations of an external additive colored noise on the
steady-state behavior of a time-dependent Ginzburg-Landau model. Simulations show the existence
of nonequilibrium phase transitions controlled by both the correlation time and length of the noise.
A Fokker-Planck equation and the steady probability density of the process are obtained by means
of a theoretical approximation.
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I. INTRODUCTION

A. General aspects

Langevin equations in spatially extended systems are
accepted as a common reference frame in the study
of those equilibrium and nonequilibrium phenomena in
which Huctuations play a relevant role. This kind of equa-
tions has been used in the study of critical phenomena

[1], phase-separation dynamics [2], instabilities in liquid
crystals [3], and bistability in chemical reactions [4,5],
among a large variety of systems. Fluctuations can have
an internal (thermal) or external origin with respect to
the system under study. Internal Buctuations have been
considered in critical phenomena and phase separation,
whereas external Quctuations have been mostly studied
in relation to liquid crystals and cheinical reactions. In
these last cases internal Buctuations are also present, al-
though they are much less relevant than the external
ones.

Statistical mechanics shows that internal Huctuations
produce phase transitions from an ordered to a disordered
state as their intensity increases. These phenomena are
described by means of a singular behavior of the relevant
variable (order parameter) in the vicinity of the transi-
tion point. In this paper we will consider the situation in
which Huctuations are external (not thermal) and study
the possible existence of nonequilibrium transitions con-
trolled by this sort of fluctuation.

A prototype Langevin equation can be written in the
general form

g (r, a) = f (Q (r, s), V, a) + g(g (r, a), V)rI (r, a) . (1.1)

The deterministic force f depends in general on the
field variable @, its spatial derivatives, and a set of con-
trol parameters a. This force comes either &om reaction-
diffusion terms or from a free-energy functional. The
spatial derivatives model the coupling of the field at one
given point with its value in the neighborhood. The exis-

tence of such a coupling implies that the Langevin equa-
tion (1.1) will not be an ordinary but a partial stochastic
differential equation, whose rigorous mathematical study
is nowadays under active research.

The stochastic force represents the influence of the sur-
roundings, a heat bath, other internal degrees of freedom,
or a stochastic external control parameter. It is usually
supposed to be proportional to a noise term rI. The form
of g depends on the kind of coupling between the noise
and the variable. When the noise is not coupled to the
field, g takes a constant value and the noise is said to be
o,dChtive. When some kind of coupling between the Geld
and the noise exists, the function g depends on the field.
This is the so-called multiplicative noise.

On behalf of the central limit theorem the random vari-
able rI can be supposed to be Gaussian distributed with
zero mean. Its correlation at difFerent points and instants
of time will in general be given by

where D is the intensity of the noise, o is its correlation
time and to its correlation length. When there is no cor-
relation either in space or in time the function h becomes
the product of two b functions: it is the white-noise case.
In any other case the noise is said to be colored.

A noise accounting for Huctuations of internal (ther-
mal) origin is supposed to be uncoupled from the system.
Moreover one assumes that it is white in space and time.
This is so because the noise represents many microscopic
degrees of &eedom which evolve in spatial and temporal
scales much shorter than those of the relevant variables
of the system. Hence internal noise is usually modeled
by additive white noise.

When the origin of the noise is external there may
exist a coupling between the system and the fluctuations.
Besides, in general there is no difference between the time
and length scales of the noise and the field and one has
to take into account the fact that this noise could have
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some structure either in space or in time. Thus external
noise can be colored and/or multiplicative.

We are going to focus on the case of a potential system
affected by an external additive noise (g = 1). When
this noise is white the steady probability distribution of
the 6eld can be obtained exactly for suitable boundary
conditions. When it is colored this is not possible in
general, and only approximate techniques can be used.
Actually, difBculties here arise from a correlation of the
noise in time, in which case the stochastic process de6ned
by Eq. (1.1) is non-Markovian. Correlation in space does
not present this type of mathematical difBculties.

Non-Markovian stochastic processes in zero dimensions
[no gradient terms in Eq. (1.1)] have been thoroughly
studied by now (see Ref. [6], Vol. 1, for a review). Among
the interesting systems where colored-noise e8'ects have
been studied one finds lasers [7], chemical reactions [5],
and liquid crystals [3]. Time correlations in the noise
happen to induce transitions in such systems [5]. Due
to the zero-dimensional character of these systems, these
transitions can only be characterized by means of qual-
itative changes in the shape of the steady probability
distribution of the variable (for instance, a change in the
number of its minima and maxima). These effects have
been observed in analog [8] and digital simulations [9]
and have been explained analytically [9,10].

Stochastic processes in d ) 0 dimensions aEected by
space-and-time colored noises have not been studied so
extensively. In this case, and due to the spatial charac-
ter of the system, an ergodicity-breaking eH'ect permits
a phase transition to be characterized by means of a sin-

gular behavior of an order parameter of the system, its
relative Huctuations, and its statistical moments and cor-
relations, such as is done in equilibrium phase transitions.

In this paper, our aim is to study the effects of the
correlation time and length of an additive noise in the
behavior of a two-dimensional stochastic model.

1s=
2I,bt, (1 6)

Now the Langevin equation corresponding to our model
ls

(1.7)

( f(x, t)((x', t') ) = e b,
~

A
(1 8)

Thus we now have only three dimensionless parameters

2b2 g/2 yg/2
~ = 2I'b o., tp. (1.9)

F [P(r, s)] = — b—qt + —uP + —k (WQI') dr . (1.5)
2 4 2

When b ) 0, this function has a double-well structure
which can be overridden by a hig¹intensity noise. Thus
a phase transition will be observed &om an ordered to-
wards a disordered state when the intensity of the noise
increases beyond a critical value [11].

In this paper we are interested in the eKects of a cor-
related noise. Hence we will assume that the stochastic
force in Eq. (1.3) is also Gaussian distributed with zero
mean but with a correlation given by the general expre-
sion of Eq. (1.2). Now there is no fluctuation-dissipation
relation, so that one cannot expect to reach an equilib-
rium steady state such as the one given by the free energy
(1.5).

In order to analyze the effects of the noise correlations
in the dynamics of the stochastic process governed by
Eq. (1.3) we start by removing all unnecessary param-
eters. This will be done by means of an adimensional-
ization of the equation through the following change of
variables:

B. The time-dependent Gin2'burg-Landau model
with colored noise

We will study a model given by the following Langevin
6eld equation:

' ) =r(bP —uP +kV' Q)+I'~ g(r, s). (1.3)
08

In the study of critical phenomena [1] and phase-
separation dynamics [2], the noise term has been assumed
to be Gaussian and white, with zero mean and correlation

( g (r, s) q (r', s') ) = 2D b (r —r') 8(s —s'), (1.4)

with D = k~T (the so-called intensity of the noise). In
this case the model is known as the nonconserved time-
dependent Ginzburg-Landau model (model A in the no-
tation of Ref. [1]).Here a fluctuation-dissipation relation
ensures that the steady-state probability distribution of
P is given by the Boltzmann expression in terms of the
following Ginzburg-Landau &ee energy:

II. A NUMERICAL APPROACH

Due to the nonlinear character of Eq. (1.7) an exact
theoretical treatment of the problem cannot be done, and
therefore a numerical approach is required. Simulations
are performed on a Cray YMP computer where vectoriza-
tion, but not parallelization, is used. Equations (1.7) and
(1.8) have been simulated on a regular two-dimensional
lattice with L x L square cells of size Ax = 1. In this
space, the Langevin equation has the form

~
' = f'(+)+&*(t) (2.1)

where the cells have been named with one index indepen-
dently of the dimension of the discrete space. And the

The rest of the paper is organized as follows. In Sec. II
the simulation. procedure and its results are presented
and in Sec. III a theoretical approximate approach to
the problem is developed. Finally some conclusions and
comments are stated.
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correlation (1.8) of the noise in this discrete space is

t —t'
((;(t) 6, (t')) = «;, I

(2.2)

The force is given by

(2.3)

where (V tP). = V';&Qi, and 7'z& is a discretized ver-

sion of the Laplacian operator [12] (repeated indexes are
siimmed up).

The stochastic correlated force (;(t) is simulated by
means of the following Langevin equation [13]:

(2 5)

where m =~ g, Q;~ ], and the average is made over
the time evolution of the process in the steady state and
over difFerent realizations of the noise, (2) the relative
Huctuations of the field:

(m2) —(~)'
M2 —— (2.6)

relatively large integration time step (b,t = 0.05) with
no loss of stability.

The quantities which are computed and analyzed in
the simulation are the following [15,16]: (1) the steady
paean density of the absolute value of the 6eld:

~*(t) = (~ i " +' ) ~i + &'(t)
~ 1 2 2 1

7- U 2 7
(2 4) and (3) the linear relaxation time of the process, defined

as
which is a generalization of the evolution equation of an
Ornstein-Uhlenbeck process [9]. y,;(t) is a Gaussian white
noise with zero mean and intensity equal to s, which can
be efficiently generated by means of a vectorizable ap-
proximate algorithm implementing a numerical inversion
method [14]. The Laplacian term ensures a correlation
in space of order A and ~ is the correlation time. Fig-
ure 1 shows the spatial decay of the spherically averaged
correlation function of the noise for several values of A.

There one can see that A is indeed a measure of the cor-
relation length of the stochastic force. A similar picture
is obtained if the correlation is plotted versus t —t,

' [l3].
Equation (2.4) is linear, so that it can be simulated

exactly in Fourier space [13] and antitransformed to real
space along with the integration of Eq. (2.1). This last
numerical integration cannot be exact [f;(@) is not lin-

ear], so that a second order Runge-Kutta algorithm has
been used. This type of algorithm allows us to take a

2 ' ' i ' ' i ' ' i ' ' i ' ' i ' ' i ' ' i

2 5 5 7.5 1Q 12.5 15 17.5 2Q

r

FIG. 1. Spherically averaged spatial correlation function
for the noise driven by Eq. (2.4) for four different values of
the correlation length. The solid line corresponds to A = 7,
the dashed-dotted line to A = 5, the dashed line to A = 3,
and the dotted line to A = 1.

7.~' = — C(t—)
t=o

' (2.7)

where the correlation function C(t) is

C(t) = (m(t )m(t + t)), —(m)
m2 —m

(2.8)

The system is made to evolve from an initially ordered
state, g = 1, and we let it relax for an interval of time
large enough to be close to the steady state, before per-
forming the time averages. On the other hand, the num-

ber of samples in the collectivity averages is between 20
and 40. Periodic boundary conditions are considered in
all cases and a finite-size analysis is performed by consid-
ering five different system sizes. It is worth noting that
in this kind of numerical analysis the space discretization
b,x is an independent parameter affecting the steady be-
havior of the system [ll], but we have not explored this
situation and have instead kept b,x fixed and equal to 1.

In a previous work [16] we reported results obtained
for the case of a noise correlated in time (7. g 0) but
uncorrelated in space (A = 0). In this case the algo-
rithm for the generation of the noise is simpler than the
Fourier algorithm mentioned above. Figure 2(a) shows
clearly the effect of 7. in the transition, as obtained in
the simulations. When 7 = 0 (the standard white-noise
case) a transition towards disorder is found at a critical
noise intensity c, = 0.38. This result is in agreement
with a study of the P model in the case of white noise
[ll]. As 7 increases the critical intensity is shifted to-
wards higher values (the peak of the relative Buctuations
indicating the transition moves to the right). This means
that v somehow "softens" the efFect of the noise, whose
intensity needs to be higher to destroy the initial ordered
state. Figure 2(b) shows the phase diagram of this sys-
tem, where a curve in the (s, 7) plane divides regions
where the system is ordered and disordered. The sign of
the slope of this curve is another indication of the "soft-
ening" efFect of the correlation time of the noise.

Figure 3 shows the efFects of v on the three quantities
de6ned above for a 6xed value of e and still for A = 0.



2772 J. GARCIA-OJALVO AND J. M. SANCHO 49

Peaks for the relative Buctuations and the relaxation time
are obtained for approximately the same value of 1/v
and a decay of the mean value of the field shows that
there is a transition &om an ordered to a disordered state
as w decreases. We have thus found a phase transition
controlled by the correlation time of the noise.

In Fig. 4 results are presented for fixed values of c and
v against a decreasing value of A. A similar behavior
is obtained, showing the existence of a phase transition
controlled by the correlation length of the noise. The role
of the correlation length is also a "softening" one.

A finite-size scaling analysis applied to the two tran-
sitions found above allows us to evaluate the position of
the critical point in both cases and to give an estimation

n, (L) —n,
I

I
Mi-In. —nI~,
~max L p/v

2

{2.9)

of the values of the critical exponents associated to them.
Concerning the r-controlled transition (Fig. 3), the crit-
ical point is found to be located at v = 1.0, whereas
in the case of the A-controlled transition (Fig. 4) we find

= 1.9. These transition points are determined by
extrapolating to infinite size the position of the maxi-
mum of both the relative Huctuations M2 and the linear
relaxation time 7~, and the results obtained by the two
methods coincide within the estimated numerical error

( 10'%%up). Static critical exponents can be calculated by
means of the following finite-size scaling relations [11,18]:
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where o. = 7. or A . The dynamic critical exponent z
can be found with the relation [19]

max Ls+R {2.10)

The numerical results obtained for these exponents
for the ~ transition (Fig. 3) are P = 0.19,
v 0.78, p/v 1.6, and z 1.7. For the A transition
(Fig. 4) we obtain P 0.14, v 0.99, p/v 1.6, and
z 1.7. The comparison between the nonequilibrium
static exponents obtained here and the exact values cor-
responding to the equilibrium Ising model is not straight-
forward. This is due to several reasons: Brst, ours is a
nonequilibrium model; second, numerical errors involved
are important; and third, one can expect crossover eKects
coming from the fact that Az is not zero [20]. Concern-
ing our results for the dynamical exponent z, they are in
accordance with recent estimates for the equilibrium ver-
sion of this model [21]. Furthermore, a simple dynamical
scaling analysis such as the one performed in Ref. [22]
gives no changes of the colored. -noise exponents with re-
spect to the white-noise case. This is due to the fact that
correlation of the noise (1.8) is not a power law either in

space or in time. Hence in principle one cannot expect
large changes in our exponents as compared to the values
of the equilibrium gtg model.

1.5

III. AN APPROXIMATE THEORETICAL
APPROACH

1.0

0.5
l
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The steady probability density of the non-Markovian
stochastic process defined by Eq. (1.7) can be found by
discretizing space in a regular d-dimensional lattice with
spacing Ex. In this lattice, Eq. (1.7) has the form (2.1).
The approximate Fokker-Planck equation corresponding
to this discrete Langevin equation for small A and w can
be shown to be

FIG. 2. (a) Relative fluctuations of the order parameter
versus the intensity of the noise for three values of the correla-
tion time; (h) phase diagram of the model. Noise is correlated
only in time (A = 0).
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Details of the derivation of this equation are presented
in Appendix A. The discretized version of the Laplacian
operator can be written in terms of forward and backward
finite differences [12]:

—V, Moreover, the following relations hold:

(3.3a)

(3.3b)

with V,+, = h;+g, , —h;, , V,,:—b';,, —b';
g,, (3.2)

It can easily be seen from these definitions that V~+~ ——
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FIG. 3. Numerical results for s = 0.7 and A = 0. The order parameter Mq (a), the relative Suctuations of the Seld Ms (b),
and the linear relaxation time 7R (c) are shown against the inverse of the correlation time of the noise for difFerent sizes of the
system. The broken lines are a guide to the eye. In (a) empty stars correspond to an extrapolation to inSnite size. In (b) and
(c) the vertical dashed lines denote the position of the transition point also extrapolated to the thermodynamic limit.
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where the probability flux has been taken to be zero,
as usual. We will assume now that the solution of this
equation has the form [17]

The equation that the steady solution of (3.1) must verify
1s

( 8 z 2 8 &9 8f1, '1

f;—+s +B'AV;„+sr.

—(Fo+ Fi7. + F2A )/s (3.5)

P,t ——0, (3.4)

It is evident that Fo corresponds to the solution of the
Fokker-Planck equation for the white-noise case (~ = 0,
A=0)'
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FIG. 4. Numerical results for s = 0.8 and v = 0.3. The order parameter Mi (s), the relative fluctuations of the field M2 (b),
and the linear relaxation time rR (c) are shown against the inverse of the correlation length of the noise for different sizes of
the system. The broken lines are a guide to the eye. In (a) empty stars correspond to sn extrapolation to inf&nite size. In (b)
and (c) the vertical dashed lines denote the position of the transition point also extrapolated to the thermodynamic limit.
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B

(3.6)
And by comparing coefficients one finds the following dif-
ferential equations for Fi and F2.

Introduction of Po exp( —Fo/e) leads to the following
differential equation for Fo.

B'ft Bfa
W' W~W* W*

' (3.10)

BFp

g ) (3.7)
BF2

B~
= &;I.fr . (3.ii)

which can be immediately solved after an inspection of
relation (3.3a), leading to

These equations can be easily solved by considering the
definition of fr, given in (2.3) and taking into account
relations (3.3). The solution is

(3.8) Fi ———) —(1 —12')@; —Q, + —Q; —(V' g).
1 1 4 & 6

The next step consists of introducing the ansatz (3.5)
into Eq. (3.4). When only the first nonzero orders in w

and A2 are considered and Eq. (3.7) is taken into account
the following equality is obtained:

BFi zBF2, 2 g fg Bfg)
B~

+~ + ~~~+ B~ g~
+ ~~g

F = —,) —
—, (V+y)'. -@,'(V'y').

-y,'. (v'4). + —, (v'q)'.

(3.i2)

(3.13)

x P,&
——0 . (3.9)

The discrete steady probability density is then found by
introducing (3.8), (3.12), and (3.13) into (3.5):

P„(r/i) expt ——) ~

—1+ ——6re ~cP~ +
~

——r ~@, + (1 —r —A ) (V Q).
1 . ( 7 l 2

/'1 & 4 2 + 2

4s .
-

q 2 ) ' g2 2
2

+-y,'+
~

a'+ —
~

(v'q)'. —(~+ u') y,'(v'y). + -~'y,'(v'y'). (3.i4)

The last four terms of this expression can be shown to
be irrelevant by means of a renormalization-group anal-
ysis [23]. Hence the expression for the steady probability
density in continuum space takes the form

1 (
P,q exp —— dx —1 + ——67 8'

4s q 2

+~ ——~ ~g + (i —~ —a ) (vy)
t'1 l 4 2 2

)
(3.i5)

IV. COMMENTS AND CONCLUSIONS

We have presented numerical and analytical results
of the effects of a nonwhite external noise in the time-

This is the expression up to first order in ~ and A2 for
the steady-state probability density of the field variable
vP. It can be checked that in a mean-field approach the
result for a zero-dimensional non-Markovian stochastic
process (i.e., A = 0 and 7 g 0) is recovered [10]. Since
the effects of r and A are not clear &om their appearance
in expression (3.15), we present in Appendix B an exactly
solvable model in which one can see the softening role of
these two parameters.

dependent Ginzburg-Landau model. Since the system
is close to the equilibrinm case when the noise is white,
this model permits the comparison between a well-known
phenomenology of equilibrium and the phenomena we

expect in nonequilibrium situations. In this sense the
noise parameters A and r, which control the departure
from equilibrium, are assumed to be small in the theo-
retical approximate approach. A numerical analysis of
the model shows that the role of the correlation time
and length of the noise is to decrease its efFective inten-
sity. This can be understood in a linear model which is
solved exactly in Appendix B.
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function appearing in the average of Eq. (A6),

bA(t) bA(t) d bA(t)
b4(t )

=
bg, (t ), „+dt bg, (t ), ,

('

APPENDIX A:
FOKKER-PLANCK APPROXIMATION
FOR NON-MARKOVIAN LANGEVIN

EQUATIGNS IN EXTENDED SVSTEMS

Let us consider the discrete Langevin equation (2.1)
with a noise colored in space and time. We are looking
for an evolution equation for the probability density

t

(t) = &,(0) + ds [f,(@(s))+&&(s)] .
0

(A8)

Functional diHerentiation of this expression leads
through (A7) to [10,26]

We need to calculate now the response function at equal
times and its first time derivative. To do so we formally
integrate Eq. (2.1) to obtain

(A1) b& (t)
b

~f (4(t)),
b&, (t') ' ~4 (t)

(A9)

where the average is taken over the initial conditions and
diferent realizations of the noise (this is the so-called Van

Karen lemma [24]). On the other hand, a continuity
equation for the evolution of (b(Q(t) —Q))&c (average
taken over initial conditions only) must hold:

By introducing this result into Eq. (A6), making use of
relation (Al), and performing the integral in time we find

—,(b(~(t) —~)) = — ~* (b(@(t) —~)) (A2) (A10)

X'(t)b(4(t) —4)) (A3)

This equation is the stochastic Liouville equation. Its
average over the noise (;(t) leads to an expression for the
evolution of the probability density defined above:

This is the final expression for the approximate Fokker-
Planck equation corresponding to a stochastic discretized
field process driven by an additive colored noise. Tran-
sient terms have been neglected by extending the time
integrals from 0 to oo, and also the following definitions
have been used:

The remaining average in (A3) can be calculated by
means of Novikov's theorem [25]:

h,~—: ds h;~(s), 7h; = ds s h;~(s) . (A11)
0 0

((,(t)b(1'(t) —y)) = dt' s h, . (t, t')
0

b (b(~(t) ~))
b(, (t') (A4)

It can easily be seen that the following equality holds:

These h" are functions in space with the same character-
istic length A. We assume that they are sharply peaked
around x —x' = 0, so that they can be worked out as
distributions having an expansion of the form

b (b(~(t) @)) o b~ (t) $(y(t) y) (A5)
bg, (t') 8@, b(, (t') h, s

——b, s + apA V; b~s, h;i, ——aib;s + 8(A ) . (A12)

This result, together with Novikov's theorem, leads to a
new expression for the equation we are trying to derive:

(A6)

The problem of the exact evaluation of this last average
and its relation to the probability density remains un-
solved. Thus an approximation has to be done at this
point. Let us assume that ~ is small. Then the correla-
tion function h;~(t, t ) of the noise appearing in the inte-
gral will be a sharply peaked function of t —t'. This fact
allows us to use a Taylor-series expansion of the response

As the parameters ao and ai can be included in the def-
inition of v., A or r, they can be assumed to be equal to
one. And as we want to keep only the first corrections
in 7 and A, we can discard the dependence of h on 4 .
These expansions (A12) can be understood in the follow-

ing way: the order 0 is the white-noise limit A: 0 (i.e.,
a Kronecker b) and the first nonzero order corresponds
to A (due to space inversion symmetry), which is sup-
posed to be a Laplacian operator (the simplest spatial
correlation beyond the Kronecker b). Now, introduction
of (A12) into Eq. (A10) leads finally to Eq. (3.1), which is
the final approximate Fokker-Planck equation up to the
first nonzero orders in both the correlation length and
correlation time of the noise.
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APPENDIX B:COLORED NOISE
IN A LINEAR MODEL

In order to acquire a better understanding of the ef-
fect of a colored noise in the steady-state behavior of our
system let us consider a linear stable version of Eq. (1.7):

(B5)

where transient terms have been neglected and the eKec-
tive noise intensity is given by

which in Fourier space takes the form

(B1)
(1+A q )[1+% q + r(1+ qz)]

' (B6)

= ——(I + q ) @(q,t) + ((q, t) . (B2)

The steady-state probability distribution obeys (assum-
ing zero probability fiux)

The noise ( was defined in Eq. (2.4) and has a correlation
in Fourier space [13]

l

—(I+q') 0(q) + s.a(q) i
P.t = o, (B7)

1

(2

which has the following solution

(j(q t) ~(q t) ) =
1 &, , b(q+q)

xexp
l

—(1+A q )l r
(B3)

(I+q') 4(q)0( —q)
&

4 e.e(q)
(BS)

as can be tested in a straightforward way by direct sub-
stitution in (B7). On the other hand, it can be easily
seen from Eqs. (B6) and (BS) that the steady probabil-
ity density in real space is

The Fokker-Planck equation corresponding to the
Langevin equation (B2) can be found by means of the
procedure described in Appendix A. In this case, how-

ever, as the Langevin equation is linear, the response
function can be evaluated exactly from Eq. (AS). The
result is

P,q ~ exp —— 1+ — + 1+7 + V'1 2 2

4s g 2p

+i A + —
i (v cp) dxI.

(B9)

4( )
b

(0' —sl(l+q )/2
h4(t')

so that the (exact) Fokker-Planck equation is

(B4)
Thus we have found here that, in this exact model, the
role of the correlation time and length of the noise is to
decrease its effective intensity, as found in our numerical
simulation of the more general nonlinear raodel.
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