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Time-series analysis of transient chaos
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A time-series analysis method of transient chaos is worked out which can also be applied to
signals of laboratory experiments. The process is based on the construction of a long artiacial time
series obtained by gluing pieces of many transiently chaotic signals together. This arti6cial signal
represents a long-time motion in the vicinity of the nonattracting chaotic set. Thus all of the well-

known numerical methods developed for analyzing permanent chaotic behavior are applicable in a
more convenient way than using many short separated time-series pieces. The method is illustrated
and its validity is checked by the Henon map. The nonattracting strange set is reconstructed in
the presence of both a periodic and a chaotic attractor, and quantitative characteristics such as
dimensions and Lyapunov exponents are determined by means of time-delay embedding methods.

PACS number(s): 05.45.+b, 06.50.Dc

I. INTRODUCTION: TRANSIENT CHAOS

Signals exhibiting chaotic behavior on finite time scales
often occur in nonlinear systems and are called tran-
siently chaotic (for a review see [1]).In such cases one ob-
serves a moving around in an apparently chaotic manner
and then, rather suddenly, a settling down to an attract-
ing motion which is either periodic or chaotic of another
type. If one is studying the asymptotic behavior of such
systems only, one loses the interesting, chaotic part con-
tained in the transients.

In systems exhibiting transient chaos there exists in
phase space a nonattracting chaotic set [1—4], together
with an attractor. Trajectories starting &om randomly
chosen initial points then approach the attractor with
probability one. Before reaching it, however, they might
come close to the nonattracting set and stay in its vicin-
ity for a shorter or longer time. This results in the ap-
pearance of a chaotic motion with a well-defined average
lifetime of 1/K where z is the escape rate, a basic char-
acteristic of the nonattracting chaotic set.

Time-continuous invertible Bows underlying physical
processes are associated with invertible maps which we

shall concentrate on in what follows. In such systems
the nonattracting set is always a chaotic saddle, i.e., an
invariant set with stable and unstable manifolds. The
saddle and its basin of attraction, i.e., its stable manifold,
form a fractal set of measure zero. The chaotic saddle
itself appears to be the closure of an infinity of periodic
orbits [5—7]. It has a fractal structure along both its stable
and unstable direction in contrast to a chaotic attractor
which is always smooth along its unstable direction.

A typical occurrence of transient chaos is in the peri-
odic windows inside the chaotic region. The positivity of
the topological entropy then ensures the existence of a
nonattracting chaotic set. Such windows occur between

two crisis configurations: a boundary crisis [2] (where a
chaotic attractor ceases to exist) and an interior crisis

[2] (where a chaotic attractor is suddenly enlarged). The
attractor beyond boundary crises is a periodic one, say
of period m, but by increasing a system parameter fur-

ther it typically undergoes a period doubling bifurcation,
and becomes at the accumulation point a chaotic attrac-
tor which evolves (via an inverse cascade) into an m-

piece chaotic attractor. Consequently, below and above
the accumulation point in the window the nonattracting
chaotic set coexists with a periodic and a chaotic attrac-
tor, respectively.

Trajectories starting from points of a nonattracting set
never leave it and exhibit chaotic motion forever. To hit
such a point by a random choice is, however, completely
unlikely since the set, together with its basin of attrac-
tion, is of zero measure, a fractal. What is observable ex-

perimentally is not the chaotic saddle but rather a small
neighborhood of it and of its stable manifold. Trajectories
starting close to the saddle or to its attracting manifold
can stay for a long time in a neighborhood of the set
and exhibit chaotic properties, but sooner or later they
escape. These are the trajectories producing transiently
chaotic signals.

The experimental investigation of transient chaos has

received, in spite of its relevance, relatively little atten-
tion (for a few examples see [8—20]) and, with the excep-
tion of a very recent effort [20], has mainly concentrated
on determining the averaged chaotic lifetime. In this pa-
per we illustrate that, apart from natural modifications,
transient chaos can be analyzed from time series in very
much the same manner as permanent chaos. Chaotic
saddles underlying transient chaotic dynamics can be re-
constructed and their characteristics taken with respect
to the natural measure can be determined &om time se-
ries. To our knowledge, this has not yet been carried
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out in any laboratory experiments where the equations
of motion of the system are not known.

Suppose we follow one single variable of the system and
record the data as a time series. Because of escape from
any neighborhood of the strange set, the input of our
method has to be an ensemble of time series of the pre-
selected variable with several initial conditions in some
finite domain and with end points on the true attractor.
For some purposes, such as, e.g. , for reconstructing the
chaotic saddle, it is sufficient to have a great number of
typically short trajectories with points far away &om the
attractor. If, however, one is interested in the dimen-
sions and the Lyapunov exponents of the chaotic saddle
or in the power spectrum of the transient signal, a single
long trajectory might be created via some appropriately
chosen gluing procedure Th.e knowledge of such a long
trajectory is also useful because it enables us to take over
numerical routines written originally for analyzing per-
manent chaotic time series.

Our aim is, therefore, to work out the time-series anal-
ysis of transient chaos based on the construction of a long
artificial signal lying in the vicinity of the chaotic saddle.
This signal is in a sense an analogue of the so-called PIM
(proper interior maximum) triple trajectory. The PIM
triple method introduced by Nusse and Yorke [4] provides
in numerical simulations a useful algorithm for generat-
ing long trajectories being all the time close to the chaotic
saddle. The basic idea is to use a group of initial condi-
tions, follow trajectories for a few steps, and then select
two of them which lie closest to and on opposite sides
of a branch of the saddle's stable manifold. Between the
end points, a set of new initial conditions is taken and the
procedure is repeated again and again, leading finally to a
long artificial trajectory glued together from short pieces
each of which was sufficiently close to the stable manifold.
Without knowing the equations of motion, this algorithm
is obviously not applicable and cannot be of help for us
in the time-series analysis. In a similar spirit, however,
we can construct a long artificial signal extracted &om
an ensemble of transient chaotic time series which will be
the central issue of this paper.

Although the method is of general validity, as an illus-
trative example we use the well-known Henon map

x +z = 1 —ax„+by„,2
y~+1 n )

with different parameter sets. This is the most gen-
eral form of invertible quadratic maps and re8ects,
thus, faithfully the dynamics associated with systems de-
scribed by ordinary difFerential equations.

The paper is organized as follows. In Sec. II we de-
scribe the method used for generating a long artificial
signal with transient behavior, and the reconstruction
of the chaotic saddle is presented. Next, characteristics
such as dimensions and the Lyapunov exponent of the
nonattraeting set are extracted with respect to the nat-
ural measure of this strange set. In Sec. IV we discuss
interesting fractal properties of the points coming &om
the gluing procedure. Fina11y, Sec. V contains a summary
and discussion of potential applications.

II. CONSTRUCTING
A LONG ARTIPICIAL SICNAL

It is worth starting with a brief characterization of
transient chaotic signals. The transient part of such time
series consists typically of three regions (see Fig. 1): (I)
Transient from the initial point to a neighborhood of the
nonattracting chaotic set, (II) motion in this neighbor-

hood, and (III) escape to the attractor. For the recon-
struction of the nonattracting set, one only needs the
points of region II. This part of the signal will be called
hereafter the truncated signal.

In general, it can be clearly seen by a simple visual
observation of the complete signal when the attractor is

reached, i.e., where the end point of region III is. Sep-
arating regions I and III is less well defined. Region I
is associated with the part of the trajectories which ap-
proach the chaotic saddle along its stable manifold. The
rate of this exponential approach is governed by the first
negative Lyapunov exponent A of the saddle. Typically,
this number is on the order of unity, therefore in 5—10
steps trajectories come very close to the saddle. Con-

sequently, the length of region I can be chosen between
five and ten oscillation periods. Dropping a longer initial
part is unnecessary, it leads to information loss without
improving the statistics. A strong modification of this
rule is needed only if the absolute value of A is very
small. Analogously, the length of region III is related
to the maximal Lyapunov exponent Am of the saddle
via the escape along the unstable manifold. Taking the
length of region I or region III too short results in the ap-
pearance of pieces of the stable or the unstable manifold.
This leads to spurious effects and an unfaithful recon-
struction of the chaotic saddle. Therefore at any choice
of the lengths of regions I and III it is to be checked
whether the results depend on these cutoff lengths and
one has to use a set for which this is not the case.

One can distinguish three different types of transient
chaotic signals, each of which can be split into regions
I—III defined above.

(1) Signals settling down on a periodic attractor. It
is then rather easy to see when the attractor has been
reached, thus defining the end point of region III. As
an example, Fig. 1(a) shows a single typical transient
chaotic signal of the x component of the Henon map at
parameters a = 1.24 and b = 0.3. The attractor is a
6-cycle in this case.

(2) Signals settling down on a multipiece attractor. A
complication occurs in such eases since, by working with
the selected single variable, the projection of the attrac-
tor appears to be a @@~onof intervals which might overlap
with the projection of the chaotic saddle. When an el-

ement of the time series enters one of these intervals so
that it never escapes later any projection interval of the
attractor, the trajectory can still be close to the chaotic
saddle. By taking the projection, however, some piece of
information is lost, and we cannot do better than consid-
ering this element to be the end point of region III in such
cases. In Fig. 1(b) a transient signal of the Henon map is
plotted at parameter values a = 1.2715 and b = 0.3. In
this case, the chaotic attractor consists of seven pieces,
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FIG. 1. Typical transient signals generated by variable x
of the Henon map. (a) Signal settling down on-a period-6
attractor, a = 1.240, b = 0.3. The intial point is xp ——0.92,
yo ——0. (b) Signal settling down on a multipiece chaotic
attractor, a = 1.2715, 6 = 0.3. The initial point is xp ——0.06,
yp ——0. The shaded stripes represent the projection of the
seven-piece chaotic attractor to the x axis. (c) An ensemble
of 200 transient chaotic trajectories belonging to uniformly
distributed initial points in the interval

I
x I( 0.5, y = 0 at

the same parameters as in (b). (d) Signal going to in6nity
at parameters a = 2.0 and b = 0.3. The starting point is
xp ——0.930 092, yp

——0.

which fall in this projection on six separated intervals.
By following an ensemble of trajectories in the same plot
[see Fig. 1(c)], these intervals are filled up with points
of the asymptotic motion. One clearly sees also how the
gaps in between become with increasing time less and less
populated by the transients. The length of the densely
populated region in the gaps gives a fairly good estimate
to the averaged transient chaotic lifetime.

(3) Signals settling down on an attractor lying far away
from the chaotic saddle so that it can be considered to
be at infinity. The end point of region III is then defined
by an z coordinate which first falls out of a preselected
interval covering the projection of the chaotic saddle. A

typical transient signal is shown in Fig. 1(d) generated by
the Henon map at the parameters a = 2.0 and 6 = 0.3.
The escape &om the strange set is obvious by observ-
ing the very fast divergence to minus in6nity where the
attractor is situated.

In order to concentrate on the dynamics associated
with the chaotic saddle, we have to delete those typi-
cally long parts of the signals which lie close to the at-
tractor, as well as regions I and III. Thus an ensemble
of truncated signals arises. The average length of these
truncated signals is on the order of the average transient
lifetime 1/rc.

Our aim is to construct from these pieces an artificial
time series representing the long-time motion in a close
vicinity of the chaotic saddle. The advantage of having it
will be that this time series can then be analyzed by stan-
dard embedding techniques [22]. As has been pointed out
by Kantz and Grassberger [3], the use of an ensemble en-
ables us to generate a measure which can be considered
to be the natural measure on the chaotic saddle. Thus
we expect that the artificial time series constructed &om
the ensemble of short signals will also de6ne the natu-
ral measure, and statistical characteristics of the chaotic
saddle computed from it will be taken with respect to
this measure.

The most naive approach is to simply glue together
all the truncated signals without taking care of adjust-
ing the ending and starting points. The effectiveness of
this can be checked by constructing the invariant set on a
Poincare plane of a low-dimensional case and comparing
it with known results. In Fig. 2 we have plotted the 6rst
return reap of a long artificial time series produced by
gluing together 4000 truncated signals of the Henon map
at the parameter values of Fig. 1(c). A low-dimensional
object, the chaotic saddle is clearly observable together
with some scattered points. These points (the cloud) are
the consequence of the gluing procedure applied to pro-
duce the long-time series. In order to understand the
origin of the cloud we argue as follows. Take two trun-
cated time series of the long signal [see Fig. 3(a)]. It is
obvious that the jump between the end point of the first
segment and the first point of the second segment gener-
ates a cloud point which does not belong to a close neigh-
borhood of the saddle. Comparing the saddle of Fig. 2
with a saddle obtained by direct numerical iteration, the
only difference is that gaps of small size along the unsta-
ble direction are filled up, which is a consequence of the
gluing procedure again.
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The next step is to avoid the appearance of these artifi-
cial cloud points so that we end up with one long signal of
the transient dynamics. A possible method is based on a
matching of the truncated signals. An efFective matching
condition is the following: Choose a point in the trun-
cated time series which has a value close enough to the
end point of the previous segment, discard the intermedi-
ate points, and glue the remaining part to the end point
of the preceding segment so that

Here xs(") is the gluing point of the nth truncated time

series, x, denotes the end point of the preceding seg-
ment, and c is the allowed error range. What one obtains
in this way can be considered as the desired long artificial
time series with transient chaotic properties. The match-

ing procedure is demonstrated in Fig. 3(b), and the result
obtained for the chaotic saddle is shown in Fig. 4. Here
the first return map of the time series of Fig. 2 is plot-
ted after applying the matching rule (2) with c = 0.1.
Almost all of the false cloud points disappeared. It is

worth noting that the matching procedure removes the
cloud points on the relative scale of the matching error
only. Using a nonzero value of c, it is never possible to
reconstruct the chaotic saddle with the same accuracy as
with a direct numerical calculation.

Naturally, the matching process results in decreasing
the number of data. A possible quantitative measure of
this is the data reduction factor g which is the portion of
data points that survived the matching procedure. Fig-
ure 5 shows the dependence of the data reduction factor

(g) on the matching error (c).
Some more advanced matching procedures could also

be used, such as, for example, pattern matching. In this
case not a single value of a truncated time series is to
be matched to a single end point of the preceding seg-
ment, rather a pattern formed by two or three succeeding
points is to be compared with the end pattern of the for-

mer segment. It is interesting to note that in our case
neither the two-point nor the three-point matching pro-
cedure improves significantly the results compared with
the single-point matching. This is so because trajectories
starting from close initial points remain quite close to
each other for a few time steps. Applying longer-pattern
matching is meaningless because it may cause a drastic
dropping of the number of data without improving the
resolution of the reconstruction.

The algoritbm can, of course, also be applied to cases
where the attractor is close to the chaotic saddle. Fig-
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FIG. 4. First return map of the time series of Fig. 2 af-
ter applying the matching condition Eq. (2) with the value
c = 0.1.
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ure 6 illustrates the result obtained at the parameters
of Fig. 2(b). The applied matching error in Eq. (2) was
c = 0.15. The thick and thin parts of the object represent
the chaotic attractor and the chaotic saddle, respectively.

III. EXTRACTING CHARACTERISTICS
OP THE SADDLE

As a next step of the time-series analysis, one can de-
termine, for example, the dimension of the chaotic saddle.
There are several well-known methods for measuring the
dimension of a &actal object, such as the simple box-
counting method [21] or the correlation dimension calcu-
lation [22,24,25]. In order to compare the two methods
we carried out several calculations. An example is shown
in Fig. 7 for the case when the attractor is a 6-cycle. The
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FIG. 7. (s) Result of the box-counting calculation of the
chaotic saddle at parameters a = 1.240 and b = 0.3 [the case
of Fig. 2(a)]. The slope of the dashed line is —1.05. (b) Cor-
relation sums for the same strange set. Curves denoted by
difFerent symbols correspond, from top to bottom, to embed-
dings in dimensions from two to 6ve. The slope of the parallel
straight line segments is 1.07.
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The relatively large error comes on one hand from the
gluing procedure, on the other hand from the unavoid-
able effect that the time series tests a neighborhood of
the nonattracting chaotic set only. Figure 7(b) shows the
result obtained via the embedding technique. A phase
point p; is defined by the m-dimensional time-delay vec-
tor

p; = (**-~+i, )*,-i, *')
-0.5— as usual [22]. The correlation sum N(r) is obtained by

counting the number of neighboring phase points which
are closer to each other than a distance r:
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FIG. 6. Reconstruction of the chaotic saddle (crosses) of

the Henon map in the presence of s chaotic attractor (circles).
The parameters are a = 1.2715 and 6 = 0.3. Four thousand
truncated signals were used and the length of regions I and
III was chosen to be 4 and 5, respectively. Cloud points have
been filtered out by using the matching procedure [Eq. (2)]
with c = 0.15.

N(r) = (number of pairs: ~p; —p~.
~

( r)

In the scaling region r (& 1, the correlation dimension
D, , is given by the exponent of the best power fit to
the correlation sum N(r) vs r. As is clearly seen in
Fig. 7(b), the embedding process is characterized by cor-
relation sums, the graphs of which run parallel to each
other on a log-log plot for 2 & d & 5. The correlation
dimension extracted &om these is D, , = 1.07 + 0.05.

In order to check the reliability of these methods we
compared the results of the time-series analysis to a di-
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rect dimensional calculation of the Henon saddle at the
parameters a = 2.0 and b = 0.3. The algorithm is based
on the investigation of the fractal structure of the stable
manifold. Observing the way the bundles of the manifold
split into narrower and narrower bundles by increasing
the resolution, one can derive quantitative characteris-
tics of the chaotic saddle [23]. For the generalized dimen-
sions Dq with q = 0, 1,2 taken with respect to the nat-
ural measure of the nonattracting set this direct method
yields Do ——0.898 + 0.003, Di ——0.895 + 0.003, and
D2 ——0.891 + 0.003 [23]. By reconstructing the strange
set at the same parameters with the embedding method,
determining its box-counting dimension on the Poincare
plane, and its correlation dimension from the correlation
integral, we obtain Dbo„=0.85+0.1, D, , = 0.90+0.02.
The agreement with the results of the direct method is
satisfactory, the quantities Do and Db,„aswell as D2
and D, , coincide within the error bars.

Next, we turn to the determination of Lyapunov expo-
nents [26—28]. To extract the maximal Lyapunov expo-
nent from our "experimental" time series we have applied
the very simple algorithm of Kantz [29] which makes use
of the statistical properties of the local divergence rates
of nearby trajectories. Without the details, the outline
of the method is the following.

Take an arbitrary point of the time series in m-
dimensional delay coordinates p; [see Eq. (3)]. All delay
vectors of the series falling into a b neighborhood of p;
will be considered as the beginning of neighboring trajec-
tories, which are simply given by the consecutive points
of the time series. Let us consider a reference trajectory
p;(r) starting with p;. A distance 17 between this ref-
erence trajectory and a neighboring one pz(r) with an
initial point pz in a b neighborhood of p; can be defined
at time v by

and the results were convincing [29]. We concentrate
here on the characteristics of chaotic saddles. Plotted in
Fig. 8 is the quantity S(r) vs r for the artificial time
series given by the Henon map at two parameter ranges.
At parameters a = 1.2715 and b = 1.3 (seven-piece at-
tractor range) the estimation gives A = 0.585 + 0.010.
Note that this value is much larger than the maximal
Lyapunov exponent of the seven-piece chaotic attractor

= 0.057. This shows that the chaotic saddles in
periodic windows are more unstable, i.e., "more chaotic"
objects than the chaotic attractors. For the parameters
a = 2.0 and b = 0.3 (attractor at minus infinity) the re-
sult is A = 0.8360.03 (Fig. 8). There exists a famous

formula [3] expressing the information dimension Di"
along the unstable manifold in terms of the escape rate ic

and the maximal Lyapunov exponent A of the saddle
in three-dimensional Bows or two-dimensional maps as

(~) K
Di =1—

At the parameter setting a = 2.0 and b = 0.3 we find, by
observing the exponential distribution of the lengths of
truncated signals, that ic = 0.305+0.002. Thus we obtain

the approximate value Di(") 0.63 which is expected to

be close to the fractal dimension Do(" . In view of the fact
that the total dimension is the sum of the partial ones,
the fractal dimension along the stable direction can be
estimated as Do' 0.27.(~)

The detailed investigation of the divergence properties
of trajectories near a chaotic saddle is not presented here,
rather we intended strictly to demonstrate the advantage
of using a long-time series in computations like this.

IV. THE CLOUD POINTS

S(r) = —) ln —) 17(p;, p, , r)n .i=i j qb
(4)

where n denotes the number of neighbors in the b neigh-
borhood of the reference vector p;. For a range of r, S(r)
increases linearly with a slope A which is the estimate
to the maximal Lyapunov exponent (for details see [29]).

The validity of this method has been checked by com-
puting the maximal exponents of several well-known at-
tractors —such as the logistic map, the Henon map,
and the Lorentz attractor with dHFerent parameters—

i.e., by taking the difFerence of the rth scalar component
of the two trajectories. In order to measure the maxi-
mal Lyapunov exponent one should fix i, search for all
b neighbors of p;, and compute the average of the dis-
tances between all neighboring trajectories and the ref-
erence trajectory as a function of r To get ri.d of the
Buctuations due to the projections of the difFerence vec-
tors in true phase space onto a one-dimensional subspace
and to the local efFective exponents, one should average
the logarithm of the distances delned above over the full
length N of the time series:

It is interesting to investigate the structure of the cloud
emerging from noumatched gluing points (see Fig. 2).
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fitted line is 0.585. Two-dimensional time-delay embedding
was used for the search of neighboring trajectories in both
cases.
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was taken.
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by intervals of the same size. The slope of the full line (upper
curve) is —1.5. That of the dashed line (x projection) aud the
dotted line (y projection) is —0.78 aud —0.84, respectively.

Figure 9 shows the cloud separately which was obtained
by plotting just the end points of the truncated time se-
ries versus the starting point of the next truncated time
series. The obvious fractal structure can be understood
by observing that both the end points and the starting
points can take on any values on the projection of the
chaotic saddle on the z axis. Consequently, the cloud is
the direct product of the projection of the chaotic saddle
on the z axis with itself. The &actal dimension of a pro-
jection coincides with the &actal dimension of the entire
set for sufficiently rarified &actals [21]. Otherwise, the
dimension of the projection is the same as the dimension
of the projection space (1 in our case). Since the dimen-
sion of a direct product is the sum of partial dimensions,
the fractal dimension of the cloud on a Poincare plane
is min (2Do, 2) where Do is the f'ractal dimension of the
chaotic saddle. Figure 10 shows the results obtained for
the box-counting dimension of the cloud of Fig. 9. The

upper curve corresponds to the two-dimensional covering

of the entire cloud, and yields Db'„" ——1.52+ 0.1. This
is to be compared with the partial dimensions of the one-
dimensional projections of the object on both axes which

are obtained as Db*„——0.78+ 0.06, Db"„——0.83 6 0.06.
The results support the rule that the dimension of the
cloud is twice the dimension of the projection. The nu-

merical values of the dimensions Db*„andDb"„are,how-

ever, slightly smaller than the box dimension of the sad-
dle (Db „=0.9). We believe that the reason is a rather
slow convergence which can be understood as follows.

The partial dimensions of the saddle Do" and Do' are
the dimensions of the saddle's projections along the sta-
ble and unstable manifold, respectively. Since these man-
ifolds are only slightly bent, it is difficult to distinguish
these projections &om the ones taken along the x and

y axes. Thus a numerical calculation of Db*„and Db"„
with a usual accuracy yields results differing Rom the ex-
act ones which could only be obtained by an extremely
high resolution.

V. SUMMARY AND CONCLUSIONS

The main points of the method proposed for recon-
structing chaotic saddles from experimental time series
based on the creation of a long signal with transient prop-
erties can be summarized as follows.

(1) Take an ensemble of time series containing tran-
sients to a steady state behavior.

(2) Locate the attractor of the dynamics in the variable
investigated and separate the transient parts.

(3) Construct truncated time series, i.e. , take the
points in region II of the signal. Their average length
is the reciprocal value of the escape rate &om the chaotic
saddle. Try different cuttings of the transient pieces so
that the results do not depend on details of the truncat-
ing procedure.

(4) Glue the truncated signals together, apply a low-

dimensional time-delay coordinate embedding, produce a
Poincare section, and plot the invariant set.

(5) Apply some simple matching procedure in order to
get rid of artificial points (the cloud).

(6) Apply the usual tiine-series analysis method to de-

termine quantitative characteristics of the chaotic saddle
such as, e.g. , dimensions or Lyapunov exponents.

By means of this procedure, chaotic saddles underlying
transient chaotic motions can be reconstructed, and their
characteristics taken with respect to the natural measure
can be determined from time series. We hope that these
endings motivate further experimental studies.

It is worth finally briefly mentioning the case of chaotic
transients in a Hamiltonian system that appears in the
form of chaotic scattering [30]. Because of the Hamil-
tonian character, attractors cannot exist in such systems
but chaotic saddles can be and, in fact, are always present
if chaotic behavior is observed in scattering. This situ-
ation is highly reininiscent of case (3) of dissipative sys-
tems (discussed in Sec. II) when the chaotic saddle co-
exists with an attractor at irdinity. Except for the fact
that infinity is now not an attractor but rather that part
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of the phase space which corresponds to the asymptotic
freedom of scattering trajectories, the structure of the
chaotic saddle might be quite similar to that of dissi-
pative cases. The main difference is that now an extra
symmetry is present which says that stable and unsta-
ble directions are essentially equivalent as follows, e.g. ,
Rom time reversal invariance. Thus we conclude that
the method described in this paper can be applied to
Hamiltoman cases too, and can be used to reconstruct
and characterize transient chaos associated with scatter-
ing processes.

ACKNOWLEDGMENTS

The authors are indebted to H. Kantz for providing
them with his work on the calculation of maximal Lya-
punov exponents, to J. Vollmer for critical comments
on the preliminary version of this paper, and to K. G.
Szabo for careful reading of this manuscript. This work
has been supported by the Hungarian National Science
Foundation (OTKA) under Grant No. 2090, No. T4439,
and by the Foundation for Hungarian Higher Education
and Research.

[1] T. Tel, in Directions in Chaos, edited by Hao Bai Lin
(World Scienti6c, Singapore, 1990), Vol. 3, p. 149.

[2] C. Grebogi, E. Ott, and J. Yorke, Phys. Rev. Lett. 48,
1507 (1982); Physics (Amsterdam) D 7, 181 (1983).

[3] H. Kantz and P. Grassberger, Physica (Amsterdam) D
17, 75 (1985).

[4] H. E. Nusse and J. Yorke, Physics (Amsterdam) D $8,
137 (1989).

[5] C. Grebogi, E. Ott, and J. Yorke, Phys. Rev. A $8, 3522
(1987).

[6] P. Cvitanovic, Phys. Rev. Lett. 61, 2729 (1988).
[7] T. Tel, J. Phys. A 22, L691 (1989).
[8) V. Croquette and C. Poitou, C. R. Acad. Sci. 292, 1353

(1981).
[9] F. T. Arecchi, R. Meucci, G. Puccioni, and J. Tredicce,

Phys. Rev. Lett. 49, 1217 (1982).
[10] P. Berge and M. Dubois, Phys. Lett. 9$A, 365 (1983).
[11] F. T. Arecchi and F. Lisi, Phys. Rev. Lett. 50, 1330

(1983).
[12] R. W. Rollins and E. R. Hunt, Phys. Rev. A 29, 3327

(1984); R. C. Hilborn, ibid. $1, 378 (1985).
[13] R. W. Leven, B.Pompe, C. Wilke, and B.P. Koch, Phys-

ics (Amsterdam) D 18, 371 (1985).
[14] M. Gorman, P. J. Widmann, and K. A. Robbins, Phys.

Rev. Lett. 52, 2241 (1984); Physica (Amsterdam) D 19,
255 (1986); P. J. Widmann, M. Gorman, and K. A. Rob-
bins, ibid. 36, 157.

[15] T. L. Carroll, L. M. Pecora, and F. J. Rachford, Phys.
Rev. Lett. 59, 2891 (1987); Phys. Rev. A 40, 377 (1989);
40, 4149 (1989); J. Appl. Phys. 84, 5396 (1988); T. L.

Carroll, F. J. Rachford, and L. M. Pecora, Phys. Rev. 8
3$, 2938 (1988).

[16] Z. J. Kowalik, M. Franaszek, and P. Pieranski, Phys. Rev.
A 37 (1988).

[17] F. Papolf, D. Dangoisse, E. Poite-Hanoteau, and P. Glo-
rieux, Opt. Commun. 87, 358 (1988); D. Dangoisse, P.
Glorieux, and D. Hennequin, Phys. Rev. Lett. 5'F, 2657
(1986).

[18] W. L. Ditto et al. , Phys. Rev. Lett. 8$, 923 (1989).
[19] R. Stoop and J. Parisi, Phys. Rev. A 43, 1802 (1991).
[20] R. W. Leven, M. Selent, and D. Uhrlandt (private com-

munication).
[21] T. Vicsek, Prsctal Growth Phenomena (World ScientiSc,

Singapore, 1989).
[22] P. Grassberger and I. Proccacia, Physics (Amsterdam)

D 9, 189 (1983).
[23] Z. Kovacs and T. Tel, Phys. Rev. Lett. 84, 1617 (1990);

and (unpublished) .
[24] K. Pawelzik and H. G. Schuster, Phys. Rev. A $5, 481

(1987).
[25] R. W. Leven and D. Uhrlandt, Chaos Soliton Fractals 2,

471 (1992).
[26] A. Wolf, J.B.Swift, L. Swinney, and A. Vastano, Physics

D 16, 285 (1985).
[27] J.P. Eckmann, S. O. Kamphorst, D. RueHe, and S. Cilib-

erto, Phys. Rev. A 34, 4971 (1986).
[28] U. Parlitz, Int. J. Bif. Chaos 2, 155 (1992).
[29] H. Kantz (unpublished).
[30] U. Smilansky, in Chaos and quantum Physics (North-

Holland, Amsterdam, 1992), p. 121.




