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Series expansion method based on the droplet description
of ferromagnetic and fully frustrated q-state Potts models
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We develop an alternative formalism, based upon the droplet description of critical point phe-
nomena, for calculating the high-temperature (low-density) series expansions for (i) ferromagnetic
and (ii) fully frustrated q-state Potts models. For both (i) and (ii), we apply this formalism to
explicitly calculate, for the square lattice, the first 20 terms in the series expansion of the general-q
partition function. We then obtain from the partition function the series for the mean number of
clusters and the specific heat, and analyze the series using Pade approximants. For case (i), the
ferromagnetic Potts model, we verify the existence of a geometric transition at the same temperature
as the well-known ferromagnetic transition temperature for all q. For case (ii), the fully frustrated
Potts model, our analysis reveals the presence of a geometric (percolation) transition at a finite
temperature T~„,(q), which is well above the critical temperature T, = 0 for these models, but
somewhat below the corresponding ferromagnetic transition temperature.

PACS number(s): 05.50.+q, 64.60.Ak

I. INTRODUCTION

Properties of connectivity transitions in &ustrated sys-
tems have recently been of much interest [1—8]. The gen-
eralization of the droplet formalism to a larger class of
systems that includes frustrated systems is an appealing
idea with many potential applications, such as the devel-
opment of a cluster dynamics for frustrated systems [3]
analogous to Swendsen-Wang dynamics [4] that could re-
duce critical slowing down substantially. In particular it
has been shown that the cluster formalism of the q-state
&ustrated Potts model in the limit q = 1 leads to a model
of frustrated percolation [1,5] that contains as essential
ingredients both &ustration and percolation; this model
can therefore be applied to systems such as spin glasses,
glasses, and gels where both connectivity and frustration
concepts are important.

The droplet approach to thermal transitions enables
one to describe fluctuations in purely geometric terms in
terms of critical drop/ets. In the droplet formalism, the
partition function of the q-state Potts model is expressed
in terms of the bond occupation probability pB and the
number of clusters N(C) . Consequently, one can describe
thermodynamic transitions in terms of singularities in
purely geometric quantities that are traditionally used
to describe the percolation transition. In particular, this
formulation for general q enables one to calculate the
mean number of clusters (N(C)) by differentiating the
free energy with respect to q. The critical behavior of
(N(C)) is thus described by the specific heat exponent

per, we develop a formalism —based upon the droplet
approach —that enables one to calculate the terms in the
high-temperature (low-density) series expansion of the
partition function of both the ferromagnetic (FM) and
fully frustrated (FF) [6] q-state Potts models for general

q using the droplet approach [1,7,8]. We first use the
droplet approach to extend Straley's method to the case
of the FM Potts model for general q and then generalize
further to the case of &ustrated Potts models. We choose
the FF models rather than those with random &ustration
because our method for calculating the series for the FM
models is very easily generalized to the FF case.

We also apply the formalism to explicitly calculate for
the square lattice the first 20 terms for both the FM and
FF q-state Potts models, keeping q as a free parameter.
The series for the FM case yields as special cases random
bond percolation (q ~ 1) [8] and the FM Ising model

(q = 2), while the series for the FF case yields fully frus-
trated percolation [1] and the fully frustrated Ising model
as special cases. Our results also reduce to tree percola-
tion for q ~ 0 and agree with the 16 terms calculated by
Straley using the finite-lattice method [9], while yielding
the next four terms.

II. DROPLET FORMALISM

We begin by briefly reviewing the droplet formalism
for the Potts models.

A. Droplet approach to the q-state ferromagnetic
Potts models

Straley [9] applied the finite-lattice method [10] to the
calculation of the series for tree percolation, which is the
q ~ 0 limit of the q-state Potts model. In this pa-
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For the case of the FM Ising model (q = 2), the sim-

plest definition of clusters as containing all nearest neigh-
bor (NN) parallel spins is not satisfactory for describing
the correlations. In particular, as T ~ oo the range
of the correlations should approach zero, but clusters of
a finite size still exist due to purely geometrical efFects.
The droplet model [7] resolves this problem by defining
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pB=1 —6 )
—eP&

where P = 1/kT, k is the Boltzmann constant, and T
is the temperature. We may then write the partition
function of the N-particle system [l,ll] as

Z ) ) pl&I (1 )[B[ —P'8(&;)

fS;)
(2)

The NN Potts Hamiltonian is given by

'R = —q) J;, (b(,.(,. —1)
(ij)

in terms of the Potts variables (; on the N sites i of a
lattice. Each (; can take one of the q values and the
interactions J;z ——J for all NN pairs (ij) for the FM
case. The sums in (2) are to be carried out over all bond
configurations C and all spin configurations such that
one is compatible with the other. Here

] C ]
denotes

the number of bonds in configuration C, while
~

B
]

is
the number of absent bonds between NN parallel spins.
After carrying out the sum over spin configurations [12],
we obtain the Fortuin-Kasteleyn [9] expression

a kind of cluster, the droplet, which does satisfactorily
describe the correlations. These droplets are constructed
for the NN FM q-state Potts model by placing bonds be-

tween NN parallel spins with a temperature-dependent
probability

Here p = pB/(1 —pB) = ev~ —1 is the high-temperature
expansion variable and Gs(N, ) is the number of graphs
of b bonds with N, clusters that can be drawn on the
lattice and

As(q) = ) Gs (N, ) q
N

Equations (5) and (6) define the high-temperature series
in p, that we shall calculate and use to analyze the critical
behavior of the various Potts models.

B. Extension of droplet approach
to frustrated systems

If we let the interactions J;~ in (3) now equal J (fer-
romagnetic) or —J (antiferromagnetic) randomly or sys-
tematically (see Sec. III C), we introduce frustration into
the system in the sense that all interactions cannot be
satisfied by any configuration of spins. A closed loop of
interactions C will be frustrated if g& J;~ ( 0, where
the product is over all interactions on the loop C. In this
case, the droplets are defined [1] in an analogous man-
ner to that for the FM case; one now places bonds with
the same probability pB between two spins whose orien-
tations satisfy the interaction between them. Then, the
analog to Eq. (5) for such a system is

Ziv(q) =
+1 ).& ).G (N )q

'
C

ZN(q) = ).pB (1 pB)
"—q"' '

C
(4) ( 1) N ) As(q)pp+ (7)

Here
]

A
~

is the total number of absent bonds, q = 2
for the Ising case, and N(C) is the number of clusters in
configuration C.

Equation (4) defines the alternative description of the
model in terms of the purely geometric droplets. These
droplets are composed of all NN parallel spins (or in gen-
eral, Pot ts variables) that are connected by bonds present
with probability pB given by (1) and are thus subsets of
the full clusters. These droplets show percolationlike crit-
ical properties at the Potts critical points and thus repre-
sent regions of correlated spins. The Potts transition can
be viewed from a purely geometric point of view using

(4) and, moreover, the formulation for general q enables
analysis in terms of geometric percolation quantities such
as the mean cluster size (see [11])and the mean number
of clusters (N(C)) = q 8 [ln Ziv (q)] /Bq whose behavior
is governed by the same exponents p and n that govern
that of the susceptibility and &ee energy, respectively, in
the thermodynamic formalism.

We next convert Eq. (4) into the form of a high-
temperature series. Since ] A ] +

~

C ]= 2N, the total
number of bonds, we can write (4) as

Ziv(q) = ) p ) Gs(N, ) q
b N

where now Gf (N, ) is the number of graphs of b bonds
and N, clusters that do not contain frustrated loops and
A& (q) is the quantity analogous to As(q) in Eq. (6), with

Gs(N, ) replaced by Gf(N, )
We shall refer to the model defined by the partition

function of Eq. (7) as the frustrated Potts model. Al-

though Eq. (7) is, for q = 2, the partition function of
the Ising spin glass Hamiltonian (3) with J;z ——+J, for
general q g 2, it does not correspond to the Hamiltonian

(3) but to the Hamiltonian [5] of a particular dilute Potts
model.

For frustrated systems, the droplets represent inter-
fering fiuctuations that cancel each other to drastically
reduce the spin-spin correlations to a range that is much
smaller than the mean droplet size [1]. Thus the droplet
size is expected to diverge at a temperature T&„, that is
higher than the spin-glass transition temperature TsG [2].
This temperature T~„, thus marks the geometric (perco-
lation) transition for frustrated systems. In two dimen-
sions, we know that TsG ——0, but we can expect to find
a finite temperature geometric transition at T~ & 0.

We shall restrict ourselves here to a specific type of
frustrated system, the fully fruatrnted Potts model, which
will be defined in Sec. IIIC.

III. MODELS

( + 1)ziv )-p+ (5) First we describe tree percolation, since for this case we
can make connection with the 16-term series of Straley
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[9]. Then we describe the general-q models for both the
FM and FF cases.

A. Tree percolation (q -+ 0)

To evaluate the series (5) in the limit q m 0 [13], we
need to follow a special procedure. First, we rewrite (5)

Q~ = lim = lim ) (qPJ) ) Gs(N, )q '
b N,

(8)

However, we know that the number of clusters is given
by N, = N —b+ Ngg, where NgL is the number of closed
loops present. Thus, since

Ncr, 0 ifNcr &0
hmq
q~o 1 if Nc~ ——0, (9)

only tree configurations (with N&L = 0) contribute to
the sum in Eq. (8), which can be written as

Q~ = lim ) (PJ) ) Gg(N, )q
o" = ) Tsz, (10)

b N, b

where z:—PJ and Ts is the number of trees (i.e. , configu-
rations without any closed loops) of b bonds that can be
placed on the lattice. This series (10) was calculated by
Straley [9]. Since all closed loops are disallowed in the
tree problem, the introduction of lustration makes no
difference, and the above expressions remain unchanged.

B. Ferromagnetic q-state Potts model (q g 0)

other alternate columns [Fig. 1(a)]. Thus every elemen-
tary square (2 x 2) plaquette on this lattice is &ustrated
[see Sec. II B and Fig. 1(a)]. However, there are also non-
frustrated closed loops, for example, the 2 x 3 plaquette,
so the allowed configurations consist of more than only
tree configurations.

The critical temperature [6) for this fully &ustrated
model at q = 2 is known to be the same as for the Ising
spin glass T, = TsG ——0, but as for the spin glass, one
can expect a percolation transition at a finite temper-
ature for reasons mentioned in Sec. IIB. The partition
function for this model is given by (7), where the sum
marked with an asterisk implies the restriction that any
configuration that has all bonds occupied on a &ustrated
plaquette (such as the 2 x 2 square) will be omitted &om
the sum. This type of frustration turns out to be easier to
deal with because we do not need to average over difFerent
realizations of ferromagnetic and antiferromagnetic inter-
actions, as one would have to do for the case of random
frustration. We deal instead with the single fixed real-
ization of alternating interactions described above. Thus
the FF series can be obtained &om the FM series by sub-
tracting the contribution 6.'om configurations containing
frustrated closed loops [Fig. 1(c)].

For the FF Ising case, to compare with the known
partition function [6], one must once again multiply by

(p + 1)+ as in (12).

For the FM Potts model, the partition function is given

by (5). The coefficients T~ in Eq. (10) for the tree series

q = 0 can be easily obtained &om the Ab(q) of Eq. (5);
see the last part of Sec. IV for details. For the case q = 1,
corresponding to random bond percolation, Z~(1) = 1,
since Eq. (2) reduces to a binomial expansion of (p~ +
1 —p~)2~. For the case of the Ising model, q = 2, the
standard definition of the Ising Hamiltonian is slightly
difFerent &om Eq. (3),

'Rr = —J) .S;S, = 'R —2N J.
(ij)

Thus the partition function Z~ corresponding to this
Hamiltonian has an extra multiplicative factor of (@+1)~
compared to that of Eq. (5):

&i 0 ll

3x3(l)

~ 4E IL 0

2%2(1)

~ 4E 4E

3x3(4)

(12)

3x4(9) 3x4(4)

C. Fully frustrated q-state Potts model (q g 0)

The fully &ustrated square lattice (Villain's [6] odd
model for the Ising case q = 2) is constructed by placing
ferromagnetic interactions on all the rows and on alter-
nate columns and antiferromagnetic interactions on the

FIG. 1. (a) The fully frustrated square lattice. Straight
lines indicate ferromagnetic bonds while wavy lines indi-

cate antiferromagnetic bonds. (b) Examples of nonfrustrated
closed loops. The numbers below each loop, L x M(| „),in-

dicate the number C& of nonfrustrated NSG for that value
of I x M. (c) The same for frustrated loops, with L x M(CP)
being the numbers below each loop [see Eq. (19)j.
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IV. METHOD

In this section, we develop a method for calculating
the high-temperature series for the partition functions of
the FM (5) and FF (7) q-state Potts models within the
droplet formalism.

The principal advantage of the method is that to cal-
culate the first k terms in the infinite lattice partition
function, we need only evaluate the partition functions
of finite lattices up to a perimeter k. Thus we start
by evaluating the series Eq. (5) for all finite lattices of
perimeter less than or equal to the order of the high-

est term required in the series expansion. We label the
polynomial in p for the partition function of an L x M
rectangle by PI,M(q), following the notation in [9]. More
explicitly [see Eq. (5)],

RIM —1 —cSz" + O(z"+ ), (18)

where cs is the number of nondecomposable graphs with
closed loops that fit into this L x M rectangle, but not in
any smaller one. For future reference we will refer to such
graphs as nondecomposable spanrung graphs (NSG's).

We find that for the general q-state Potts model, the
reduced series have the form

where the leading power k = 2(L+ M) —4 is the perime-
ter of the L x M rectangle and as is a coefficient that
depends on the model in question. Therefore, only rect-
angles of perimeter & k contribute to the first k terms in
the partition function series and thus only the reduced
series for these rectangles need to be evaluated. In par-
ticular, for the tree percolation problem, it was found in

[9] that the reduced series have the form

PI,M(q) = (p, +1) ZN(q) = ) As(q)P', (13) RL,M
——1+ —(q —1) Cp —C„+0 (p"+'), (19)

where N = L x M = total number of sites and As(q) is

given by Eq. (6). Then, since the expansion is in powers
of p, with the number of bonds 5 being the power, the
polynomial for the smallest such lattice (a single bond) is

Pq2(q) = P2q(q); this is the partition function for two nn
sites P&2(q) = q + qy, (see Appendix A and Fig. 3 for de-

tails). Now, we construct the reduced seriea RrM(q) for
this finite rectangle by dividing PI,M(q) by the reduced
series of all rectangles enclosed by this L x M rectangle,

&LM = PLM

&L'M'
h l ~

L' x M'gLx M

(14)

Z3I(q) = RL M(q).
LM

The partition function per site Zz ——(Z3I)~~~ is simply
the product of the reduced series for each rectangle taken
once. Thus, for example, we have to O(p2e)

Zg ——R~2R22RQ3 33R24R34R25R44R35R26R45R36
2 2 2 2 2 2 2 2 2

x R27R33R4eR37R23RssR37R43R39R2 ~0, (16)

where all rectangles up to a perimeter of 20 have been
included. This is because the reduced series in general
has the form

Now the dependence of all the P~M and the RL,M on q is
kept implicit. We start by defining the reduced series for
the smallest rectangle as Rq2 =—Pq2 and then construct
the reduced series for all larger rectangles required using
the prescription (14) (Fig. 1). Thus, for example, R22 ——

P22/R$2 and R23 —P23/(R$2R22)
Then, &orn the definition (14), the partition function

ZN = PgM of any lattice of N = L x M sites can be
written as a product over the reduced series Rl, iMi of
all L' x M' rectangles enclosed by this L x M rectangle.
In particular, as N -+ oo, each rectangle is contained N
times and thus in the thermodynamic limit

where C&NF is the number of NSG's on the L x M lattice of
perimeter k that are not &ustrated and C&+ is the number
that are &ustrated. For example (Fig. 1), CP = 1 and
C&+ = 4 for the 3 x 3 rectangle (k = 8) for the FF Potts
model. The reduced series for the FM Potts case are
obtained from Eq. (19) by substituting C&+ = 0. For the
Ising model (q = 2) we have, from (19),

R, = i+ ~„(C,"'—C„)+ O (&"+') .
qk

(20)

Rse ——1+ 19010(q —1)p /q + O(p ). (21)

Expressions (17)—(20) serve as a good check on our cal-
culations of the PI,M. Moreover, they enable us to push
the series to one higher order than is determined by the
calculation of the PI,M (see the description of the trans-
fer matrix method at the end of this section for details).
For an explicit calculation of the first five terms in the
series for the partition function, see Appendix A.

We next proceed to calculate the partition function to
higher orders, first for the FM Potts case. To do this, we
need the polynomials PI,M for lattices of perimeter up to
20, i.e., all L x M lattices for L+ M & 12. We calculate
these by a transfer matrix method [14] that generates
Pl, M+q &om PI,M by adding a row of L sites. In order
to do this, we start with Pg, j in the form of a column
vector, with each element of the vector representing the
weight of a particular "type" of edge configuration. The
information needed to describe a particular type of edge
configuration is the connectivity of the L sites on the
edge of the lattice, i.e., which sites are connected to each
other (for details on the transfer matrix method, see Ap-
pendix B). We calculate the transfer matrix for L = 2,
L = 3, L = 4, and L = 5 thus obtaining all the required
polynomials PI,M and consequently all the reduced series
RL,M [from (14)] with L+ M & 12, except for Res. For
Rss, one would normally need to calculate the transfer
matrix for L = 6 (a tedious process); however, now we
can use Eq. (19) to get

RI,M ——1 + aI,p" + O(p, "+ ), (17) Then we use (16) to get the partition function per site
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Zi(q) foi the q-state FM Potts model to O(p ).
For the FF case, we follow a similar procedure as the

FM case above, with a few modi6cations: now the infor-
mation needed about the sites on the edge of the lattice
is more than just their connectedness to other sites. For
this frustrated case, we need the additional information
about how the sites in question are connected. To be
more speci6c, we need to know whether the connection
is such that closing the loop at the next application of
the transfer matrix will result in a &ustrated loop or not.
Thus each connection between two of the L edge sites can
be of two types and there are many more types of edge
con6gurations. Therefore, the dimension of the trans-
fer matrix for a particular I is considerably higher for
the frustrated case than for the FM (for more details
on the method, see Appendix B). This gives the finite-
lattice polynomials I'l, M. We then obtain the reduced
series from (14) and the partition function Zi (q) Rom
(16) to O(@~0) using the four transfer matrices for L = 2,
I = 3, L = 4, and L = 5. For Rss, we use (19) to get
Rss = 1+ (9400q —19010)p2o/q2 + O(p2i), since 9400
of the total number 19010 of NSG's for the 6 x 6 lattice
are not frustrated (C2NsF ——9400).

For the FM Potts models, we have C&+ = 0 in (19).
In particular, for q = 1 (random bond percolation) we

find from (19) that BL,M = 1 for all L and M and thus
from (15), Ziv(1) = 1 and the free energy F(q = 1) =
—lnZ~(1) = 0, as is expected from Eq. (4) for q = l.
The correct generating function for this series (see, for

lim ) Ab(q)y, = ) lim Bb (q) z,
6 6

(23)

where z = PJ. Comparing with (10), we then get
Tb = lim~~o Bb(q) = lims~e Bb (q), since configurations
with no closed loops are the same for the frustrated and
nonkustrated cases. These correspond to the tree con-
figurations listed in Table I.

example, [7] and [8]) is

dF(q) „. F(q)dq, &~i (q —1)
'

We also compared the series we obtain using our pre-
scriptions (3), (14), (20), and (15) for the reduced se-
ries and partition function with the standard Ising high-
temperature series and veri6ed that it gives the same
results, though expanded in a different variable. We also
checked the same for the FF Ising case by expanding Vil-
lain's exact partition function [6] in a high-temperature
series and once again veri6ed our results.

The coefficients Bb(q) = q Ab(q) and Bf (q)
q Ab (q) obtained in the series expansion of the parti-
tion function for the FM and FF q-state Potts models
described in Sec. III are given in Table I. The coefficients
Tb in (10) for tree percolation can be obtained from these
as follows. The partition function for the tree case is

TABLE I. CoefFicients in the expansion of the partition function per site Z~ ——Z~

q'Ab(q)6 Tg

0 1
1 2

2 1
3 0
4 —1
5 2

6 —5
7 16
8 —54
9 184
10 —628
11 2136
12 —7229
13 24738
14 —82185

16 —951192

19 41444452

1
2

1
0

(q —1)
-2(q —1)
5(q —1)
-2(q —1)(8 —q)
6(q —1)(9 —2q)
—2(q —1)(92 —27q)
2(q —1)(3q —114q + 314)
—2(q —1)(29q —464q+ 1068)
(q —1)(q + 361q —3663q + 7229)
2(q —1)(4q —949q + 7069q —12189)
—3(q —1)(60q —3058q + 17933q

—27395)
15 278276 2(q —1)(4q + 828q —21105q

+101684q—139138)
—(q —1)(46q + 11489q —188490q

+768789q —951192)
17 3296080 2(q —1)(q —119q + 3474lq

—413410q + 1460277q —1648040)
18 —11601580 (q —1)(10q + 5953q —387468q

+3586980q —11174965q + 11601580)
2(q —1)(—92q —30542q + 1022504q

—7717428q + 21525977q —20722226)
20 —149801793 (q —1)(22q —216q + 4?4088q

—10356148q + 65910515q
—166629530q + 149801793)

q'Ab (q)

—1
2
—(5 —2q)
2(8 —5q)
(31q —54)
8(23 —1lq)
(2q + 281q —628)
—2(3q + 508q —1068)
—(6lq —3790q + 7229)
2(342q —6910q + 12189)
3(2q —1310q + 16358q

—27395)
—2(23q —8705q + 86294q

—139138)
(92q —69828q + 611834q

—951192)
4(50q + 69785q —551916q

+824020)
2(13q + 883q —576728q

+4058696q —5800790)
—2(165q + 24404q —2435059q

+15145719q—20722226)
(1938q + 452701q —20515919q

+114059417q—149801793)
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V. ANALYSIS

We now calculate from the partition function the series
for the specific heat, and for its geometric analog, the
temperature derivative of the mean number of clusters
per site (N(C))/N given by [from Eq. (4)]

(b) p 8 ln Ziv p, BZi
2N 2N a~ 2Zi a~

(25)

2.5—

2.0—

1.5—

(N(C)) 8 ln Zi
N Oq

For the case q = 1 (random bond percolation), we first
evaluate the quantity G(q) in Eq. (22), which plays the
role of the free energy for this case, and then form the
double derivative to obtain the specific heat series. The
analysis of the specific heat and its geometric analog, the
first derivative (for q j 1) or the second derivative (for
q = 1) of the mean number of clusters, for the various q
shows that both functions indeed undergo a transition at
the same temperature for all q.

This transition temperature for the FM series agrees
very well with previous results [15] on the thermody-
namic transition in Potts systems (Fig. 2). The expo-
nent a(q), however, is diflicult to obtain accurately from
the Pade approximants, and we need more sophisticated
methods of analysis.

For the FF Potts series, we obtain transition temper-
atures Tp„,(q) (Fig. 2) that are somewhat lower than
those for the corresponding FM series (as expected, frus-
tration makes the transition to an ordered state more
difficult and thus lowers the transition temperature), but
considerably higher than the critical temperature T = 0
for these models at d = 2. For q ( 2, the singularities at
Tz„, are extremely weak and do not show up in the Pade
analysis of the derivatives of I' and (N(C)). To analyze
the FF series for these low values of q, we follow Stra-
ley [9] and calculate the series p(p) for the average bond
density &om (7) (note that for &ustrated systems, this is
different from the probability of a bond being occupied):

We then invert this series to obtain the series p(p) and
then do a Pade analysis to find the critical bond density
p'. For q = 1 (fully frustrated percolation), we find p'
0.5281. Since the maximum (close-packing) density for
this fully frustrated Potts model is pep ——0.75, we can
write the approximate relation (exact only at T = 0, thus
expected to be reasonable at the low temperatures we' re
dealing with) for the percolation threshold p, (q = 1)
p'/pep 0.704. We can then calculate the inverse of the
connectivity transition temperature P~„,(q) from

p~ =I —e '~""' =S.(q) = V'(q)/I cp, (26)

which gives us the points in Fig. 2 for q = 1/2, q = 1,
and q = 3/2 for the FF case.

Analysis of the series coefficients Ts for the tree series
[9] corresponding to q = 0 gives p'(q = 0) = 0.5, which is
the close-packing density pep for the tree problem. Thus
P~„,(q = 0) = oo for this case and both the FM and
FF curves in Fig. 2 should approach oo as q m 0, which
seems consistent with our results.

VI. DISCUSSION

We have developed a method for calculating high-
temperature series for the q-state Potts model using the
droplet formalism and extended it to the case of frus-
trated systems. We calculated the series for the FM and
FF cases. The method can be generalized to incorporate
random frustration as well and thus to study spin glasses.
For such a generalization, the contribution of frustrated
and nonfrustrated configurations of interactions (J,~) to
each closed loop must be multiplied by the probability
P((J;z)) for such a configuration.

We believe that this method will be particularly useful
for evaluating series for models (such as frustrated mod-
els) in which certain graphs with closed loops are sys-
tematically forbidden. One of the principal advantages
of the present method is that it enables us to evaluate
the partition function of the q-state Potts model with q
as a free parameter. First, this makes it possible to calcu-
late percolation quantities of interest (such as the mean
number of clusters, the connectivity analog of the free
energy) and second, enables the immediate evaluation of
the partition function for any q, including fractional val-
ues.
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APPENDIX A: EXPLICIT CALCULATION
OF THE FIRST FIVE TERMS IN THE SERIES

FOR THE PARTITION FUNCTION

Here we calculate the first five terms in the parti-
tion function as an explicit example. To obtain Zi(q)
to O(p ), we only need to calculate P2i and P22, since
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we need rectangles up to perimeter 4.
For the FM case, we have [see Fig. 3 and Eq. (13)]

P2i(q) = q + qp (A1)

and

P (q) =q +4q p+6q p +4qV, +qp
= (V+ q)'+ (q —1)V'. (A2)

We know that to this order Zi ——R2iR22 [see Eqs. (14)
and (16)]. Then, since R2i ——P2i and Rq2 ——P22/R2i,
we have

Zi(q) = P22/P2i —— (p+ q) + (q —1)y, /(q + qp)

(A3)

This, when expanded to O(p4), gives

Zi(q) = 1+2p/q+ p, /q + (q —1)IJ, /q, (A4)

Zi =1+K +4K /3, (A5)

where K—:PJ.
Now, for the FF case, P2q is the same as the FM case

(Al), since no closed loops are involved. For P2F2, the
last configuration in Fig. 3 does not contribute, since one
cannot occupy all four bonds on the 2 x 2 square without
creating a &ustrated loop. Thus

P22(q) = q' + 4q'V + 6q'~' + 4qS
' = (V + q)' —

S
'.

(A6)

Again,

Zl 22/ 21 (l + 'q) V /(q + qV) (A7)

and expanding this out gives the first five entries in the
fourth column of Table I:

Z (q) = 1+2V/q+ V /q —I /q (As)

which, on making the same substitutions as for (A5),
gives for the standard FF Ising series:

which are the first five entries in the third column of
Table I. We can obtain the standard Ising series &om
this by substituting q = 2 and p, = exp(2K) —1 and
dividing by (p+ 1) [see Eq. (12)]; this gives

APPENDIX B:TRANSFER MATRIX

Each application of the transfer matrix adds a hori-
zontal layer of L sites to the lattice and transforms one

type of configuration of I sites at the edge [classified in
terms of their connectivity to other sites at the edge; see
Fig. 4(a)] to another, while adding a new row of sites.
The dimensionality of the transfer matrix is equal to the
number of such unique edge configurations. For the FM
case then, this is 2, 4, 10, and 26 for L = 2, 3, 4, and 5,
respectively. See Fig. 4(a) for an explicit illustration of
edge configurations for L = 2 and I = 3. For L = 2, the
lowest polynomial corresponds to the partition function
for a single pair of adjacent spins P2i ——q + qp [from
Eq. (13)],where the two terms represent the two config-
urations in Fig. 3(a). We represent this by the vector
M2i ——(q, qp). The transfer matrix is applied in two

stages. First, one adds the L vertical bonds: this op-
eration is represented by the matrix VL, . An occupied
bond is associated with a factor y, [the number of clus-
ters N(C) remains unchanged] and a vacant one with a
factor q [N(C) increases by one]. For example, for I = 2

we have

( p' O

q 2uq+ q' V'+ 2Vq+ q'
p

(Bl)

(a)

The second stage consists of adding the (I, —1) horizon-
tal bonds and is represented by a matrix Hl, . Now, we

associate a factor p with an occupied bond between previ-

ously connected sites, a factor p/q [since N(C) decreases

by one] with an occupied bond between previously un-

connected sites and a factor 1 for a vacant bond. Again,
for L=2,

(&1+~ V/q &) (B2)0 1

The full transfer matrix is then given by TL,
——HL, VI, .

The operation of adding a row of L sites is represented by

MI.M ——TI.MI, M z with the corresponding polynomial

PI,M being the sum of elements of ML,M.
For the &ustrated case, the number of edge configura-

tions and thus the dimensionality of the transfer matrix
is higher than the FM case at 3, 8, 30, and 112 for L =
2, 3, 4, and 5, respectively [see Fig. 4(b)]. This is be-

ZF» —1 + K2 2K4/3 (A9)

2xl (b)

L=2

2x2

(4) (4) (2) L=3
e ~

~ ~ ~

i
~ I ~

FIG. 3. Con6gurations contributing to PL, sr (for I x M
equal to 2 x 1 and 2 x 2) with their degeneracies in brackets
below each con6guration.

FIG. 4. Edge con6gurations for the transfer matrix for the

(a) FM case and (b) FF case.
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cause each category of configurations of sites on the edge
for the FM case corresponds to one or more for the &us-
trated case, since each connection between two sites in
the FM case can now be of two types [see Fig. 4(b) for
an explicit illustration for L = 2 and L = 3]: one that
will lead to a &ustrated loop on being closed at the next
application of the transfer matrix (indicated by a dashed
line) and one that will not (indicated by a solid line). For
this case, the lowest polynomial P~~ = P2q (since there
are no closed loops) with Mz+~ = (q, 0, qp) corresponding
to the three configurations of Fig. 4(b). The first stage
of the application is the same as the FM case, except for
the dimensionality of the transfer matrix being higher.
For I = 2, this is represented by

( p 0 0
Vs = 0 p2 0 . (B3)

&2pq+q' 2pq+q' (p+q)')

( 0 1 0 )
Hz —— 1+ p, 0 p/q

0 0 1 )
(B4)

and, as before, the full transfer matrix is T&+ = HI V&

with M&+M ——T&+Ml M ~ and PLM being the sum of the

elements of M&+M. The matrices VL, and Hl, for higher L
are given in [12].

The second stage is slightly different, since the addition
of a horizontal bond can lead to the closure of a f'rustrated
loop. Thus, in terms of the factors associated with each
bond, the difference f'rom the FM case above is that we
now have a factor p for an occupied bond between pre-
viously connected sites that does not close a frustrated
loop and a factor 0 for one that does. Again we have for
1=2
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