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We apply both a scalar field theory and a recently developed transfer-matrix method to study the
stationary properties of metastability in a two-state model with weak, long-range interactions: the
N x oo quasi-one-dimensional Ising model. Using the Beld theory, we Bnd the analytic continuation f
of the free energy across the first-order transition, assuming that the system escapes the metastable
state by the nucleation of noninteracting droplets. We find that corrections to the field dependence
are substantial, and, by solving the Euler-Lagrange equation for the model numerically, we have

verified the form of the free-energy cost of nucleation, including the first correction. In the transfer-
matrix method, we associate with the subdominant eigenvectors of the transfer matrix a complex-
valued "constrained" free-energy density f computed directly from the matrix. For the eigenvector
with an associated magnetization most strongly opposed to the applied magnetic field, f exhibits
Bnite-range scaling behavior in agreement with f over a wide range of temperatures and Belds,
extending nearly to the classical spinodal. Some implications of these results for numerical studies
of metastability are discussed.

PACS number(s): 64.60.My, 64.60.+b, 02.70.Rw, 03.50.Kk

I. INTRODUCTION

Determining the stationary properties of metastable
states from the standpoint of statistical mechanics has
been the topic of many studies over the last three
decades. (For reviews, see, e.g. , Refs. [1,2].) Some
early treatments of this problem have shown that tradi-
tional methods of equilibrium statistical mechanics in a
more generalized form might be applicable to metastable
states. In a study of the analytic properties of the free
energy at the condensation point, Langer [3] conjectured
that the imaginary part of the &ee energy F analytically
continued from the equilibrium phase across the first-
order phase transition may be associated with the decay
rate of the metastable phase. A dynamical investigation
of thermally activated nucleation [4,5] showed that for a
wide class of models, the decay rate I' may be written as

/ImF /,

where P is the inverse temperature 1/kBT, and e is a
kinetic prefactor that contains all dependence on the dy-
namics.

Subsequently there have been a number of theoretical
and numerical studies of metastable decay. Binder and
collaborators [6—8] developed a scaling theory based on
a proposed definition of metastable states in terms of a
nonequilibrium relaxation function and tested this theory
by Monte Carlo simulation on the two-dimensional (2D)
Ising model. Schulman and co-workers studied by various
methods metastability in the 2D Ising model [9], in the

1D Kac model with algebraically decaying interactions

[10], in the Curie-Weiss model [11],and in a dropletlike
"urn" model [12]. In addition, Biittiker and Landauer
[13,14] studied nucleation in the overdamped 1D sine-
Gordon chain, and Klein and Unger [15,16] used a P
Geld theory to study systems with long-range interac-
tions in arbitrary dimensions near the classical spinodal.
Other studies of nucleation in short-range systems also
exist in the literature, including field-theoretical studies
[17—19], series expansions [20—23], and exact diagonaliza-
tion studies [24]. Each of the above&studies supported
the validity of Langer's treatment. Recently Gaveau and
Schulman [25] have determined a rigorous upper bound
for I' for a larger class of models than that considered by
Laager, and have used it not only to explain why Eq. (1)
is usually valid, but also to provide an example in which
it can give misleading results.

A study of the analytic properties of transfer-matrix
eigenvalues led to a conjecture [26] that there is a corre-
spondence between the analytically continued &ee-energy
density f and the analytic continuation of the domi-
nant eigenvalue of the transfer matrix. This conjec-
ture has been supported by subsequent numerical stud-
ies [9,27,28] of the 2D Ising model. In a similar study
[29] of an Ising model with Nxoo cylindrical geometry
in which the interaction range is linear in the cross sec-
tion, evidence &om the transfer-matrix eigenvalue spec-
tr»~ was found for the emergence of a classical spin-
odal in the limit of weak, long-range interactions. In the
present work we apply a recently developed "constrained-
transfer-matrix" (CTM) method [30—33] to study the
properties of the metastable phase of this quasi-one-
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dimensional Ising (Q1DI) model. Since the transfer ma-
trix for the Nxoo Q1DI model has a rank of N+1 [29],
instead of the typical value of 2 for short-range Ising
systems, it is relatively easy to study large systems by
transfer-matrix techniques. Using the CTM method,
we obtain a "constrained" &ee-energy density associated
with the metastable phase. Our main focus here will be
to relate the finite-size (or equivalently for this model,
finite-runge) scaling behavior of the constrained free en-

ergy to the scaling behavior of the analytic continuation
of the &ee energy for an equivalent one-dimensional long-
range field-theoretical model. This work represents an
extension to metastable states of our recent study [34]
of critical equilibrium finite-range scaling in the Q1DI
model.

In studies of condensation it is often useful to consider
the behavior of long-range models. One reason for this
is that long-range models share many of the equilibrium
and metastable properties of mean-field models, which
are often exactly soluble. In addition, as with equilib-
rium states near the critical point, the metastable states
of these models near the classical spinodal may be studied
using a simple field-theoretical Hamiltonian [15,16]. Fur-
ther, the behavior of many physical systems, such as co-
herent metal-hydrogen systems [35], superfiuid He [36],
long-chain polymer mixtures [37,38], materials exhibiting
elastic phase transitions [39], superconductors [40], and
ferroelectrics with long-range strain fields [41,42], indeed
are well described by long-range models with suitably
chosen order parameters. Many treatments of classical
metastability for these models are reported in the litera-
ture, using many different approaches: the Fokker-Planck
equation [11,43,44], the properties of the nonequilibrium
relaxation function [6,44], renorrnalization group analysis

[45], and Monte Carlo simulation [43,44,46,47], in addi-
tion to analytic continuation of the &ee energy [11,15,16].
The approach of the present work is to calculate numer-

ically from the transfer matrix a constrained &ee-energy
density [30,31] associated with the classical rnetastable
state, and to determine its scaling behavior in weak Fields

away &om the critical point, and near the classical spin-
odal. We demonstrate that this quantity is closely related
to the analytically continued &ee-energy density.

The remainder of this paper is outlined as follows. In
Sec. II we derive the Euler-Lagrange equation for the or-

der parameter in the Q1DI model, and we identify the so-

lutions corresponding to the equilibrium and metastable
phases, as well as the most likely Quctuation through
which a QlDI system in the metastable phase can decay
into the equilibrium phase. In Sec. III we obtain a map-
ping of the Q1DI model near the classical spinodal to a
one-dimensional Ps field theory. Using both the solution
to the Euler-Lagrange equation and the field theory, we

perform the analytic continuation of the free energy for
the model across the first-order phase transition, obtain-
ing an exact expression for its imaginary part near the
classical spinodal. In Sec. IV we give a brief overview
of the CTM method, which is based on the notion of
"constrained" joint probability densities [30,31], and we

show how the symmetries of the Q1DI model [29] are
used to simplify the calculation. In Sec. V we verify by

numerical integration of the Euler-Lagrange equation the
temperature and field dependence of the the &ee-energy
cost of nucleation, including the first field correction. We
also present our numerical transfer-matrix results and
compare them with finite-range-scaling predictions for f
based on the field-theoretical results of Sec. III. In Sec.
VI we summarize our conclusions, and we discuss the im-

plications of the results to the applicability of the CTM
method to studies of metastability.

II. THE MIDI MODEL

The quasi-one-dimensional Ising, or Q1DI, model [29]
is a one-dimensional chain of L subsystems, or layers,
each of which contains N Ising spins si„=+1, where
the index i=1, . . . , L runs over the layers, and the in-

dex n=1, . . . , N runs over the spins in a given layer. Each
spin interacts ferromagnetically with each of the 2N spins
in the adjacent layers with a coupling J/N&0 and with
the other N —1 spins of its own layer with a coupling
J'/N. Each spin also interacts with an external mag-
netic field H. The Hamiltonian is explicitly

I ( J N N

Si,n Si+1,n'-gN

JI N i N — N

) ) s;,„s;,„+H) s;,„~,
n=1 n'=n+1

(2)

where periodic boundary conditions are imposed, that is,
(Vi, n) sL,+; „——s; „. The sums over n and n' in Eq. (2)
may be performed directly, so this Hamiltonian may be
expressed in terms of a discrete field P of layer magneti-

zation densities P; =N i P„ i s, „as
L

'R[P]= N) JP;P;+—, + ', J'(P2 —N ')-+ HP, . (3)

The partition function may then be written as

Z = ) g[y]e-i'"~4'I, (4)

where

denotes the multiplicity of spin configurations giving rise
to P. In the limit of large N, the probability density of

P is sharply peaked around its maximum, so if we define

a &ee-energy-density functional as

then the &ee-energy density is

fciiDi = (PNL) 'ln Z = min—pX[Q] .

(6)

(7)

Applying Stirling s approximation to Eq. (5), combining
the result with Eqs. (3) and (6), and removing constant
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terms, we have for the MIDI model in Ref. [34]. The resulting Euler-Lagrange equation for
stationary solutions is the continuous analogue to Eq.
(»):

where

b&[P] d2$ 8fcw
bP(r) dT' 8$ y(

(14)

which can be integrated once to give

= fcw(4(r)) —C,t'dpi

i,dr y

is the free-energy density of a Curie-Weiss ferromagnet
with a critical temperature

P. ' = 2J+ J'. (10)

L& —— J(P;+i —2P—;+/; i)+
&

' ——0. (11)~few(4')

Corrections to fcw due to finite N will be briefiy con-
sidered in Sec. VI.

In Ref. [34] we showed, both analytically and numeri-
cally, that the critical equilibrium ¹caling relations for
the MIDI model are those of an Nxoo cylindrical Ising
model above its upper critical dimension, which can be
obtained from a standard one-dimensional P field theory
by a single rescaling of the correlation length. Here we
extend our study of the scaling behavior to metastable
states, where p&p, and HQO, by studying the scaling
behavior of the analytic continuation of the free energy
across the first-order phase transition. To do this, we

must first calculate the free-energy density for the equi-
librium and rnetastable phases of the model, as well as
the height of the free-energy barrier between them. For
large N, we can treat each P; as a continuous variable.
In this case, extremizing P[P] with respect to P in the L
cube [

—1, 1]~, we obtain a system of L coupled nonlinear
equations:

where C is a constant.
Equation (14) may be interpreted as the equation of

motion for a particle of mass J moving in a potential
fcw—(P(r)), where P(r) represents the displacement of

the particle at time r. Detailed descriptions of the so-

lution from this point of view can be found in Refs.
[3,16]. In determining the solutions, we assume that P(r)
is continuous. Since fcw is continuous on the interval

[
—1,1] and continuously differentiable on (—1, 1), P(r) is

twice continuously differentiable on (—1, 1). The bound-
edness of P requires that if the left-hand side of Eq. (15)
is nonzero for all r, it must approach zero as ~r~~oo,
since P would in that case be monotone, while the non-

negativity of the left-hand side of Eq. (15) requires that
(Vr) fcw($(r)))C The fi.rst condition on the solution
is therefore that the range of P is an interval IC[—1, 1]
for which inf[fcw(I)]=C. Further, we must have as a
second condition that fcw(P)=C at the end points of
I. To see this, assume on the contrary that fcw(P') &C
for one of the end points gV. For some r we would then
have P(r)=gV and ~dP/dr[&0 by Eq. (15), forcing P(r) to
violate the 6rst condition by taking values outside the
interval I.

By varying the constant C we 6nd three types of so-
lutions satisfying the above constraints. These are illus-
trated in Fig. 1. The first type (I) is a completely uniform
solution, in which dP/dr=d P/dr =0 for all r By Eq. .

We can gain some understanding of the solutions to Eq.
(11) by expressing the equation in differential form. We
define a function P(r) to be continuous in a dimension-
less longitudinal coordinate r, and we force P(r)=P; at
integer values r=i. By Taylor s theorem, if i & r & i+ 1,
then (P;~i —P;) = [V'P(r)] + O(V'PV' P). Therefore,
if P(r) does not vary too rapidly over the length of the
chain, then the free-energy density is well approximated
by the Ginzburg-Landau-Wilson form:

few

L

&[&] = L «2 J(&&)'+ fcw(&(r))
0

(12)

which represents an effective interaction range

R~ = QP, JN, (13)

as measured in sites. Note, however, that R~ is finite as
measured in layers. In the critical region, this mapping
to the continuum field theory agrees with the formulation

FIG. 1. Schematic diagrams of the solutions to Eq. (14) for
the cases of H=O and H)0. The solutions are shown together
with sketches of the corresponding Curie-Weiss free-energy
density fow The diamond. s mark the uniform (type-I) solu-
tions. The dashed horizontal line in each case represents the
interval over which the order parameter ranges in the type-II
solution. The hashed regions represent the bands of type-III
solutions, which oscillate in space between magnetization den-
sities with the same value of few Below thes. e sketches of the
intervals are sketches in real space of the type-II solutions.
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where

H, = —P, P+P tanh

P, = —(sgnH) gl —P, /P . (17)

The solution with the next-lowest value of T is the type-II
solution. This solution represents the fiuctuation of low-

est &ee energy through which the metastable phase can
decay into the equilibrium phase (for HQO), or through
which a system can pass between two coexisting phases
(for H=O).

For 0(]H~(iH, ~, we can estimate the free-energy cost
AI" of this Huctuation by numerically solving the coupled
nonlinear equations defined by Eq. (11) for an I-layer
system, allowing the magnetization densities to vary con-
tinuously. In Sec. V the numerical integration procedure
is outlined and its results for AF are compared with the
analytic result &om a 6eld-theoretical Hamiltonian near
the spinodal and with our transfer-matrix results.

(14), these solutions exist only if the constant value of
P(r) is an extremum of few T. here can be as many as
three solutions of this type, and they are marked on the
&ee-energy sketches in Fig. 1 as diamonds. The second
type of solution (II) is a nonuniform "droplet" or "in-
terface" solution, in which one of the end points of I is
the locus of a local minimum P, of few that is not a
unique global minimum. If such a minimum exists, there
is only one solution of this type. The vertical lines de-
scending kom the &ee-energy sketches in Fig. 1 mark
the end points of the range of P(r) for this solution, and
sketches of the solution in real space are drawn below. If
the type-II solution exists, then a band of solutions of a
third type (III) also exists. These solutions are oscilla-
tory in space and are marked on the free-energy sketches
in Fig. 1 as hashed regions. They are not considered in
the following discussion since the &ee-energy densities as-
sociated with these solutions are the highest of those for
the three types.

By considering the solutions of types I and II, we

easily identify the equilibrium and metastable states as
those with the two lowest values of T. Both are uni-
form (type-I) solutions, P(r)=P, ~ and P(r) =P „respec-
tively, and thus by Eq. (11) have X[/]=few(g, q) and

P[P]=few(g, ), respectively The .metastable state ex-
ists at temperatures and fields for which few exhibits
two minima. For p&p„ this is true if p, does not coin-
cide with a point of infiection of few The loc.us of the
infiection is given by 4 = +pl —P, /P, so the metastable
state exists if p, & 1 —p, /p. Combining this constraint
with Eq. (11) and with the uniformity of P, we obtain the
classical (Curie-Weiss) spinodal field H, [11,44], which
de6nes the limit of metastability:

sity across H=O does exist as an analogue of Eq. (7),
where the partition function is constrained to con6gura-
tions that do not allow the system to reach equilibrium.
This continuation is the minimum of T that coincides
with fqiDi at H=O, but increases as H departs from
zero. When H reaches the spinodal field, the metastable
minimum vanishes. At this point the continuation has
a branch point and becomes complex as ~H~ is increased
further.

We determine the leading behavior of the analytic
continuation of F in the region of the spinodal (P=P„
H=H, ) as follows. Taking the continuum limit used in

the preceding section, we write P(r) = P, + v(r) and
H = H, + A, and we expand Eq. (12) for the kee-energy-
density functional near the spinodal to third order:

E[T,H, P] = E[T,H„P.]+b,P, (18)

with

L 82
dr 2 J('7v) + A + Av

0

3&cw
4.

L
= —AP, + — dr 2

J(V'v)
0

—Av+ snv +O(v )
W

(19)

where we 6nd

n = ' = —(sgnH) — 1 ——'p '4" p p.
(1 - 0')2 P' P

—JV' v —A+ nv + 0(v ) = 0 .

Since the critical Buctuation consists of a single
droplet, the &ee-energy cost of the Buctuation is not ex-
tensive in I. We take the position of the droplet core
to be r=o in the following discussion. Since this fluctua-
tion is local, the solution to Eq. (21) must be asymptot-
ically uniform in the limit I +oo, that is, v(r)~-const as
~r]~oo. From Eq. (21) we thus have asymptotically

using the explicit form of Eq. (9) for few and Eq. (17).
In Eq. (19) we have shown only the derivatives that are
not identically zero. (Since few is stationary and has an
infiection at P=P„ the first and second P derivatives are
among those not shown. ) From the above expansion,
the requirement that T is stationary gives the Euler-
Lagrange equation

III. ANALYTIC CONTINUATION OP E
v ~ vo —(A/n)'~'+ &(A) (22)

For the Q1DI model with p&p„ the free energy Ii in
the limit N —+oo is not everywhere analytic, but rather
exhibits a discontinuous 6rst derivative with respect to
H at H=O. However, if we vary H continuously through
H=O, an analytic continuation f of the Bee-energy den- —JV' u+ 2nvpu+ nu + O(u ) = 0 . (23)

with the sign restriction sgnvo ——sgnn if ~H~(~H, ~. Chang-
ing variables to u(r) = v(r) —vo, the Euler-Lagrange
equation becomes
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In the limit ~r~ +oo we may neglect terms of O(u ). We
thus obtain

u(r) exp( r—/(„), (24)

where

[~A[ '~'+ O(A'~') (25)

is the relaxation length of the Quctuation. The power-law
dependence on A of the order parameter vp and the-length
scale („ is indicative of a critical point at the spinodal,
as was poiated out previously in Refs. [15,16,45]. We
can use the change of variables above to separate the
L-extensive part of the integral in Eq. (19):

where we have integrated (7'u)2 by parts and used Eqs.
(22) and (23).

If ~H~) [H, [, then vp is purely imaginary. For the uni-
form solutions of the Euler-Lagrange equatioa, v=ki[vp~,
6E has an imaginary part given, to this order of approx-
imation, by the second term in Eq. (26). Combining this
with Eq. (22) aad aoting that vp4 is real, we have

Imf = Im(EE) = +s[o.[
~ (A[ ~ +O(A ) . (27)

This expression is exactly the result for a Curie-Weiss
mean-field model [11,44].

On the other hand, if [K[&[K,~, then b,E is purely
real, and the first three terms of Eq. (26) give the contri-
bution of the uniform metastable background, whereas
the integral term gives the contribution of the critical
droplet. Taking the limit L-+oo, we insert the explicit
solution to Eq. (21) [14—16],

vg(r) = vp 1 —3sech (r/2(„) (28)

into the integrand in Eq. (26) to find the free-energy cost
LI" of forming the droplet:

AF = —N(„[a~ ~
~A~

~ [1+O(A ~ )]
= —"Nv'2J[~[ ' '[A[' '+O(A' ') . (29)

The first expression for b,E in Eq. (29) illustrates the dif-
ference in the behavior of the analytically continued &ee
energy between long-range models, for which the length
scale for the critical droplet is a characteristic length
(„«L [15,16], and mean-field models, for which the only
length scale for fiuctuations is the length L of the entire
system. The vob~~e extensivity and Beld dependence of
the mean-field result for EI" [11,44] caa be recovered by
replacing („with L in Eq. (29).

L
b,& = —AP, + — dr[1z J(V'u) +o, (—svp+vpu + su )L

+O(v )]
L

4 1= —AP, —-avp + O(vp) —— dr[sou1
L

+O(u')]
(26)

Note that if ~K[&~K, [, the analytically continued free

energy F is real valued only in the limit of infinite inter-
action range. However, we are interested in the scaling
of the &ee energy for systems with a long, but finite in-
teraction range. For such systems F is complex, but its
imaginary part approaches zero rapidly as B~~oo. We
can determine the scaling properties of the &ee energy
by expanding the partition function for the system un-
der the constraint that all fluctuations remain subcritical.
Following Refs. [3,48], we write

Z= Z0+Zy+Z (30)

where Zp is the contribution from the region of configu-
ration space arouad the local minimum of P correspond-
ing to the metastable background, Zq is the contribution
from the region around the saddle point corresponding to
the critical droplet, and Z' represents higher-order terms.
The free energy must be extensive in L, so we must also
consider contributions of multiple critical droplets. If
we assume that Z' has contributions only from multiple
identical, noninteracting droplets, then by expanding Z
as a series in Zq/Zp we have [48]

Z = Zp exp(Zq/Zp) .

For the stationary points of E ideatified above as
the uniform metastable background vp aad the critical
droplet vq, we write v(r) = v„(r) + v(r) and expaad P
to second order:

P[v) = E[v„]+8 P,
where

In Eq. (33) we have expanded the second term of the
integrand to first order in v„since the values of v„(r)
are small, and we have again used the fact that few
has an infiection at P=P, . We diagonalize the quadratic
form by a principal-axis transformation v(r) =P a&v~ to
the orthonormal set of eigenmodes of the Schrodiager
equation

2JV v~ +—nv„+ O(v2) v~ = ur~v~ . (34)

From Eqs. (32)—(34) the resulting contribution Z„ to the
partition function can thus be written as a product of
decoupled Gaussian integrals:

Z„= dv exp —NLT v

= exp( —PNLP[v„]) da~ exp( —PNa -sr~) . (35)

Note that although the results that appear later in this
section are restricted to the region of the spinodal, Eq.

h P= — dr z'J(Vv) + z'v
0 P, +e„

L
dr (2J(Vv) + av„+O(v„) v ) . (33)

0



2716 BRYAN M. GORMAN, PER ARNE RIKVOLD, AND M. A. NOVOTNY

(35) holds everywhere in the region of metastability. It
can easily be seen &om this and from Eq. (31) that in
this region a Boltzmann weight equal to e ~ appears
in the analytically continued free energy.

In order to determine the behavior of the analytically
continued &ee energy in the region of the spinodal, where
AF is small, we must further determine the eigenvalues
of Eq. (34). For n=0 Eq. (34) is a &ee-particle equation
with a potential Hoor at o.vo, whereas for n=1 it describes
a particle in a potential well described by a@i(r). There
are three localized eigenmodes for n,=l [14]. They are

vo oc sech (r/2(„),
vi oc sech (r/2(„)tanh(r/2f„),
v2 oc 4sech(r/2(„) —5sech (r/2(„),

for which

(up ———
s~ J/(„= —4!aA!'~ + O(A),

~i ——0+ O(A),

u)2 ———J/(„' = -]nA!'~'+ O(A)

(37)

are the respective eigenvalues [49]. The first eigenmode
vo is the only unstable mode of Quctuation and corre-
sponds to an increasing or decreasing magnetization at
the droplet core. The second eigenmode vi is a transla-
tional mode, and the third eigenmode v2 corresponds to
a widening or narrowing of the droplet. All other eigen-
modes are unbounded and form a continuous spectrum
with ~~&2 J/(2.

We shall consider the contributions of each localized
eigenmode individually. For each u~)0, the Gaussian
integral of Eq. (35) is a well-defined function, G(~z) =
(x/pNu~) ~, but if a~&0, as is the case for j=0 and
j=l, the Gaussian integral is divergent. We handle each
divergence in a diferent way. For j=0, we analytically
continue G(~) &om the half plane defined by Rem)0 to
the entire complex plane. The result is purely imaginary
and has a sign ambiguity, since the continuation of G has
a branch cut on the negative real axis. For j=l, we use
the fact that vi is the normalized derivative of vi [Eq.
(28)] with respect to r. We can thus make a transforma-
tion of the integral to one over dr, the Jacobian of which
is simply!! Vvi!!. The resulting contributions to Zi &om
the localized modes are

continuous spectra of eigenmodes. Using a previous cal-
culation of the ratio of the relevant eigenvalue products
in Appendix B of Ref. [14], we obtain

~ ««I «

i=3

G((u, )

!

/30J!~0](u2 (pN&(„q 7t

where ~. denotes an eigenvalue of the free-particle
Schrodinger equation. Coinbining this with Eqs. (31),
(35), (38), and (39), we have [50]

15 (b,F)'~'
2xP Nf„

= +12 (V 2J~PN) '~'!a!

x[1+O(A'~ )]e (40)

I'
= 15'(v 2JN) ~ ~

! !n[ [A!
g 3/2

NI 7l )
x[1+O(A'~')]e ~ (41)

As was pointed out earlier, for large N, unless H is
extremely close to H„ the &ee-energy cost AI' of sur-
mounting the nucleation barrier is large, so the expo-
nential factor sets the scale for the metastable lifetime.
However, for small N, or for H H„ the lifetime is more
strongly dependent on the dynamics and on the detailed
structure of the saddle point. In Sec. V we will show how
the crossover between these two regimes depends on N
by deriving the finite-range-scaling properties of Imf. In
the same section we will also directly compare numeri-
cal results &om the transfer-matrix method outlined in
the next section with the exponential weight in Eq. (40),
where the gap AI" is determined numerically &om Eq.
(11).

Assuming that the dynamics of the system is governed
by a Fokker-Planck equation, we have &om Ref. [5] that
the kinetic prefactor K=Pp!uo!, where p is the fundamen-
tal rate of fluctuation. With Eqs. (1), (38), and (40), this
gives the nucleation rate density

Z 7r

2 PN[cu !

IV. THE CONSTRAINED- TRANSFER-MATRIX
METHOD

AF
(j =1), (38)

(j=2).

The factor of —has been introduced in the j=0 result [50]
to account for the fact that the integral inappropriately
counts a divergence as one moves toward the metastable
minimum [48]. The form of the j=l result [50] is quite
general and follows &om a simple virial argument [17,18].
We are then left with the contributions to Zi/Zo &om the

Recently one of us [30,31] introduced a transfer-matrix
method, based on the concept of "constrained" joint
probability densities, to obtain analogues of the free-
energy density for constrained states. Preliminary appli-
cations [30—32] to the QlDI model have shown qualita-
tive agreement between the behavior of the free-energy-
density analogue associated with the metastable eigen-
value branch of the transfer matrix and the analyti-
cally continued &ee-energy density. In this study we
use this constrained-transfer-matrix method with 6nite-
range scaling [34] to obtain more quantitative results for
the scaling of the imaginary part of the metastable "con-
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strained" free-energy density. In this section we outline
the method, and we describe the use of symmetry reduc-
tions in its application to the QlDI model.

The standard transfer-matrix method is usually ap-
plied as follows [51]. Starting with a Hamiltonian for an
NxL q-state system that is invariant under translation
in the L direction, such as Eq. (2), we write it as a sum

of layer Hamiltonians: 'R=P,. i 'R(z;, z;+i). The layer
Hamiltonians 'R are chosen to depend only on the qz~

configurations of a pair of adjacent layers and are chosen
so that the form of 'R is independent of the layer index.
We then define the q x q+ transfer matrix T as an opera-
tor in the dual space of configurations lz;)—:ls; i) ls; N)
of each of the two adjacent layers:

(42)

The partition function for the L-layer system with pe-
riodic boundary conditions is then Z=Tr(T~), which in
the limit L-+oo gives the free-energy density in terms
of the largest eigenvalue Ao of T as f= (Np) —inAo.
(Here we index eigenvectors Ia), a=0, 1,2, . . ., in order
of decreasing magnitude of their respective eigenvalues:" ) Since T is po»tive, Ao is po»tive
and nondegenerate, and the eigenvector IO) can be cho-
sen to have all positive elements by the Perron-Frobenius
theorem [52]. The equilibrium state of the system is char-
acterized by the joint and marginal probability densities

A2jA, A &A
(47)

This choice ensures that any fluctuation described by
P j (z), with a'Pn, decays away to the Ia) eigenstate with
a length scale

I
ln(A /A )I . Thus a fiuctuation with

aj(n, which would otherwise grow, is efFectively sup-
pressed. We note, however, that the choice of T given
by Eqs. (44) and (47), which satisfies the constraints, is
not unique. It is easy to see that we recover the original
transfer matrix T when we set n=0.

The "constrained" free-energy density f is defined by

where

f = ('R) —P 'S (48)

In order to ensure that the entire system is character-
ized by P (z), the matrix T must be chosen so that the
constrained joint probability densities P (z, z ) satisfy
the following regularity conditions: (i) that P (z) can
be obtained by s»mming over the coa6gurations of one
layer, P (z)=g, P (z, z'); (ii) that P (z;, z;~I, ) is well
defined for k=0, P (z;, z', )=b. , jP (z;); and (iii) that
P (z;, z;+g) reflects stochastic independence in the limit
Iklmooj limni, (~ P (z;, z;+I,)=P (z;)P (z;+i,). For a
matrix T chosen to commute with T, these require-
ments are satisfied if T has the same rank as T, and if
its dominant eigenvalue is A . The reweighting scheme
used in this work is

Po(z* z~+~) = (Olz')(z'l(Ao 'T) "
Iz'+i )(z*+i IO)

(43)
('R) = —) P (z;,z;+i)'R(z;, z;+i) (49)

(*') = (Olz')(*'lo)

In the following discussion we restrict T to be sym-
metric. (For the QlDI model T is made symmetric by
symmetrizing the layer Hamiltonian 'R.) For each eigen-
value A of T we define a constrained transfer matrix T
to commute with T, so that it can be expanded in the
eigenvectors Ia') of T:

is the expectation value of 'R with respect to P (z, z'),
and a generalized entropy S is defined using P (z, z') in
analogy with the source entropy of a stationary, ergodic
Markov chain (see, e.g. , Ref. [53]):

S = ——) P ( ;,zizi)L ( nIzA 'T Iz;+i) . (50)

T =):l~')s (~')(~'I ~

a'
(44)

The generalized &ee-energy density may be written in
the form

The "reweighted" eigenvalues p, are chosen to produce
"constrained" probability densities,

, (*.IT.I*.+,)
PN PN " '

(z;ITol*;+i)+i i+i+1

P (*' z*+~) = (~lz')(z'l(A. 'T-) " Iz'+i )(z'+~I~)
(45)

P-(*') = (~lz*)(z*l~) *

in analogy with the equilibrium (a=O) case. It was
pointed out in Refs. [9,27,28] that the constrained
marginal probability densities P (z), as defined above,
can be interpreted as actual probability densities of
single-layer con6gurations in a constrained state. For
example, the expectation value (M) of the layer mag-
netization density for a constrained state Ia) is given by

(I).=) P.(z)M(*).

The Grst term is analogous to the equilibrium case, and
the second term is complex valued in general. This is
because T is not a positive matrix in general. To see
this, note that for Ice) (agO) to be orthogonal to IO), the
elements of Ia) must be of mixed sign. Since A is the
largest eigenvalue of T, the largest contribution to T
is the projjection In)A (al, which must contain negative
elements. Therefore the argument to the principal value
of the logarithm (Ln) may be negative. We define the
domain of Lnz to be lzl&0, —n'(argz&n, thus choosing
the branch cut along the negative real axis. It is easy
to see that if a=O, the second term of Eq. (51) vanishes,
leaving the equilibrium Bee-energy density.



2718 &RYAN M. GORMAN, PER ARNE RIKVOLD, AND M. A. NOVOTNY 49

Im-) =g. '" ). I*~) (52)

The above formalism is applicable to any system for
which a symmetric transfer matrix can be written. A
CTM study of the two-dimensional Ising ferromagnet
with nearest-neighbor interactions is reported in Ref.
[33],and a similar study of a three-state model with long-
range interactions is reported in Ref. [54]. One reason we
have chosen to study the Q1DI model is that the Hamil-
tonian is invariant under any permutation of spins in a
given layer, and thus the rank of the transfer matrix for
this model is N+1 [29], instead of the typical value of 2~
for short-range Ising systems. We use the low rank of the
transfer matrix to our advantage by expressing the ma-
trix in a reduced basis. The computer time and memory
saved by this reduction allow us to study systems with
very large cross sections.

The reduction proceeds as follows. Let X be
the 2 -dimensional vector space in the basis {Iz~))
(j=l, . . . , 2 ) of layer configurations, and let G be the
group of spin permutations of the layer, which are rep-
resented by unitary operators Ui, .X~X (k&G). This
group partitions {Ix~)j into N+1 equivalence classes C„
(n=0, . . . , N), each of which may naturally be associ-
ated with a magnetization m„. This partition induces
a decomposition of the configuration space as X=@X„,
where each X„ is the subspace spanned by the basis vec-
tors Iz~)EC„. That T is G invariant means that (VkeG)
TUp ——T, which implies the weaker property that T com-
mutes with every Ug, and thus may be simultaneously
diagonalized with any Ug by a unitary transformation
Si, S& . Thus if D~ and Di, are diagonal matrices con-
taining the eigenvalues of T and Ug, respectively, then
DYDi, =Si,TUi, S& Si,TS& ——D~ Sin——ce th.e eigenval-
ues of Ui, are roots of unity, it follows that for each
eigenvalue of Up not equal to unity, the correspond-
ing transfer-matrix eigenvalue is zero. Therefore T has
nonzero eigenvalues only in the subspace of X for which
the eigenvalues of Up are unity for every k&G. This is
the (N+1)-dimensional G-invariant subspace of X.

We construct a basis in this subspace as follows. For
each class C„, let Im„) denote the normalized G-invariant
vector projecting only into Xn:

V. NUMERICAL RESULTS

In this section we present the results of two numerical
methods used to study the properties of the metastable
phase in the QlDI model. We numerically integrate the
Euler-Lagrange equation, in the discrete form of Eq. (11),
to estimate the &ee-energy cost of nucleation, which we
use to verify the field-theoretical results of Sec. III. We
also apply the CTM formalism outlined in Sec. IV to
the model. We perform finite-range scaling on the con-
strained &ee-energy density f of Eq. (51), and we com-
pare the results of the two numerical methods and the
theoretical predictions of Sec. III.

A. Numerical integration results

To solve Eq. (11) numerically, we represent the field

P as an L vector in which each element is allowed to
vary continuously. For the numerical solutions presented
in this work we have chosen L=100. (Doubling I in
this case produced no discernible change in the results
for the fields and temperatures we studied. ) We set the
interaction constants J=l/2 and J'=0, so that P,=l,
and we obtained numerical results for temperatures in
the range 0.1T,&T&0.8T,. Setting H)0, we determine
the magnetization density P, „at the core of the droplet
by solving fcw(P, „)=few(P,) under the constraint

,. We then force the type-II solution by setting
Pi ——P, „,and P~~z ——P, as boundary conditions The.
layers between L/2 and L are given by the symmetry
imposed by periodic boundary conditions.

The methods chosen to solve Eq. (11) are the well-

known shooting and relaxation methods. (See, e.g. , Ref.
[55].) Taking the explicit form of Eq. (9) for fcw, we use
Eq. (11) directly to shoot from i=1,

i —H/J+ (PJ) 'tanh

stopping before the solution becomes catastrophic. The
remainder of the system is given the value P „and a
relaxation method is employed, using a variant of Eq.
(54),

P; = tanh (P H + 2 J(P; i + P,+i) j . (55)

where g = ( ) is the number of basis vectors in C . Using
Eqs. (42) and (52), we rewrite the transfer matrix in this
reduced basis as

The values are then relaxed iteratively in a checkerboard
fashion, each layer being adjusted by an increment b,P;,
until P. IAP;I(10 for one iteration. The free-energy
cost AI" of forming the droplet is then obtained using
Eq (8):

n, n' x&C x'QC

= ) Im„)(g„g„,)'&'e-&"&-- -- ~(m„ I.
nn'

(53)

L

=) [4(P;+i —4') + fear(4') —fcw(4' .)I (56).
We can similarly decompose the sums over configurations
present in Eqs. (46) and (49)—(51) into sums over the
reduced basis vectors [30]. The transfer-matrix results
presented in the next section were obtained using this
reduced representation.

In Fig. 2 the numerical solutions for various tempera-
tures are shown as functions of IAI/H, = (H, —H)/H,
and are compared with the theoretical result for AF &om
Eq. (29). Corrections to the P Beld theory are seen to be
substantial, especially for low temperatures, except for a
region very close to the spinodal. We can account for
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AF„should give the following expansions:

0.1

P„=1+Ai(P)n + A2(P)n

Q„=A, (p) + A2(p)n '+. . . ,

(59)

0.01

0.001
0.01 0.1

IA.I/H, (T)

where the amplitudes A;(P) are functions only of P, and
in particular, Ai(P)ocelal / . For even n, we transform
the numerical sequences P„and Q„ in order to remove
the Brst corrections. The method we use, a variant of
Neville-Aitken extrapolation [56], is described in detail
in Ref. [34], where it was used to extrapolate with much
success finite-size data carrying very substantial correc-
tions. We apply it here to remove O(n ) corrections to
P„and Q„:

FIG. 2. Estimates for the free-energy cost AI' of form-

ing the critical droplet in the MIDI model, shown as a
cross-section (N) density and as a function of the H-field de-
viation from the spinodal, lAl/H, = (H, —H)/H, . The solid
curves are the results of numerically solving Eq. (11) at tem-
peratures T/T, =0.2, 0.4, 0.6, and 0.8. The curves correspond-
ing to this order run from top to bottom. The dashed straight
lines show the estimates from the P Beld-theoretical result of
Eq. (29) at the same temperatures. These lines appear in the
same order, arith the taro top lines nearly coincident.

P„' = 2P„—P„(2)

Q'„= 2Q„—Q„/s,
(60)

which give P„' = 1+O(n ) and Q„' = Ai(P) +O(n ).
The constancy of the leading terms in P„and Q„was
verified by calculating estimates W„and W& to the ex-
ponents of n in these terms, which we expect to be zero:

W„= (ln 2)
' 1n(P„'/P„'/z), (61)

this rapid departure of the numerical solutions from the
gP field theory by considering the leading field-dependent
corrections to the cubic potential used in Eq. (19). We
can write the first correction to the integrand of Eq. (19)
as 4&v, where

1&'fcw P' &4 P.&

6 aP ~ Pg3 P&
(57)

To leading order, the correction to the left-hand side of
Eq. (21) is then svs, and Eq. (26) may be rewritten

—AQ ——clv —-eve2 3 3
3 0 4 0

L
-au + -e(2vou + u ) dr .1 3 1 3 4
.6 4

0
(58)

The length scale of the droplet is still given approxi-
mately by („, so performing the integration in the last
term introduces a factor of $„. The first correction to
EF thus has the temperature and field dependence of
evo(. -el~I '/'IAI"'.

We can verify the presence and form of this correc-
tion by studying the behavior of the numerically ob-
tained AF as lAl~0. For a given P, we generate a se-
quence of Beld deviations lA„i=As/n (not to be con-
fused with the transfer-matrix eigenvalues), where Ao is
a constant, for an increasing sequence of integers n. We
then calculate the free-energy cost of the critical droplet
LE, using the numerical integration procedure outlined
above, for a field H = H, —A . If we define two se-
quences P =b,F /b, F, where EF is the analytic result
of Eq. (29) at A=A with no corrections assumed, and
Q = n(P„—1), then the dominant contributions to

and similarly for Q„, which gives the leading exponent
to O(n ). For each temperature, we computed the se-
quences AF„using A0 ——0.5H, and n=1, 2, 3, . . . . The
sequences were terminated when P„came within 0.5%
of unity. The resulting estimates of the lAl exponent
(W++ 4) in the leading term lay between 1.249 and 1.251,
and the estimates for the lAl exponent in the first correc-
tion term (2 W~+ 4) lay between 1.74 and 1.75, both con-
firming the field-theoretical predictions of 5/4 and 7/4,
respectively [57]. We used the value of P„' as an estimate
for the leading coefficient to P„. These estimates lay be-
tween 0.9998 and 1.0001, confirming Eq. (29) to high ac-
curacy. Dividing the predicted temperature dependence
of Ai &om Q„', we found the resulting coeificient to vary
only about 15% over the entire range of temperatures,
giving evidence that the predicted temperature depen-
dence of the Brst correction to b,F is also as predicted.
For K/K, «1, the logarithmic cusp singularity in b,F
predicted in Refs. [3,14] was also observed in our numer-
ical integration results [57]. Since transfer-matrix results
were not obtainable at sufEciently low fields, for this work
we will not discuss this Geld region further.

B. Constrained-transfer-matrix results

The CTM method was applied to +1DI systems of fi-
nite cross section N and infinite length, with interaction
constants J=l/2 and J'=0, so that P,=l. The tempera-
tures studied using the CTM method were in the range
0.2T &T&0.8T, and data at each temperature were col-
lected for fields ranging from H=O to H 1.2H, . The
matrix was tridiagonalized by a Householder reduction,
and then diagonalized by an orthogonal-lower-triangular
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(Qi ) decomposition with implicit eigenvalue shifts [55].
The computations were performed in 128-bit precision
on a Cray Y-MP 4/32 supercomputer using about 200
CPU hours. Computations were limited mainly by ma-
chine precision, since the process described in Sec. IV
involves the reweighting and resumm f lming o eigenvalues
whose magnitudes range over 30 or more decades. The
lower limit on the temperatures studied was due to lim-
ited machine precision, whereas the upper limit was due
to the extremely large cross sections required to minimize
finite-size eR'ects. For most temperatures, systems were
studied for N up to the range 100(N&200, although for
the highest temperatures we were able to obtain results
or X 500.

In Fig. 3 typical eigenvalue and layer magnetization
spectra of the transfer matrix for the QIDI model are
shown as functions of H. The eigenvalue spectrum is
shown on a scale so that its lowest branch is the equilib-
rium free-energy density of the system. This spectrum
can be divided into three regions [29]. The first is a region
of low-lying states with positive magnetization. Above
this region is a region of alternately polarized states that
become nearly degenerate at regular intervals in B. Since
all the eigenvectors of the reduced transfer matrix belong
to the same symmetry class, the eigenvalue branches are
never actually degenerate and therefore do not cross, but
rather quickly reverse their direction. In Ref. [29] the
gaps between these nearly degenerate eigenvalues were

-0.3

found to ato approach zero exponentially with ¹ The quicQ
reversal of the eigenvalue branches can be seen in the near

iscontinuities in the magnetization branches, in which
t e values of the magnetizations associated with the two
nearly degenerate eigenvalues are e8'ectively traded. This
region terminates approximately at the Cur' -W '

odal field H
e uric- eiss spin-

o a e H, of Eq. {16). The third region, above the
second, consists of eigenvalues that have little polariza-
tion. For the resul ts presented here we are concerned
with the lowest-lying states of the second region, that is

0

region, at is,
the lowest-lying states with magnetization opposite the
applied magnetic field. These states formes orm a composite

rane t at agrees well with the values shown for the
free-energy density and magnetization of the metastable
state for the Curie-%eiss ferromagnet in the thermody-
narnic limit. This agreement improves as N is increased.

The real and imaginary parts of f from the CTM, as

the
exhibits a composite branch that is nearly ide t' l ten ica o

e composite "metastable" branch shown in Fig. 3, and
thus is also in good agreement with the known free-energy
density of the metastable state. In addition, the corre-

except in the region of the spinodal. Figure 5 shows the
same branches of ~imf

~

as Fig. 4 on a logarith
'

1ari mic sca e.
o e a the values of ~lmf

~

range over more than 30
decades. The structure of the "metastable" branch as a

unction issuccession of lobes rather than as a smooth f t'
ue to the mixing of nearly degenerate eigenvectors (see
ig. 3). ince we were interested in obtaining values from

-0.4

-0.5

-0.3

-0.4

0.6
1.0 „-:.--

0.5 = -&Pm
l

0.0 ~' &

/ j I
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-0.5
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I I I

FIG. 3. Ei e'genvalue (top) and magnetization (bottom)
spectra computed from the transfer matrix for a 35x oo QlDI

Curie-Weiss spinodal jeld H, is marked by the dotted vertical
nsi y an magnetiza-line, an the values of the free-energy densit d

tion or the equilibrium, metastable, and unstable stationary
states of the Curie-Weiss ferromagnet are marked by the thick
gray lines. Fifteen eigenvalue branches lie above the chosen
plotting range, so they are not visible. See Sec. VB for a
detailed description.

0.00
0.0 0.3 0.2 0.3

C

FIG. 4. All branches of Ref (top) and ~imf
~

(bottom)
computed from constrained transfer matrices for a 35xoo
QIDI system at T=0.5T, and plotted versus H The dot-.
ted vertical line indicates the spinodal field. The branches of
Ref are plotted on the same scale as the eigenvalue branches
of Fi . 3 so thatg. , the two spectra may be compared directly.
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FIG. 5. Branches of ln lImf
1

computed from constrained
transfer matrices for a 35xoo Q1DI system at T=0.5T, and
plotted versus H. The (+) symbols touching the lobes are
calculated at fields chosen by the criterion A =(A~~qA~ q) /

for the "metastable" eigenvector lo.). These points are joined
by straight lines. A second set of points, for N=70, is shown
to illustrate the ¹caling behavior of In lImf l. This second
set is expected to continue downward at lower Selds roughly
along the dashed line, but the numerical precision was not suf-
Scient to resolve points in the low-Seld region. The spinodal
Seld is marked by the dotted vertical line.

branches representing the single "metastable" phase la),
we selected values of H for which A =(A ~qA q) /,
thus ensuring a "safe" distance &om the near degenera-
cies. The resulting points are shown on the figure and to-
gether roughly give tangent points for a reasonable enve-
lope for the lobes. We identify this envelope with Imf „
the imaginary part of the constrained free-energy density
for the metastable state. The envelope for a larger system
at the same temperature is also shown. By inspecting the
envelopes for many system sizes, we observed roughly an
exponential dependence on N well inside the spinodal
and a crossover to a slower scaling near the spinodal.
The evidence for this scaling behavior will be made clear
and quantitative in the next subsection.

The presence of the crossover can be seen clearly in Fig.
6, where the second derivative of 1Imf, l

with respect to
H is plotted versus reduced field H/H, for a fixed tem-
perature and various values of N. Each derivative was
calculated by the midpoint method, using only the "tan-
gent" points chosen as described above. As N increases,
a singularity in this derivative develops and pushes closer
to the spinodal. Although the value of H, is temperature
dependent, we observed the same behavior in 1Imf

1
for

the entire range of temperatures studied.

C. Finite-range-scaling results

First me turn our attention to the scaling behavior of
lImf, l

for fields in the range 0(H(H„and we con-
sider fields far enough koxn the spinodal that the Boltz-
mann weight e ~++ sets the scale for the metastable life-
time. Since the transfer-matrix data lack the extremely

FIG. 6. The second derivative of lImf
1

with respect to H
for Q1DI systems with various cross sections N at T=0.2T, .
The symbols are the results of the midpoint method applied to
the points used to define the envelope over the lobes of 1Imf l.

(See Fig. 5.) The lines joining these points are spiines serving
only as guides to the eye. The dotted vertical line indicates
the spinodal Seld.

high resolution required to determine the prefactor to
this weight, we concentrate on the quantity ln 1Imf, l.
Assuming a form for 1Imf, l

as given by Eqs. (29) and
(40), we write

» limf~s, N(2') H)1 /3N +(T' H), (62)

which gives o'~ = o + O(N ~) [34]. Whereas the val-
ues for ln 1Imf ~1 in Eq. (63) were taken directly from
the tangent points, the values of ln 1Imf, l

for smaller
systems had to be interpolated to the same field value
since both the number and positions of the lobes are N
dependent. We performed the interpolation by fitting a
quadratic forxn exactly to the three nearest points. Fig-
ure 7 shows crN for the largest values of N numerically
attainable, plotted versus reduced field for various tem-
peratures. Clearly these estimates are quite consistent
with the N dependence (o=l) of AF given by Eq. (29).
Note that as the estimates approach II„ they drop sig-
nificantly, indicating the rapidly decreasing importance
of the N-dependent exponential factor of lIm f~, ~ 1

com-
pared to the algebraic prefactor, as was pointed out in
Sec. III.

For even N, finite-N estimates for B(T,H) were cal-
culated assuming that 0 =1, and again that the dominant
correction is O(ln N):

where the exponent n and the function b, (T, H) are un-
determined.

For each system size N with N=O(mod 4), we calculate
finite-range estimates for o at fixed T and H assuming
that the dominant correction is from the prefactor and is
therefore O(ln N):

&» llmf~. ,N1
—» limf~. , N/21 lo~ = ln2 'ln

Ig»limf, N/21
—»limf .,&/41)

'

(63)
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FIG. 7. Finite-N estimates for the exponent 0' in Eq. (62),
for the largest N attainable, plotted against reduced field

H/H, for various temperatures T The .dotted horizontal line
indicates the field-theoretical value (o =1) over this range.

1.0

&iv = —p'iv(» llmf ., ivl —» llmfm. ,iv/zl) .

Values for lnllmf, N l
were taken as described in the

preceding paragraph. Figure 8 shows a typical set of
estimates for b,E. Due to logarithmic corrections, the
convergence of naive estimates using Eq. (62) directly,
6(T, H)=(/3N) lnllmf, l, is quite slow. Using Eq.
(64) gives greatly improved estimates, which agree much
better with the Bee-energy cost of nucleation obtained by
numerical integration, and the range of fields over which
there is good agreement extends much closer to the spin-

odal. In addition, these extrapolated estimates show a
trend near the spinodal toward the numerical integration
result, although the limited accuracy in the interpola-
tions used precluded any further extrapolation.

Figure 9 shows A~ for the largest values of X nu-

merically attainable, plotted versus reduced field for var-
ious temperatures. These are compared with the &ee-
energy cost of nucleation obtained though Eq. (56) by
numerically integrating the Euler-Lagrange equation as
described in Sec. V A. As can be seen from Figs. 8 and 9,
the agreement between the extrapolated CTM estimates
and the exact results is impressive. The relative error for
these estimates was consistently below 2% over most of
the field and temperature range and remained below 5%%uo

until the crossover region was entered. By comparing Fig.
9 with Fig. 2, where the free-energy cost of nucleation ob-
tained by numerical integration is shown together with
the Ps field-theoretical results, one sees that the CTM es-
timates for AI faithfully reproduce the higher-order cor-
rections to the Ps field theory over a wide range of fields
and temperatures. This strongly indicates the consis-
tency between the CTM method and the droplet theory
of nucleation, at least whenever a substantial free-energy
barrier against nucleation exists.

Next we consider the behavior of llmf, l
near the spin-

odal, where the extrapolated CTM estimates A~ lie sig-
nificantly above the infinite-N free-energy cost AF ob-
tained by numerical integration. As discussed in Sec.
III, here we must carefully consider the behavior of the
prefactor to the Boltzmann weight. Since the mean-field
spinodal is a line of critical points in a $ field theory,
we can apply critical finite-range scaling [34] in this re-
gion. By recasting Eqs. (27), (29), and (40) in terms of a

scaling variable (=Riv l Al, we determine the finite-range

scaling relation for llmfl to be

llm f l

= R~ / 4(P, (), (65)

0.01

Q. l

lkl/8,

FIG. 8. Finite-N estimates for A(T, H) ln Eq. (62) with
a=1 fixed, plotted against lAl/H, = (H, —H)/H, for
T=O.ST,. Each thin line connects the naive estimates one
would obtain for a particular N directly from Eq. (62). These
estimates decrease in value as N increases. The data points
are estimates using Eq. (64). The diamonds are results using
the largest N attainable. The circles are results for half of the
largest N and are plotted only in the region where finite-size
efFects are large. The thick hne indicates the free-energy cost
of forming the numerical "critical droplet" solution of Eq.
(ll), obtained by numerical integration as described in Sec.
VA.

0.01

O.OO1
0.01 0.1

lkl/H, (T)

FIG. 9. Finite-N estimates for A(T, H) in Eq. (62) with
0 =1 fixed, extrapolated by Eq. (64) for the largest N attain-
able, and plotted against lAl/H, = (H, —H)/H, for various

temperatures T. The lines indicate the free-energy cost of
forming the numerical "critical droplet" solution of Eq. (11)
at the same temperatures, obtained by numerical integration
as described in Sec. V A. Compare with Fig. 2.
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where the scaling function 4 depends on the sign of A = H —H, :

»(&2~&) "I~I "'(""xp(-'s'&2&1~1 "'t"'")
-'[n/-'~'t, "'~'

/H/ ) /H.
/

.

Note that as $~0 from either direction, O goes to zero,
with a cusp singularity at ~H ~=~H,

~

. This singular scal-

ing function cannot be reproduced for finite N. We
therefore expect that the finite-N CTM estimates for

~lmf,
~

near H, should be domiaated by corrections to
scaling. Indeed, the transfer-matrix results for ~lmf,

~

only showed qualitative agreement with the field the-
ory for H-H, . Power-law scaling was found at H„but
the exponent of R~ varied between roughly —0.8 at low

temperatures and —1 at high temperatures, in signifi-
cant disagreement with Eq. (65), and large fiuctuations
in the data precluded the use of extrapolation techniques.
In addition, the values of the scaling functions calcu-
lated &om ~lmf,

~

were consistently greater than those
of the theoretical scaling functions, varying &om a factor
of roughly 2 at low temperatures to 5 at high tempera-
tures. Several possible explaaations for these results will

be considered in the next sectioa.

VI. DISCUSSION

In this work we have applied a scalar field theory
and the recently developed constrained-transfer-matrix
method to the study of metastability ia the ferromagnetic
quasi-one-dimensional Ising model, a two-state model
with weak, long-range iateractions. By solving the
Euler-Lagrange equation associated with the Ginzburg-
Landau-Wilson Hamiltonian for the model, we have iden-
tified the equilibrium aad metastable states as spatially
uniform configurations with the order parameter taking
the Curie-Weiss mean-field values, and we have ideati-
fied the critical Quctuation through which the metastable
state decays. By computing the &ee-energy cost of the
critical fiuctuation nnmerically we were able to calcu-
late the "Boltzmann weight" that appears in the ana-
lytic continuation of the free energy across the first-order
phase transition for the entire region of metastability.
Except in the region of the classical spinodal, this weight
gives the dominant time scale for decay of the metastable
state. In the region of the spinodal we have mapped the
Hamiltonian to a Ps field theory to obtain an expression
for the analytically continued &ee energy with no unde-
termined parameters. Assuming the applicability of the
Fokker-Planck equation to the dynamics, we have thus
also obtained an exact expression for the decay rate of
the metastable state for this model near the classical spin-
odal. In performing the analytic continuation of the &ee
energy, we have found that its corrections are quite sub-
stantial, leading to large differences in, for example, the
free-energy cost of nucleation as one moves away from the
spinodal toward the first-order transition. Numerical so-
lution of the Euler-Lagrange equation strongly supports
the field-theoretical result for the free-energy cost of nu-
cleation, including the first correction term.

We have outlined a method by which a complex ana-
logue of the &ee energy for a constrained system is ob-
tained directly from the transfer matrix for the uncon-
strained system. Extensive symmetry reductions have
enabled us to collect transfer-matrix data for systems
with very large cross sections, and hence very large
interaction ranges. We fouad that the real part of
the constraiaed free-energy density associated with the
metastable phase, Ref „rapidly approaches the &ee-

eaergy density of the metastable phase as N~oo. The
associated imaginary part ~lmf,

~

is extremely small,
showing exponeatial dependence oa the interaction range
over most of the region of metastability and a crossover to
power-law scaling near the classical spinodal. We found
strong evidence for this crossover in the behavior of the
second field derivative of ~lmf, ~. Using numerical ex-
trapolation techniques, we have demonstrated that over
a wide range of fields and temperatures within the regioa
of metastability, the complex "constrained" free-energy
density obtaiaed by this method agrees very well with
the behavior of the analytically continued &ee-energy
deasity. The estimated &ee-energy cost of the critical
droplet was found to lie within 2%%uo of the value obtained
by solving the Euler-Lagrange equation numerically. In
fact, for low temperatures aad for fields sufficiently far
&om the spinodal, the transfer-matrix data were found
to agree with the numerical solution much more closely
than the analytic field-theoretical results.

However, we found that the constrained free-energy
density, as defined by Eq. (51), using the reweighting
scheme defiaed in Eq. (47), does not show consisteat
finite-range scaling at the spinodal. There are several
possible explanations for this result. If we coasider the
possibility that finite-size corrections to the free-energy
cost hF of nucleation are affecting the exponeats in
the prefactor of ~lmf ~, then those corrections must be
O(lnN) [57]. (This rules out, for example, the effect
of relaxing Stirling's approximation, which was used to
derive Eq. (8), since it gives only a correction of order
unity. ) Another possibility is that the effects of eigenvec-
tor mixing are too strong in this region to obtain reason-
able estimates for ~lmf, ~. In addition, for finite cross
sections N, the value of the spinodal may not be en-
tirely real, so that a dominant contribution to ~lmf,

~

emerges from the CTM data due to finite-size rounding.
Iff, does represent the analytic continuation of the &ee-
energy density, then it is possible that the eigenvalues
are being reweighted incorrectly in this region, allowing
unwanted or unphysical Huctuations. These and other
possibilities will be explored in further work.

The CTM method clearly shows promise in the char-
acterization of metastable phases. As a nonperturbative
method, it treats all possible Buctuations in a single cal-
culation, and hence does not require any particular as-
sumptions about the detailed structure of the partition
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function. Since it automatically identi6es the Huctua-
tions that are important to nucleation, the CTM method
has potential applications to the study of metastability
in, for example, disordered systems, in which critical Huc-

tuations are diKcult to characterize. The usefulness of
this method has been demonstrated in a study of the
2D Ising ferromagnet [33], in which excellent quantita-
tive agreement was found between Geld-theoretical and
CTM estimates of the surface free energy and the shape
of the critical droplets, as well as consistency with Monte
Carlo estimates of the metastable lifetime [58,59]. Fur-
thermore, in a three-state model with weak, long-range
interactions [54], [Imf, [

appears to remain consistent
with the metastable lifetime, even under conditions of
competing metastable states, where it has been argued
[25] that the analytic continuation of the free energy may
no longer be a valid measure of the lifetime. A Monte

Carlo study of metastability in the QIDI model, using re-
cently developed techniques, is in progress, and a further
investigation of the connection between the dynamics of
metastable states and the transfer matrix is planned.
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