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Long-range correlations in diffusive systems away from equilibrium
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We study the dynamics of density fluctuations in purely diffusive systems away from equilibrium.
Under some conditions the static density correlation function becomes long ranged. We then analyze
this behavior in the framework of nonequilibrium fluctuating hydrodynamics.
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I. INTRODUCTION

Recently, there has been a great interest in the study
of long-range spatial correlations in nonequilibrium sys-
tems. A wide variety of models governed by Langevin-
like equations has been proposed. A first class of models
has been introduced to describe systems, in the presence
of external noise sources, in which the fields are conserved
only in average. As an example we could mention mod-
els of sandpiles [1] or diffusion in disordered media [2,3],
which display long-range order. A second group of mod-
els would account for situations in which internal noise
sources are present and the total values of the fields are
conserved. Among them one finds turbulence models in
fluids [4], continuum models for interface-growing or di-
rected polymers [5], and some models for driven-diffusive
systems [1,6]. In them, although fluctuations have an
internal origin, they are not necessarily related to dis-
sipation. Whereas in the former long-range behavior is
always observed, in the latter long-range correlations ap-
pear when some intrinsic anisotropy is present.

Hydrodynamic systems constitute a large class of sys-
tems which also presents internal fluctuations coming
from the presence of microscopic degrees of freedom.
The existence of a fluctuation-dissipation theorem intro-
duces new aspects in the behavior of the correlations. In
particular, it is shown that the form of the fluctuation-
dissipation theorem is determinant in order to produce
such correlations. In this sense, a preliminary result
was found for thermal conducting systems [7] where the
temperature correlation function decays as s~!, s be-
ing the distance between the points in consideration [see
Eq. (23)]. Such long-range correlations have been ob-
served experimentally in liquids under thermal gradients
8]

Our purpose in this paper is to analyze the origin of
long-range correlations in purely diffusive systems, de-
scribed only by one variable: the number density of par-
ticles. In these systems diffusion is the only mechanism
responsible for the maintenance of nonequilibrium steady
states. Therefore, we are not considering the possibil-
ity of applying external forces (as, for example, electric
fields) which could be the origin of long-range correla-
tions even if the stationary state is homogeneous [9]. The
dynamics of fluctuations around nonequilibrium steady
states is dictated by nonequilibrium fluctuating hydrody-
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namics. We can imagine a general situation in which the
diffusion coefficient may depend on the position. This is
what happens, for example, when diffusion takes place in
a suspension of particles in the presence of hydrodynamic
interactions or in an inhomogeneous medium. In the first
case the diffusion coefficient is not constant due to the
local concentration value, taking into account the fact
that the distance among the particles can hinder their
movement, while in the second the diffusion coefficient
depends on the position through the inherent properties
of the medium where the particles are diffusing. While
in the first system we obtain long-range correlations, in
the second density fluctuations are é correlated.

The paper is organized as follows. In Sec. II we in-
troduce the models. We specify the steady states and
the fluctuation evolution equations. These results en-
able us, in Sec. III, to determine the static correlation
functions. Finally, in Sec. IV, we discuss the origin of
the long-range terms in the framework of nonequilibrium
fluctuating hydrodynamics.

II. DIFFUSIVE SYSTEMS

Our purpose in this section is to study the fluctuation
dynamics of purely diffusive systems, which will be char-
acterized by the number density field, n(7,t). According
to nonequilibrium thermodynamics [10], this quantity is
governed by the continuity equation

on = =
E-*—V-J—O, (1)

where J is the number density flux, given by Fick’s law

J=D-Vn, (2)
with D being the diffusion tensor, which becomes a scalar
for isotropic systems. To analyze the fluctuation dynam-

ics, we will next study two different models with partic-
ular expressions for the diffusion coefficient.

A. Model A

As a first model, we will consider diffusion in a sys-
tem in which the diffusion coefficient depends on the lo-

267 ©1994 The American Physical Society



268 1. PAGONABARRAGA AND J. M. RUBI 49

cal number density, as happens, for example, when hy-
drodynamic interactions among suspended particles are
considered [11].

The differential equation governing the evolution of the
number density of particles results from the continuity
equation and the linear law for the mass flux, introduced
previously. Since the diffusion coefficient is not constant,
this equation reads

— =V .[D(n)Vn] , (3)

where we have taken into account the fact that the dif-
fusion coefficient depends on position through the local
value of the density n. The expressions of both the sta-
tionary number density profile and diffusion coefficient
are obtained from the solution of Eq. (3) in the station-
ary regime

-

V[D,(n,)-Vn, =0 . (4)

We will analyze the stationary solutions of (4) in the
situation in which our system fills the region between
two parallel plates and a concentration gradient Von =
(npj2 —n-ps2)/L = An/L is kept. In this last expres-
sion, n4/; are the values of the number density at the
plates. If the dependence of D, on n is smooth enough,
we can expand both the stationary values of the diffu-
sion coefficient and the number density in powers of the
parameter 75> (%)8 = ¢, with ng being a characteristic
value of the concentration. Up to linear order in € one
obtains

. 1 e - ,
ng(7) = n' +7-Von + = — (7 Von)? . (
27’10

(2]
—

where n' = n — 3 (An) , with 2 = (np/p +n_r/2)/2

being an a.veraged den51ty value, and the expression for
the diffusion coefficient in this approximation reads

D) = Do |1 — ¢ — S ¥on-7| . (6)

Un) N

Note that for small €, D, remains always positive. Once
we have obtained the stationary solutions, we proceed
to study the dynamics of the fluctuations of the number
density, dn = n — n,. According to fluctuating hydro-
dynamics, fluctuations follow an equation similar to (3)
with stochastic sources JE(7, t). Note that care should be
taken because the fluctuation dynamics will be affected
due to the fact that the diffusion coefficient is a fluctu-
ating quantity. After linearization in the expansion pa-
rameter (an analysis of the case in which mode-coupling
terms are present has been given in [12] for a fluid in

]

G(k,w) = Go(k,w) [1 + eDn

stationary flow), and introducing the expression (6), one
obtains

don = Dy (1 - 6——) Vién
3t Uun)

—DoV? (iF- Von 5n> -V.JR. (7)
o

The random part of the stochastic current satisfies the

fluctuation-dissipation theorem

(JR(7,t) TR t))

on

= 2kpT 5| Dy(P6(7 - )8t —t') 1, (8)

where 1 is the unit matrix and the average is taken
over a stationary ensemble. Therefore, dn describes a
Gaussian process [13]. In the above expression, the dif-
fusion coefficient is precisely (6) and the derivative a" s
must be evaluated in the steady state. For ideal systems
([8]) reduces to

(TR ) TR, 1)

= 2kpTn, (F)D, (F)5(F — 7)5(t —t')1 , (9)

which constitutes a good approximation in the case of
dilute systems.

The formal solution for the number density fluctua-
tions, Eq. (7), in Fourier space is given by

-

sn(k,w) = —iG(k,w)k - JR(k,w) , (10)

where we have defined the Green propagator

G(kw) 1
7“‘) = - - b
—iw+ Do (1- ) k2 = i:5 k2 Von - Vg

(11)

with Vy being the gradient with respect to the compo-
nents of the vector k.

Note that in the absence of inhomogeneities (e = 0), this
propagator reduces to
G(E,w) = Go(E,w) ! (12)
w =
0 —w + Dokz ’

which describes the fluctuation dynamics of diffusion pro-
cesses when the diffusion coefficient is a constant. The
propagator G (k w) can also be expanded in powers of €.
To linear order one gets

i - - - . D . L.
O k2Go(F,w) + i—Go(k,w)k*Von - Vi — 2ie =2 Go(k,w)?Von - k| (13)
0 un) o
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where we have considered that G(k,w) is an operator.
This expression will be used in the next section to com-
pute correlation functions.

B. Model B

We now consider a different model, in which the dif-
fusion process takes place in an inhomogeneous medium
in which the diffusion coefficient may depend on the po-
sition according to the expression

D(7) =Dy + VoD -7. (14)

Here D(7) is the diffusion coefficient, Dy is a constant,

and ﬁoD is a constant vector that will be determined by
boundary conditions. Variations of the diffusion coeffi-
cient are limited to ensure the positive character of such
a quantity. The former expression could be interpreted
as an expansion in the parameter L IVD°OD| , with L being a
characteristic length of the system, in which higher-order
powers of the parameter have been neglected.

The one-dimensional microscopic version of this model
could be a particle performing a random walk in the
presence of traps whose distribution depends on position
[14]. It is possible to show that the probability distri-
bution satisfies a Fokker-Planck equation in which one
may identify the position-dependent diffusion coefficient
as a function of the probability distribution of the traps.
If this distribution varies slowly with the position, one
obtains an expression similar to (14).

As in model A, the number density evolves according
to

on _ . D()Vn . (15)
at

We will analyze the stationary solutions of (15) sub-
jected to the same boundary conditions as in the previous
model. To linear order in AD/Dg, we get

- L= 1 I I
ng(F) =n+7-Von — 7 Von(7- VoD) , (16)
2D,
where we have defined n =7 — %M.

We now proceed to study the d)?roxamics of the num-
ber density fluctuations. Note that fluctuation dynamics
in this model will differ from (7) because now the diffu-
sion coefficient does not fluctuate. To linear order in the
expansion parameter one obtains

86 .
8—: = DoV36n + 7- VoDV 26n

+VoD -Vén -V . JR (17)

where use has been made of Eq. (14). Here, JR is
again the stochastic flux which satisfies the fluctuation-
dissipation theorem formulated in Eq. (9) since the sys-
tem is ideal. In it, the diffusion coefficient is now given
by Eq. (14).

The formal solution for the number density fluctua-
tions in Fourier space also follows from Eq. (10), with
the appropriate Green function, which now reads

1

G E,w = = = =
(k) —iw + Dok? + ik2VoD - Vi +iVoD - k

(18)

This expression differs from (11) because now the diffu-
sion coeflicient does not fluctuate. In the same way as we
have done in model A, the propagator can be expanded
in powers of %102.

III. CORRELATION FUNCTIONS

To compute the number density correlation function,
for model A, we will use (10) and the expression for the
fluctuation-dissipation theorem (9), in (E,w) representa-
tion. We then obtain

(on(k,w)dn(k',w")) = —G(k,w)G(K',w')k - E'[Don’ + in'eVon - Vy,
+iDeVon - Vi — %ﬁonﬁon : mﬁk]a(ﬁ + E') , (19)

where, due to the convolution in real space, G (lz,w) should be understood as an operator. The equal-time correlation
function in real space follows after Fourier transforming (19) according to

(dn(7,t),on(,t)) =

As we have a finite system, one should have used Fourier
series in the spatial direction in which the external gradi-
ent is applied. This fact means that our expressions will
be restricted for points 7 and 7 such that |F—7'| <« 2L /7,
with L being the size of the system. Otherwise, the dis-
crete character of the reciprocal space has to be taken
into account [15]. Performing the integrals, we finally
arrive at

1 © ik [T R
@) /_w dke /_oo dk'e

{/_o; dwe ™t /:; dw’e—iw’t(an(lz, w)&n(k",w'»} . (20)

(On(7, t)on (7, t)) = ng(F)o(F — )

I(d—2) e |Von|?
243 T (&) no |77 — 77|42

(21)

to linear order in e. In the former expression I'(z) is
the Euler function, and it has been given for dimensions
d >2. When d=2 logarithmic divergencies appear. As
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expected, Eq. (21) reduces to its equilibrium counterpart
when the gradient is turned off.

For the sake of simplicity, the long-range contribution
in Eq. (21) has been obtained keeping only the first
term in the virial expansion of the derivative dn/dpu.
which corresponds to the ideal case. Potential interac-
tions between particles would introduce additional terms
in On/Ou [11], but long-range behavior is still present.

Following the same line of reasoning, we can also com-
pute the correlation function for model B introduced in
the previous section. Up to linear order in |VoD)|. we
arrive at the stationary function

Bn(r t)on(m, b)) = n,(Fo(F — 7). (22)

which does not exhibit long-range correlations. This ex-
pression differs from the equilibrium result since now the
local number density enters into the correlation. Equa-
tion (21) reduces to this expression as well, if a constant
diffusion coeflicient is considered.

At this point it is worth comparing the above results
with the exact ones obtained for a thermal diffusive sys-
tem [7]. Although both processes are diffusive and con-
sequently, at the deterministic level, they are described
by the same equations, one should emphasize the dif-
ferent behavior between concentration and temperature
correlation functions in the presence of external gradi-
ents. Indeed, while the former does not always exhibit
long-range behavior, in the latter long-range correlations
are always present. The equal-time temperature correla-
tion function has been found to be

(0T (7. t)6T (7. 1))

_ kB 2(AS(7_ A _WQTJ_Q,
s {Ts(_')é(r SRR (23)

where T, () is the stationary linear temperature profile,
VT the external temperature gradient, kg Boltzmann's
constant. p the density, and ¢, the specific heat at con-
stant volume. Note that Eqs. (21) and (23) have the
same form, which indicates that the modifications in the
propagator induced by the inhomogeneities in the diffu-
sion coeflicient do not modify the long-range behavior of
the correlations.
From expression (21) it is straightforward to compute
the static structure factor, which for d=3 is
e |Von|?

S(/C) = 77,5(k) + ;);7A‘2

. (24)

An estimation of the nonlocal contribution, Sy, of
Eq. (24), given through the second term of its right-hand
side, relative to its equilibrium value, S.q, follows from

Snl(k)
Sealk)

_ €|Von|?
n2k?

8]
33

In fluid systems, the concentration gradient will induce
a coupling between concentration and velocity fluctua-
tions [16]. This fact leads to a nonlocal term, propor-

tional to k~*, which is more important than the above
mentioned correction. However, if the wave vector is
parallel to the external concentration gradient, this cou-
pling may be avoided [17]. For this geometry, S, given
through Eq. (25), is the only nonlocal correction to the
static structure factor. For a colloidal suspension of hard
spheres the quantity (25) is proportional to the volume
fraction [11] and to the ratios An/ng and (kL) .

IV. DISCUSSION

We have shown that purely diffusive systems away from
equilibrium may exhibit long-range correlations. In or-
der to clarify the origin of such correlations we will first
analyze in detail the nature of the Langevin sources.

Our starting point is the expression for the entropy
production corresponding to an irreversible vectorial pro-
cess, which is given as a product of a flux-force pair [18].
Denoting the flux by J and the force by X, one has

o=J-X (26)
from which one formulates the linear law

J=1L X. (27)

where L is the matrix of phenomenological coeflicients.

In the framework of fluctuating hydrodynamics, fluc-
tuations are incorporated simply by adding stochastic
sources to the currents. One has

J=1-X+J%. (28)

where the stochastic current, denoted in general by J%.
introduces a Gaussian white noise stochastic process with
zero mean and whose correlations are given by

(JR(F ) TR ) = D8 (F — 7)8(t — 1) . (29)

The matrix [ is related to the matrix of phenomenologi-
cal coefficients by means of the relation I’ = 2kpL. This
last expression, together with Eq. (29), constitutes the
formulation of the fluctuation-dissipation theorem.

Note that, according to fluctuating hydrodynamics.
the former scheme holds when fluctuations occur around
equilibrium or nonequilibrium steady states. In this last
case, the matrix I" may depend on the position since the
matrix of phenomenological coefficients may depend on
local equilibrium quantities to ensure local Gaussianity.
As a first example, let us consider the diffusion of a con-
taminant. In this case the entropy production reads

N — {4 R
o=Jp- v’? (30)
from which one derives the linear law
. 1 - )
Jp = ;Lo Vi (31)

In these two last expressions, Jp is the diffusion cur-
rent, y the chemical potential, T' the temperature (as-
sumed to be constant) and L, the corresponding ma-
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trix of phenomenological coefficients. The linear law (31)
can be identified with Fick’s law, Jp=-D- §n, where
D=z1Lp %:‘;. This identification enables us to formulate
the fluctuation-dissipation theorem [13]

r= 2kBTQa—n , (32)
ou

which for noninteracting particles becomes
[ =2Dn. (33)

One can also apply our former analysis to the case of
heat conduction. One arrives at

T =2kgT?), (34)

where A is the thermal conductivity related to the cor-
responding matrix of phenomenological coefficients L,
through A = T%Lq.

In the case of heat conduction, for a constant ther-
mal conductivity, the quadratic dependence of the ma-
trix I on temperature is responsible for the long-range
behavior of the static correlation function shown in (23).
Concerning mass diffusion, long-range correlations are
also present only when the corresponding matrix T is
quadratic in the thermodynamic field. In fact, in model
A one has a quadratic dependence of I" on n owing to the
dependence of the diffusion coefficient on the local den-
sity field. In model B the diffusion coefficient depends on
position, but not on the density, and therefore the matrix
T is linear in n.

In order to give a simple justification of the long-
range behavior, we may consider the following intuitive
argument proposed by Ronis [19]. If we have a single
Langevin source at a certain point generating randomly
hydrodynamic excitations, it will strongly correlate, at
equal times, two equidistant points which are closer to
this source than the typical hydrodynamic decay length.
In equilibrium, as we have uncorrelated Langevin sources
everywhere, all of them being equivalent in intensity and
magnitude, the correlations between these two points will
drop out. Out of equilibrium, however, as the Langevin
forces are detuned, long-range correlations could in prin-
ciple appear.

In the models we have analyzed, while the Langevin
forces are detuned long-range correlations are not always
present. Consequently, the previous argument should be
somehow made precise. In model A, and also in thermal
diffusive systems, the ratio between the intensity of the
noise I' and the local value of the corresponding field is
proportional to the stationary field, whereas in model B
it does not depend on it. It is our contention that long-
range behavior originates from the nature of the Langevin
sources, which should increase their intensity relative to
the local thermodynamic field, and not only from their
detuned character. Moreover, the form of Eq. (21) in-
dicates that the modifications in the propagator due to

the inhomogeneities in the diffusion coeflicient and its
fluctuations do not contribute to the long-range behav-
ior of the correlations, which appear only through the
above-named mechanism. Finally, note that the correla-
tion functions decay as k=2 as we have purely diffusive
systems and there is no coupling with the fluctuations of
other hydrodynamic fields.

Long-range correlations have also been predicted in
other nonequilibrium systems, as for example for fluids
under temperature gradients [20], for diffusive systems in
the presence of chemical reactions [13], or in semiconduc-
tors in the presence of an electric field [9]. In fluid sys-
tems, correlations between density or temperature and
velocity appear out of equilibrium owing to the break-
ing of time reversal symmetry and have been observed
experimentally in Brillouin scattering [21]. As regards
Rayleigh scattering, both in simple fluids [8] and in bi-
nary mixtures [16], long-range correlations appear due to
the resonant coupling between temperature or concen-
tration fluctuations and transverse velocity fluctuations
[22], which leads to the characteristic k~* behavior of
the static structure factor. In the remaining examples,
long-range behavior is related to the existence of charac-
teristic frequencies or lengths. Note that in our case, as
in thermal diffusion, detailed balance holds even in the
presence of external constraints [23].

Contrasting with our analysis, other diffusive systems
have been considered in the literature, which do not
satisfy a fluctuation-dissipation theorem, either because
they come from an external noise source [1] or because the
internal noise does not have a thermal origin [4-6]. In all
these examples, the appearance of long-range correlations
typically originate from some kind of essential anisotropy.
However, when a fluctuation-dissipation theorem is satis-
fied, anisotropy does not guarantee long-range order. In
fact, it is easy to see that model A with a constant but
anisotropic diffusion matrix does not produce long-range
correlations.

Model A is a real hydrodynamic model in which long-
range correlations originate from hydrodynamic interac-
tions between particles. A similar model has been pro-
posed as the hydrodynamic limit of a lattice gas of inter-
acting particles [24]. Though a constant diffusion coeffi-
cient is considered, the interaction introduces nonlinear-
ities in the number density in the fluctuation-dissipation
theorem due to the nonideal character of the system. The
long-range term that is obtained can be deduced from our
model A if € is set equal to zero and the next order in
the virial expansion of dn/du is taken into account.

ACKNOWLEDGMENTS

This work has been supported by CICyT, Grant No.
PB92-0859. One of us (I.P.) wants to thank Ministerio
de Educacién y Ciencia for financial support.




272 I. PAGONABARRAGA AND J. M. RUBI 49

(1] G. Grinstein, D.-H. Lee, and S. Sachdev, Phys. Rev. Lett.
64, 1927 (1990).
[2] J. A. Aronovitz and D. R. Nelson, Phys. Rev. A 30. 1948
(1984).
[3] J. M. Rubi and A.-M. S. Tremblay, Phys. Lett. A 111,
33 (1985).
[4] D. Forster, D. R. Nelson, and H. S. Stephen, Phys. Rev.
A 16, 732 (1977).
(5] E. Medina, T. Hwa, H. Kardar, and Y. Zhang, Phys.
Rev. A 39, 3053 (1989).
[6] P. L. Garrido, J. L. Lebowitz, C. Maes, and H. Spohn,
Phys. Rev. A 42, 1954 (1990).
[7] A. Pérez-Madrid and J. M. Rubi, Phys. Rev. A 33, 2716
(1986).
[8] B. M. Law, R. W. Gammon, and J. V. Sengers, Phys.
Rev. Lett. 60, 1554 (1988); B. M. Law, P. N. Segré, R.
W. Gammon, and J. V. Sengers, Phys. Rev. A 41, 816
(1990).
[9] A. Diaz-Guilera and M. Rubi, Physica 135A,, 180 (1986).
[10] L. P. Landau and E. M. Lifschitz, Statistical Physics,
Part 1; Course of Theoretical Physics, Volume 5 (Perga-
mon Press, London, 1980).
[11] C. Van den Broeck, F. Lostak, and H. N. W. Lekker-
kerker, J. Chem. Phys. 74, 2006 (1981).
[12] A. Diaz-Guilera, J. M. Rubi, and D. Bedeaux, Physica A

154, 257 (1988).

[13] J. Keizer, Statistical Thermodynamics of Nonequilibrium
Processes, (Springer-Verlag, New York, 1987).

[14] N. G. Van Kampen, Stochastic Processes in Physics and
Chemistry (North-Holland, Amsterdam, 1987).

[15] L. Torner and J. M. Rubi, Phys. Rev. A 44, 1077 (1991).

[16] B. M. Law and J. C. Nieuwoudt, Phys. Rev. A 40, 3880

(1989); P. N. Segre, R. W. Gammon, and J. V. Sengers,

Phys. Rev. E 47, 1026 (1993).

[. Pagonabarraga, M. Rubi, and Ll. Torner, Physica

173A, 111 (1991).

(18] S. R. de Groot and P. Mazur, Non Equilibrium Thermo-
dynamics (Dover, New York, 1984).

[19] Quoted as a private communication in A.-M. S. Trem-
blay, in Recent developments in Nonequilibrium Thermo-
dynamics, Lecture Notes in Physics Vol. 199, edited by
J. Casas-Vézquez et al. (Springer-Verlag, Berlin, 1984).

[20] D. Ronis, I. Procaccia, and I. Oppenheim, Phys. Rev. A
19, 1324 (1979).

[21] D. Beysens, Y. Garrabos, and G. Zalczer, Phys. Rev.
Lett. 45, 403 (1980).

[22] D. Ronis and I. Procaccia, Phys. Rev. A 26, 1812 (1982).

3] G. Nicolis and M. Malek-Mansour, Phys. Rev. A 29, 2845

(1984).

{24] H. Spohn, J. Phys. A 16, 4275 (1983).

17



