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Observing chaos: Deducing and tracking the state of a chaotic system
from limited observation
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A method is proposed whereby the full state vector of a chaotic system can be reconstructed and
tracked using only the time series of a single observed scalar. It is assumed that an accurate mathemati-
cal description of the system is available. Noise effects on the procedure are investigated using as an ex-

ample a kicked mechanical system which results in a four-dimensional dissipative map.

PACS number(s): 05.45.+b

I. INTRODUCTION

When one considers the situation where there is some
experimental system behaving chaotically, one is able to
accurately observe a single scalar measure of the system
state. Formally, the system state is given by some vector
X which is a function of time. The observed scalar can
be expressed as some function of the system state
0 =g (X). The question we ask is the following: Assum-
ing that an accurate mathematical description of the sys-
tem is available (e.g. , for a discrete time system, the map
is known), how can we deduce the system state X from
measurements of 0? As an example, say we have a
mechanical system consisting of interconnected levers,
gears, springs, etc., and this system is behaving chaotical-
ly on an attractor of a not too large dimension. Can we
deduce the positions of all the parts of the system from
observations of the time series of the position of just one
of the levers?

One way of addressing this general problem is via the
delay coordinate embedding technique. Takens [I] shows
that, generically, a delay coordinate vector
(O„,O„„.. . , O„~tt, )) of sufficiently large X unique-

ly determines the system state X„. Thus, by using a corn-

puter to solve the known mathematical description of the
system (assumed here to be a discrete time system), one
can build up a mapping at each point on the attractor
from an N-dimensional delay coordinate vector
(O„,O„,, . . . , O„(~,~) to the system state X„at time
n. This procedure could require the generation, storing,
and searching of a large amount of data. Another way to
address this problem is by utilizing the so called "extend-
ed Kalman filter, " [2] which is a generalization to non-
linear systems of the usual linear Kalman filter for linear
systems (see Sec. VI). By taking the statistics of noise
into consideration, it can be shown that the Kalman
Filter for a linear system is optimal in the sense that the
error variance between the actual state and the estimated
state is minimal. However, since the implementation of
the extended Kalman filter requires, at each iterate, the
manipulation of matrix equations which have the same
dimension as the full dynamical system, the calculation

can get quite cumbersome when the dimension of the sys-
tem is large. In addition, when the Kalman filter is ex-
tended to a nonlinear system, the sense in which this
method is optimal becomes unclear (c.f. Sec. V) [3].
Thus, while the embedding method and the extended
Kalman filter may be useful for the purpose we address,
they have drawbacks that motivate us to investigate other
approaches [4]. Here, we propose a tracking technique
for relatively high dimensional chaotic systems but with
low dimensional attractors. The stability of our tech-
nique to the addition of small noise will also be investi-
gated. Unlike the Kalman filter, which requires manipu-
lation of matrix equations whose dimension is the full
dimensionality of the system, the number of calculations
in our method is of the order of the number of expanding
directions, which may be much smaller than the system
dimensionality.

The organization of this paper is as follows. In Sec. II,
we will briefly review the construction of a linear ob-
server in the standard feedback scheme. This provides
the conceptual foundation for our nonlinear observer
developed in Sec. III. In Sec. III, we derive the "full-
order" observer for chaotic systems (the full-order ob-
server estimates all components of the state vector from a
given scalar time series). In Sec. IV, we introduce the
kicked double rotor map example and use it to examine
the characteristic convergence time and the basin of at-
traction for a single observer. Then, in Sec. V, we will in-
troduce the "reduced-order" observer for chaotic sys-
tems. As its name suggests, the reduced-order observer is
a more eScient special case of the full-order observer.
We also apply this reduced-order observer to the kicked
double rotor map example to demonstrate the e6ect of
the addition of noise to the system and/or to the output
function. Next, Sec. VI will compare the performance of
the extended Kalman filter with our nonlinear observer
technique. Section VII will provide a summary of our
chaotic observer technique and a discussion of its advan-
tages and drawbacks. Appendix A provides some gen-
eralizations of the discussion in the text. Finally, we note
that, since we wish this paper to be understandable to
researchers in chaotic dynamics, we have not assumed
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prior knowledge of control theory or signal processing.
The reader possessing such knowledge should skip the
background material (e.g., Sec. II) provided in these
fields.

II. LINEAR OBSERVERS

0„

n+(d —1)

=J:. , where J=
x„' n —1

This equation has a unique solution if and only if the ob-
servability matrix J is of rank d. This is the observability
condition introduced by Kalman for a linear time invari-
ant system. Assuming the system to be observable, one
can then reconstruct the actual state X„of the system
from a time series of the scalar output O„using a state
observer, defined by

X„+)=AX„+C[0~+t O~it]

where 0„+,=GAX„. (2)

The idea of this technique is to choose the control vector
C such that the numerically generated state X„will con-
verge to the actual state Xn with increasing n. To derive
the necessary condition for this to happen, one can look
at the dynamics of the error equation,

X„+)
—X„+,= [ A —CG A](X„—X„), (3)

obtained by subtracting (2) from (I). If the control vector
C can be chosen so that the magnitudes of the eigenval-
ues of [ A —CGA] are all less than one, then the error
will exponentially decrease to zero as n approaches
infinity. A standard technique exists for choosing the
control vector C to do this, and can be found in many
control theory textbooks (e.g., see Ref. [5]).

III. CHAOTIC OBSERVERS—FULL ORDER

The general procedure for our chaotic observer tech-
nique is similar in spirit to the design of an observer in
linear control theory. Conceptually, the observer is built
upon a numerical copy of the actual system but with an

In /inear control theory, it is possible to estimate un-

measured state variables using a "state observer. " To be
specific, consider a linear time independent d-dimensional
system,

X„+i= AX„, O„=GX„,
where X is a d-dimensional column vector, A is a con-
stant d Xd matrix, and G is a constant d-dimensional
row vector. The scalar function 0„ is the observed physi-
cal output of the system. This system is observable at
time n if it is possible to determine the system state Xn
from the observation of outputs over a finite time inter-
val. From a series of d measurements

(0„,. . . , 0„+~d,~), one can determine all the d com-
ponents of the state vector X„by solving the following
matrix equation:

additional time dependent correction term which com-
pares the actual output of the chaotic system to the es-
timated output of the observer. Depending on the
difference between the actual and the estimated output,
the time dependent parameters in the correction term are
adjusted so that the difference will exponentially decay to
zero with time (Kalman filters also have this structure;
see Sec. VI). In this section, we shall present a general
procedure for doing this in the case of nonlinear chaotIc
systems.

We assume that the chaotic system that we want to ob-
serve is given by the following equations:

X„+,=M(X„), O„=g(X„) . (4)

Here M and g are nonlinear functions of the d-
dimensional vector Xn. The corresponding state ob-
server is taken to be

Linearizing about Xn gives

5X„+,= [DM(X„)—C„Ds(M(X„))DM(X„)]5X„,

where X„—X„=5X„is a differential, and DM(X„) and
Dg(M(X„)) are the derivatives of M(X„) and

g(M(X„)), respectively, with DM a d by d matrix and

Dg a d-dimensional row vector. Recalling our discussion
of observers from linear time independent systems, the
matrix [ A —CGA] was a constant, and the long term
evolution of the observer error is determined by
[ A —CGA]". This converges to zero with increasing n if
the eigenvalues of [ A —CG A] have magnitudes less than
l. In the chaotic case, however, the long term behavior
of the error is governed by the product of matrices of
the form [DM(X„)—C„D (M(X„))DM(X„)] which
change at each iterate,

5X„,= g [DM(X )
m=0

—C Dg (M(X ) }DM(X ) ]5XO .

While one can adjust each individual matrix at each
iterate to have eigenvalues with magnitudes less than 1,
this does not guarantee that the product goes to zero as n
goes to infinity [6]. Below we give a procedure which
yields convergence of our observer in the chaotic case.

For specificity of the discussion, we will assume that
the chaotic attractor of our system is hyperbolic with two
positive Lyapunov exponents and the rest negative.
Thus, the tangent space at each point on the attractor
can be decomposed into the sum of a two dimensional un-

X„+,=M(X„)+C„[0„+,—0„+)], (5)

where 0„+,=g(M(X„)) and C„ is a time depe-ndent d-

dimensional control column vector which we need to ad-

just at each iterate. Subtracting the equations for Xn+,
and X„+,yields the error equation

X„+)
—X„+,=M(X„)—M(X„}

—C„[g(M(X„)}—g(M(X„)}] . (6)
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In this representation, U„ is a 2X2 submatrix acting on
the unstable subspace, S„ is a (d —2) X(d —2) submatrix
acting on the stable subspace, and W„ is a 2 X(d —2)
submatrix taking vectors from the stable subspace into
the unstable subspace. One should note that U„and %„
are functions of the yet to be determined control vector
C„, and that S„ is known [it is given by DM(X„) to be
restricted to the stable subspace].

We now can analyze the convergence of Eq. (8) by ex-
amining the product of n of these block matrices, which
is given by the following formula:

n n i —1

X II U, W, IIS„
i =1 j=i+1

S„S„] . S)
(9)

Since the product S„S„, S, goes to zero as n ~ ~,
the convergence of the product matrix, Eq. (9), depends
on the product U„U„, U„and on the off diagonal
term g,",[II",+& U.W; II'k ', Sk]. It is demonstrat-

ed in Appendix A that if one chooses the control vector
C„so that the product U„U„, U& goes to zero as
n ~ ~, then the whole matrix (9) will go to zero as well.

To make the product U„U„& ' ' ' U&~0 as n ~~,
first consider each matrix U„ to be lower triangular (i.e.,
with U; =0 for i & j); then we have the following: (i) the
product of two or more such matrices will still be lower
triangular; (ii) the eigenvalues are just the diagonal ele-

ments; and, most importantly, (iii) the eigenvalues of the
product of such matrices will be the product of their
respective eigenvalues. Thus, if we choose C„so that U„
is lower triangular with eigenvalues of magnitude less
than 1, then the product of the U„'s will also be lower tri-
angular with eigenvalues of magnitude less than 1. Most
importantly, it can be shown that the product
U„U„& . . U, ~O as n ~ ~ (see Appendix A). Thus,
we want to choose a basis for the unstable subspace, such
that each of the U„will be lower triangular, while simul-
taneously choosing C„, such that the eigenvalues of U„
will have magnitudes less than 1.

The first step in our procedure is to define two num-
bers, A, '„"and A, '„', and two basis unit column vectors, e'„"
and e'„', for the unstable subspace at X„according to the
following iterative procedure:

stable subspace and a (d —2)-dimensional stable sub-
space. Noting that DM(X„) maps the unstable subspace
at X„ into the unstable subspace at M(X„) and similarly

maps the stable subspace at X„ into the stable subspace
at M(X„), we see that if C„ is chosen to lie in the unsta-
ble subspace at X„, then the action of the
C„Ds(M(X„)}DM(X„)term in Eq. (8) will stay within
the unstable subspace to M(X„). Therefore, in a suitably
chosen basis, the matrix representation of
[DM(X„)—C„Dg(M(X„))DM(X„)] in Eq. (8) can be
written in the following block form:

U„W„
0 S„

(g(1))Dh (1)
)

(1) +(g(2) yDh (2)
)

(2) (12)

The expression in Eq. (12) for the control vector C„ is

valid as long as the denominators Dh„" are not zero. In
our numerical pro~ram, we set a minimum value such
that whenever Dh„' falls below that value, we set the
control vector to zero. Thus, when Dh„" is small, we do
not attempt to bring X and X together. But, if they were
already close, they will still be close one iterate later.
Hence, little is lost by turning the control off for one
iterate, provided that this is done only infrequently.

To see that e'„" and e'„' do not typically approach a
common direction as n increases, we assume that they are
nearly parallel at time n, and then demonstrate that Eq.
(10) and the expression for C„"' in Eq. (12) imply that

they are not nearly parallel at time n + 1. Setting
e'„=e'„"+5e„with ~5e„~ && 1, Eqs. (10) and (12) yield

X'„"e'„",, =DM(X„)5e„
—k'„' 'e'„'+, [ [Dg(M(X„))DM(X„)5e„]/Dh„"'] .

A, '„' e'„",= [DM(X„)]e'„", (10a)

A.'„'e'„+,= [DM(X„)
—

I C„'"e'„'+,I Dg(M(X„))DM(X„)]e'„',
(10b)

with eo" and eo
' initialized from any two linearly in-

dependent column vectors in the unstable subspace of
DM(XO). Here, A, „" and A, '„' are the normalization fac-
tors associated with e'„'+, and e'„+„respectively. We
want to remind the reader that in this nonorthogonal
basis, the components of U„are given by the "inner
product, "

(U„);~ =f'„'+&U„e'„~', where the contravariant
row vectors f'„'+, are defined by f'„'+,e'„+,=5;.. With
this basis representation, U„will be in a lower triangular
form with two free parameters C„"' and C„' ':

A,
'"—C'"DA'" 0

C(g)Dh ()) ~(2) C(2)D~t2), (11)
n n n n n

where

Dh„"=Dg(M(X„)}DM(X„)e"

and C„"=f'„']+,C„. If we adjust C„'" and C„' ' so that the
eigenvalues (i.e., the diagonal elements) of U„are less
than 1, then the product of the matrices in Eq. (8) will

converge to zero as n increases.
A possible concern with our method, as outlined

above, is that, as time n increases, the vectors e'„" and e'„'
might tend to become more and more nearly parallel.
(This would invalidate our procedure since we assume
that e'„" and e'„' span the two-dimensional unstable sub-

space. ) We note, however, that we have the freedom of
choosing the eigenvalues of U„, A'„'=A, '„'—C„"Dh„". If
we choose A'„" to be zero, then the collapse of e'„" and e'„'
to a common direction can be prevented (see next para-
graph), still leaving open one degree of freedom in choos-
ing A'„'. For definiteness and faster convergence, we set
A'„' as well as A'„" to zero, in which case we have
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Thus e'„2+', consists of two terms which are both typically
of order 5e„. The first term points in the direction
DM(X„}5e„,which is difFerent from the direction of
e'„'+', because 5e„ is approximately perpendicular to e'„"
by assumption. The second term points in the direction
e'„'+', [which is the direction of DM(X„)e'„"]. Normally,
since both terms are of order 5e„, e'„+& will in general
point in a different direction than e'„'+'&. However, one
can see a problem in the rare cases when Dh„'" is small.
In these casey, the second term dominates the first term
and we will have e'„+, nearly parallel to e'„'+&, but we
avoid these "glitches" anyway by turning off the control
vector, i.e., C„=—0.

Although the above discussion is in the context of a
two-dimensional unstable subspace, we note that no
essential change is produced in the case where the unsta-
ble subspace has an arbitrary dimension d„. In particu-
lar, Eq. (10) generalizes in a natural way to d„equations
for the d„basis vectors e". This generalization is given
in Appendix B. Also treated is the generalization to the
case where the observation is a vector 0=g(X) of dimen-
sion 1(do &d.

Since our method reconstructs the full state vector of
the system, i.e., all d components of the d-dimensional
vector X„, it is called the full-order observer. Computa-
tionally, since our method requires the manipulation of
only d„equations for the d„basis vectors e" at each
iterate, the calculation for the control vector is relatively
simple when d »d„. In contrast, the extended Kalman
filter requires the manipulation of d Xd matrices at each
iterate. See Sec. VI for a comparison of our technique
with a extended Kalman filter.

IV. CONVERGENCE CHARACTERISTICS
AND THE KICKED DOUBLE ROTOR EXAMPLE

To access the convergence characteristics of our chaot-
ic observer technique, we will use a four dimensional map
which describes the time evolution of a mechanical sys-
tem, called the kicked double rotor [7]. As shown in the
illustration, Fig. 1, the kicked double rotor consists of
two massless rods of lengths L, and L2 connected at the
pivot P2 and with the other end of rod 1 connected to a
fixed pivot at P, . Point masses m, and mz/2 are at-
tached at the end of rod 1 and the two ends of rod 2
as shown. At one of the ends of rod 2, an impulse force
is applied at times t =0, T, 2T, . . . , f(t)
=fo +„05(t nT)y. The —kicked double rotor is
governed by the following set of equations:

KO„+0„

8„+, L8„+G(8„+,)
where 8=(8,, 82), 8= (8„82), and G(8)=(a, sin8, ,
a2sin82) (here t denotes transpose). 8, and 82 are angle
variables giving the positions of the rotor arms, and 8&

and 82 are the angular velocities of the rotor arms at the
instant immediately after the nth kick. a, z

= (f0 /I )L i q

are constants proportional to the strength of the periodic
kick f(t). The moments of inertia about pivots 1 and 2
are chosen to be equal, I=(m, +m2 }Li =m2L2. K and

m2

2

y

m2

2

FIG. 1. The double rotor.

L are constant matrices defined by

2
g z 2 e tg. T

L= g W, e ', K= g W,

tx P
W =

p
W2=

1 vi 1a= —1+—,cr =— 1 ——
2 b,

'
2 b,

which approximately yields 2.22. It is interesting to note
that, although the attractor has only one positive
Lyapunov exponent, there exist periodic orbits on the at-
tractor with two dimensional unstable tangent spaces,
and other periodic orbits on the attractor with one di-
mensional unstable tangent spaces [10]. Thus, the kicked
double rotor map is not globally hyperbolic as assumed in
the previous theoretical discussion. Nevertheless, we find
that our method still works, and the performance is
better if we use two basis vectors [as in Eqs. (10)—(12)].

First, we examine the behavior of the observer if the
observer test orbit starts inside the linear region of the
true orbit. The characteristic time for this case will, in
principle, be dependent upon the chosen eigenvalues of
U„. Ideally [i.e., if the dynamics were truely described by
Eq. (7)], if we choose the eigenvalues of U„ to all be zero
and neglect nonlinear effects, then the observer error
along the unstable direction should vanish in two steps
[11]. However, since the action of the U's is only a linear
approximation of the true dynamics of the chaotic sys-

gi z
——

—,'(v&+2v2+b, ), b =(vi+4vz)'

where v& and v2 are the friction coeScients at the pivots
(see Fig. 1 and Ref. [7]). In our numerical experiment, we
used g(X)=82 and have chosen a particular set of values
for the physical parameters [8]. The resulting chaotic at-
tractor has one positive Lyapunov exponent (AL'" =0.670,
AL' '= —0.404, AL' '= —1.192, AL' '= —2.074). Hence
A"'+A' '& 0 while Az '+A' '+A' ' &0, and the
Lyapunov dimension [9] of the attractor is thus given by

dh =2+ (At"+AL ')/A'I ',
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tern, the average number of iterates [12] needed to bring
the separation between the observer orbit and the true or-
bit from 5.0X10 down to 1.0X10 in a normalized
unit is about 10. Furthermore, when we increase the
magnitude of the eigenvalue [13] A'„', the number of
iterates needed to bring the separation down increases as
expected. Figure 2 is a graph showing the average con-
verging time of this chaotic observer as a function of A'„'.
For the fastest convergence time, it is in principal desir-
able to choose all eigenvalues of U„ to be zero as done in
Eq. (12).

We now discuss the convergence characteristics of our
observer technique for observer initial conditions outside
the linear region. Typically, an observer orbit X„begins
to track the true orbit X„when X„ is located within the
linear region of the map M(X„). Furthermore, if we wait
long enough, an initially nontracking observer orbit X„
will typically and eventually fall within the linear region
of M(X„) at some future time n. In our numerical exper-
iments, we found that the average transient time before
tracking sets in could be quite long. To remedy this
problem, we use many observer test points with randomly
chosen initial conditions on the attractor, and we con-
tinuously test each one to see if it has locked onto the
true orbit X„. We do this by calculating g(X„)—g(X„)
and declaring the orbits X„and X„ locked if this quanti-
ty is small for several successive iterates. We then take
the observer state as X„ for such a locked orbit. We can
estimate the typical number of observer test orbits needed
by determining the average convergence time (7) of a
single observer. To determine this average time (7), we
begin with a large number of randomly chosen observer
test orbits. Then, a semilog plot of the number 8' of or-
bits which are still not tracking the true orbit after a time
interval n is generated. Since the number of such orbits

~

~~

~

t pically deca s exponentially with n, i.e.,
(n)=N0e " ', the inverse of the slope of this graph

defines an average time ( r ) needed for an observer orbit

70

to converge to the true orbit. In Fig. 3, we used 5000
randomly chosen observer test orbits and we estimated
(7)—1500. This value also gives a reasonable value for
the number of observer test orbits needed so that at least
one observer orbit will be tracking the true orbit after the
first few time steps.

V. CHAOTIC OBSERVER—REDUCED ORDER

Y +1=My(Y Z ) atld Z +1=Mz(Y Z ) (14)

where (Mr( ),Mz( )) is the representation of M( ) in
the new coordinate system. The reduced-order observ-
er for the unmeasured gart of the state vector Y„
can then be defined as Y„+I=Mr(Y„,Z„)+C„[Z„+I—Mz(Y„,Z„)],where C„ is the (d —1)-dimensional con-
trol vector corresponding to the reduced-order observer.
Forming the error equation, we have

5Y„+,= [DMr(Y„,Z„)—C„DMz(Y„,Z„)]5Y„, (15)

which can be treated using exactly the same techniques as
already discussed. A similar expression for the control
vector C„can be derived as before [Eq. (12)], but with
D (M(X„))DM(X„) replaced by DMz(Y„,Z„). The
main obvious advantage achieved by doing this is that the
dimensionality of the observer is reduced by 1.

From a different viewpoint, the reduced-order observer
and the actual system can be considered as a pair of cou-
pled systems with the actual system providing the driving
signal and the observer as the response function. This
pair of driven-response systems reduce to the one studied

A variant of our technique discussed in Sec. III can be
formulated if there exists an invertible coordinate trans-
formation

T X—= (X', . . . ,X"-',X') (Y~Z) =(r', . . . , I"-',Z),
where Z is the observed quantity g(X„). In this case, the
observer only needs to estimate a (d —1)-dimensional
vector Y since Z is known from direct measurement.
The state equation X„+,=M(X„) under this coordinate
transformation T can be written as

60-

50-
a$

co~ 40
Q

&~~ 30
O V

20-

10-
Q

Q Q
Q Q Q Q Q

8-

0
-1

(2)
n

4-
in(10) = 8.6633 —6.9279 x 10 n

FIG. 2. Averaged convergence time (in numbers of iteration
steps n) vs the magnitude of the second eigenvalue of U„,A'„'.
The convergence time is defined to be the number of iterates
that the observer takes to reduce ~X„—X„~ 10000 times (from
5.0X10 to 1.0X10 ') and the average value is taken over
5000 randomly chosen observers.

I ~ I I

1000 2000 3000 4000 5000

FIG. 3. 1n(A') vs n with 5000 randomly chosen initial ob-
server test points. An observer test orbit is said to be tracking
thetrue orbit when ~X„—X„~(1.0X10
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by Pecora and Carroll [14] when the feedback control in
our reduced-order observer is turn off (C„—=0). The
resultant observer in this case has also been called a
"trivial reduced-order observer. *' The convergence of
this trivial reduced order observer will obviously depend
on the Lyapunov exponents of the system
Y„+&=Mr(Y„,Z„). Since Mr( ) is basically a subsys-
tem of the full dynamical system M( ), the number of
positive Lyapunov exponents of M( } cannot be larger
than the number of positive Lyapunov exponents of
Mr( ). Pecora and Carroll [14) discuss the case where a
physically constructed subsystem M„( } has no positive
Lyapunov exponents, and it is then possible to synchron-
ize M„( }with the chaotic signal generated by M( ).

Returning now to our discussion of our reduced-order
observer and using the double rotor map example (with
the same set of parameters as in the full-order observer),
we calculated the Lyapunov spectrums for the four
different choices, g(X„)=8&, 82, H„and 82. In all these
cases, T„(X)will simply be a projection onto the unmea-
sured components of X. The results are given in Table I.
For our numerical experiment, we have chosen
g(X„)=82. In this case, the subsystem has one positive
Lyapunov exponent so that synchronism as defined by
Pecora and Carroll does not apply. However, as men-
tioned earlier, since the double rotor map is nonhyperbol-
ic, we found that the performance of the reduced-order
observer is better if we used two basis vectors (rather
than one} in our calculation for the control vector C„.

Noise arises naturally in any real physical systems.
For example, the strength of the kick in our double rotor
might fluctuate because of nonuniformity of the motor
output or there might be imprecision in the measuring
device for the scalar time series. The simplest way to

model noise into our system is to put an additive term
e,5„ to the right hand side of the double rotor map Eq.
(4} to denote noise in the actual system and another addi-
tive term to the output function O„=g(X„)+ebv„ to
denote noise in the measurement of the observed quanti-
ty. Here, c, b are the maximum magnitudes of the noise.
The components of 5„and v„are uncorrelated random
variables with a given noise statistics. In our numerical
example, both of these random variables are chosen to
have zero mean and uniform distribution in
Ivl & l, l51& l. In addition, we assume that the observer
system has no knowledge of the noise. We expect the
method to work well when ~s5„~ and (ev„~ are less than
the typical radius of the linear region of the map. Since
the chaotic system is nonlinear, the size of the linear re-
gion at each point X„varies. Near those points where
the linear region is smaller, the observer will be more sen-
sitive to noise. In our numerical experiment, we found
that for a sufftciently small value of e( &10 ), the ob-
server was able to track the actual state continuously.
However, as c increases, the probability of the observer
being kicked out of the linear region of the map M(X„)
increases. When this happens, the observer orbit might
temporary lose track of the true system state but we can
quickly lock back onto the actual orbit again by first go-
ing back a few iterates to a point where the observer and
the actual state are still close together. Then, we activate
a set of N observer test points randomly chosen within a
neighborhood centered on that past iterate of the ob-
server. When one of these N observer test points begins
to lock onto the actual state, we pick that particular ob-
server test point as our new observed orbit and drop the
rest of the N test points. On the other hand, if none of
the N observer test points locks back onto the actual or-

X —X
n

3-

pQiiA . s w a. .Ui ~a J m~ 4 I.L
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FIG. 4. ~X„—X„~ vs n with
N = 1500, c=2 X 10 . Spikes
with negative magnitude indi-
cate the moments when multiple
observer test points were initiat-
ed. (a) Additive noise in actual
system. (b) Additive noise in
output measurements.

X —X0 Il~ 2

0 I -+la kl g I J I wllas. L ,QaL -™LsI
-1 I I ~ I ~ I ~ I, I a I a I ~ I ~

0 100 200 300 400 500 600 700 800 900 1000



2656 PAUL SO, EDWARD OTT, AND W. P. DAYAWANSA 49

Quantity g(&)
L

g(2)
L

TABLE I. Table of sub-Lyapunov exponents for the reduced
rotor map with the observed quantity g (X„)= 0&, 0&, 8&, or Oz.

The sub-Lyapunov exponents are calculated from a single orbit
over 1 000 000 iterates.

10

~ P ~-—-- ~ --—i-~~~-i~lfF
I ~ I ' ljl ~ I I

, f I
I I I

I Il
I I II I

log
f
x —x

g(X)=01

g(X)=02
g(X)=O,
g(X)=01

0.67 16
0.5916
0.6603
0.0000

—0.3414
—0.4437

0.0000
—0.3036

—1 .4209
—1.4473
—1.3258
—1.1 176

50

I

150
-20

bit within a given short time limit, we reinitiate the pro-
cedure with another set of N randomly chosen observer
test points. Figure 4 shows a plot of fX„—X„f

versus n

with N =1500 and e=2X10 . [Figure 4(a) is the result
for additive noise to the actual system and Fig. 4(b) is the
result for additive noise to the output function. ] We see
that our observer technique successfully tracks X„even
when e is relatively large (signal-to-noise ratio =150)
provided that N is sufficiently large.

One should note that our chaotic observer technique
has an advantage over delay coordinate embedding in the
situation where the system is driven by an observed time
dependent variable input which may be temporally irreg-
ular. In the presence of a time dependent variable input,
delay coordinate embedding will not work simply because
the correlation between the delayed vector
(O„,O„„.. . , O„&) and the system state vector X„
wi11 be lost. However, since the chaotic observer tracks
the actual system in real time, the observer technique will

10

(b)

8- 't

log fx —x

4-

100
-20

200

FIG. 6. log, ofX„—X„f
vs n with P(n)=csin[(2n/T)n] and

f0=6.0. The observer orbit begins outside the linear region of
the actual orbit. (a) c=3; T= 100. (b) c,=3; T =25. Solid
squares denote log, of X„—X„f and empty squares denote fo.
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log
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still work. In order to examine the behavior of the chaot-
ic observer for a system driven by a time dependent vari-
able input, we replace the fixed strength of the kick to the
double rotor at time t=nT by f„=fo+p„where p„
defines the time dependent driving force to the rotor.
Since we compute the control vector C„ in real time, the
time variation in f„will not affect our calculation provid-
ed that we have knowledge of the function p„. In our nu-

merical experiment, we choose p„=e sin[(2m. /T )n],
where e is the amplitude of the perturbation and T is the
period of the perturbation. When the observer orbit
starts within the linear region of the map, it converges
readily to the actual orbit as in the previous examples
without time-dependent variable input [see Fig. 5(a)].
However, when the observer orbit begins outside the
linear region, it typically takes a much longer time to
converge to the actual orbit [see Fig. 6(a)]. This behavior
is similar to the previous situation when the kick strength
is a fixed value. In addition, we also varied the values of
c, and T for a number of different trials but there were no
significant differences in the convergence characteristic of
the observer in all those cases [see Figs. 5(a) and 6(b)].

10 20
-15

30

FIG. 5. log, ofX„—X„f vs n with Pin)=csin[(2n/T)n] and

f0=6 0. The observer orbit b. egins within the linear region of
the actual orbit. (a) c, =3; T=20. (b) c.=2; T =5. Solid
squares denote log» f

X„—X„f and empty squares denote fp.

VI. EXTENDED KALMAN FILTER

The Kalman filter and the extended Kalman filter basi-
cally have the same mathematical structure as our non-
linear observer. This is to say that they a11 have the fol-
1owing form:

X„+,=M(X„)+C„[O„+,—g(M(X„))],
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where X„ is the estimated state of the system,
0„=(g(X„)is the observed output of the system, and C„
is the control vector which will be adjusted according to
the methods used. As we have stated earlier, the funda-
mental consideration in choosing C„ in our method is
stability while the fundamental consideration in choosing
C„ in the Kalman filter is noise minimization. To be con-
crete, let us say we have a noisy system,

X„+,=M(X„)+H„w„, O„=g(X„)+v„, (17)

with E[w„wt ]=R„5„and E[v„v ]=Q„5„(E[]
denotes the expected value). We further assume that the
two random processes {X„jand {O„jare jointly distri-
buted. Then, the extended Kalman filter is defined by the
following set of equations:

X„+,=M(X„)+C[0„+1—g(M(X„))], (18a)

C„=I „Dg„[Dg„I'„Dg„+R„]

X„,=I „[1—Dg„(Dg„I'„Dg„+R„) 'Dg„I'„], (18c)

I'„=DM„X„DM„+H„Q„H„. (18d)

(18b)

X„+1 =DM(X„)X„+H„w„, O„=Dg(X„)X„+v„,
(19)

at X„. Recall that the question of optimality in the linear
case is well defined because lim„„X„=X exists and it is
reasonable to say that X obtained from the Kalman filter
is a minimum within a class of possible filters. However,
when the extended Kalman filter is applied to the actual
nonlinear system [Eq. (17)], lim„„X„ in general does
not exist and the question of optimality becomes less
clear. Since the optimality of the extended Kalman filter
with respect to noise is not a well-defined concept, we will
try to compare the convergence characteristic of the ex-
tended Kalman filter and our nonlinear observer tech-

These equations in general are initialized by setting Xo to
the mean value of the initial orbit Xo and setting Xo to
the initial error covariance matrix E[(Xo—Xo)(X0
—Xo)t]. In the special case when the system is time in-

variant and linear, the corresponding linear Kalman filter
can be directly derived by considering the time evolution
of the means and covariance of the jointly distributed
random variables {X„j and {O„j [15). Actually,
X„=E[X„~O„J is the conditional mean and
X„=E[(X„—X„)(X„—X„)t~O„] is the conditional er-

ror covariance of the state estimate. In the time invariant
linear case, the control vector C„and X„are independent
of the observed variable {O„j and there exist limiting
values C and X for Eqs. (18b) and (18c), respectively, if
the system is completely observable (see Sec. II). Fur-
thermore, it can be shown that the linear Kalman filter is
optimal in the sense that the error covariance X for the
linear Kalman filter is a minimum with respect to all oth-
er estimators in the form described by Eq. (16).

It is important to note that the extended Kalman filter
Eqs. (18a) and (18b) is a nonlinear filter and its construc-
tion is based on the natural extension of the Kalman filter
for the linearized system,

nique in the noiseless case. It should be noted that al-
though noise is an essential part in the construction of
the standard linear Kalman filter and the extended Kal-
man filter, they still function as estimators in the noiseless
case. Setting R„and Q„ to zero, Eq. (18) reduces to the
following form:

X„~,=M(X„)+C„[0„+,—g (M(X„))],
C„=I'„Dg„[DgJI'„Dg„]

X„,= I „[1—Dg„(DgJl „Dg„) 'Dg„I'„],

I „=DM„X„DM~ .

(20a)

(20b)

(20c)

(20d)

9

7

5-

4

3
0

lnOf)i = S.3665 - 2.2939 x 10 n

FICx. 7. In(A) vs n with 5000 randomly chosen initial test
points for the extended Kalman filter. A particular filter is said
to be efFectively working if ~X„—X„~(1.0X10

A discussion of the convergence characteristic for the
nonlinear full-order observer can be found in Sec. III (see
Figs. 2 and 3). We have determined the average conver-
gence time (r) for the extended Kalman filter using the
same method as in our nonlinear observer. We begin
with a large number of randomly chosen initial points for
the extended Kalman filter. Then, we determine the
number 8' of filters which are still not following the true
orbit after a time interval n Fro. m the graph of in(P) vs
n, we estimate (~) to be approximately 500 (Fig. 7).
Comparatively, for this parameter set of the double rotor
map, the extended Kalman filter has a faster convergence
rate than our nonlinear observer. However, the compu-
tation for the control vector C„ in the extended Kalman
filter requires the manipulation of matrix equations with
the same dimension as the full system while our nonlinear
full-order observer technique requires only the manipula-
tion of d„basis vectors. In the case of the double rotor
map (d„=2), the number of computations required in
our nonlinear observer technique is about half the num-
ber of computations needed in the extended Kalman
filter. Another factor of 2 in the nuinber of computations
can be saved if we use only one basis vector in our
reduced-order observer. While our example yields a fac-
tor of 3 in the average convergence rate between the two
methods, the comparative saving in the number of com-
putations using our method will in general .improve
linearly with the ratio d /d„. We can see this by compar-
ing Eqs. (B4) and (B5) for our nonlinear observer tech-
nique and Eq. (18) for the extended Kalman filter. As-
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suming that we are observing only a time series of scalar
output (i.e., do= 1), there will be d„equations for the d„
basis vectors in Eq. (B4). Since each basis vector is d di-
mensional, the numbers of computations needed will
roughly be proportional to d Xd„. On the other hand,
the iteration equation for the error covariance matrix X„
in Eqs. (18c) and (18d) involves manipulations of d Xd
matrices and the number of computation needs will
roughly be proportional to d Xd. Lastly, Eqs. (B5) and
(18b) for the control vector C„ in both methods are com-
parable in complexity. Therefore, the overall ratio of
computation time between the two methods will roughly
be did„.

VII. CONCLUSION

In this paper, we have introduced a method for observ-
ing a chaotic system from a time series of a scalar func-
tion of the system state. Our observer technique will in
general be more eScient than delay coordinate embed-
ding in terms of computation time. This is also true as
compared to an extended Kalman filter in cases where
d »d„. The reduction of computational steps further
improves if a reduced-order observer can be constructed
for the system. We have found in an example that our
observer technique can be effective in a noisy environ-
ment (with signal to noise level -150) provided we used
the multiple observer technique discussed in Sec. V. In
addition, our observer technique still applies when the in-

put to the system is time dependent (this situation would
in general prevent utilization of embedding}. Although
our discussion is limited to discrete time systems, we are
currently working on extending this method to continu-
ous time cases.
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APPENDIX A: PROOF OF CONVERGENCE OF EQ. (9)

gS; &Cp" .
i=1

(A4)

In the following, we will show that there also exist posi-
tive constants CU & oo, C, & co, pU & 1, and g & 1, such
that

(A5)

and

-c. (A6)

provided that we choose the magnitudes of all the eigen-
values of U; to be less than 1. From the definition of the
matrix norm, we have from Eq. (Al),

II U +II&.Il+ II s
i=1 i=1

Now, utilizing Eqs. (A4}—(A6), we have

(A7)

where K=3maxtCU, cs, C, j and p=maxIpU, lus, g},
which is the desired result. In what follows, we derive
Eqs. (A5) and (A6).

We derive Eq. (A5} by using mathematical induction.
QFirst, we let 0 " denote the set of all bounded d„-

dimensional lower triangular matrices whose eigenvalues
all have magnitudes less than 1. For d„=1, the matrices
in Eq. (A5) are just scalars of magnitude less than 1.
Thus, Eq. (A5) is trivially satisfied. Now assume that for
a set of matrices IZ;:Z;EQ "I there exist K & oo and
0 & P & 1 such that Eq. (A5) is true,

will converge to zero with increasing n. To be specific,
we will show that there exist positive constants K & ~
and 0&p&1 such that

IIJ.II-&s" .

(Here, we have used the following matrix norm:

IIJII=—X;,, = l~;, I.)
First, we note that, since S„ is assumed to be stable,

then by definition these exist constants Cz & 00 and
0 & p& & 1, such that

J.= II
i=1

U;

Q S,

gU, K„
i=1

(Al)

In this appendix, we will show that by choosing the
magnitudes of all the eigenvalues of the matrix U„ to be

less than 1 (recall that U„ is a lower triangular matrix),
the product

rrZ,
i=1

&gpn (A8)

Then, we will use this assumption to show that there also
exist C & co and 0&@& 1 such that Eq. (A5) is true for

d„+1
IU;:U;EQ " ). Let us consider a particular matrix

d„+1
U, EQ " . %'e partition it into the following form:

Z; 0
U;=

l I

n n i —1

U W, gS„ (A2)

d„where Z, E Q " and A; is the (d„+ 1 }th eigenvalue of U;.
With this notation, the product of these U; can be writ-
ten as
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rrZ, —X CUP U 'IIW *IICsvs

& y c~~n —1

where

n i —1 n —i

L„=g gA, b; gZ„
i =1 j=1 k=1

Pick a value A,„satisfying I A; I

& A,„&1. Then,

max '

Now consider the norm of L„:

(A9)

=nC'g"

where C'= IIW llmaxI CU Cs j a d g= "[pU ps j
& 1. Choosing g & g & 1 and C' such that

n —1 & Cegn

for n ~ 1, we then yield Eq. (A6).

APPENDIX B: GENERALIZATION
OF THE FULL-ORDER OBSERVER TO SYSTEMS

WITH ARBITRARY NUMBER
OF UNSTABLE DIRECTIONS

AND WI j.H VECTORAL OUTPUT FUNCTION
0=g(X)

—X II Zk
i =1 k=1

Consider a d-dimensional system,

X„+i=M(X„), O„=g(X„), (Bl)

II Zk
i =1 k=1

& X ItP" 'lib -ll(A ..}' '

where the observed output 0„ is a 10-dimensional vector.
Let us say that the unstable subspace of this dynamical
system is d„dimensional. Then, the full-order nonlinear
observer can be defined as

X„+,=M(X„)+C„[O„+,—0„+i] . (B2)
& g E'(max[p, A,„j}"

=nE'(p' }"

where llbmaxll is the largest of the lib II
It '=I llbm, „ll, and

p'=maxIp, A,„j. In order to put the above inequality
in the right form, we pick a y such that p'&y &1. We
then choose a constant K' such that

nE'(p'}" ' &K'y",

for n ~ 1 where the constant K' is any number bigger
than the maximum over n of nX'(p')" 'y ", (since

y )p' this maximum is finite). Thus

(Alo)

With the bounds given by Eqs. (A8)-(A10), one can
choose CU=3max[K, E', lj and p~=max[p, A,„,y j
so that

Here, C„ is a d Xdo time dependent control matrix. The
error equation corresponding to this observer and the
true system is given by

5X„+,= [DM(X„)—C„Dg(M(X„})DM(X„)]5X,(B3)

where X„—X„=SX„is a difFerential, and DM(X„) and
Dg(M(X„) ) are the derivatives of M(X„) and
g(M(X„)},respectively, with DM a d Xd matrix and Dg
a dp Xd matrix. Now, we will restrict the action of C„ to
the unstable subspace by the following construction:

d.
C = ~ P" with P"=C"e" V + +C"e" Vn ~ n n 1 n+1 1 do n+1 do &

i=1

where Ie'„'I [defined in Eq. (A4)] is a set of column vec-
tors which spans the unstable subspace at X„and [V j
can be any complete set of row vectors which spans I '.
In this case, [DM(X„}—C„Dg(M(X„))DM(X„)] can
again be put in a block form:

U W,
i —1

II s„
k=1

n n i —1

II U llwll IIS
k =i+1

To complete our demonstration of Eq. (A7), we now
derive Eq. (A6).

U„Vf„
0 S„

with U„as a d„Xd„submatrix acting on the unstable
subspace, S„as a (d —d„}X (d —d„) submatrix acting on
the stable subspace, and W„as a d„X(d —d„) submatrix
taking vectors from the stable subspace into the unstable

subspace. Then, we define d„numbers A,„,. . . , ~„",
and d„basis column vectors e„,. . . , e„",for the unsta-(1) (d„)

ble subspace at X„according to the following procedure:
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g"'e'", = [DM(X„)]e';"

A,(2)e(2+)
)
= [DM(X„)—p'„"Dg(M(X„))DM(X„)]e'„',

(B4)

(()t„—1

g„"e„+,= DM(X„)—g p'„'Dg(M(X„))DM(X„) e„"
J

In this set of basis, U„will be in lower triangular form with d„Xdo free parameters, C,",1 i —d, 1 j ——do [s«Eq.
(A3)]:

g(1) f(1) p(1)Dh (1

g(2) f(2) p(2)Dh (2)
n n+1 n n

(d„) (d„) ~(d„) (d„)

where Dh„" =Dg{M(X„))DM(X„)e„"is a do-dimensional column vector and [f„'+,] is the corresponding set of(d„) (g )

dual vectors for [e'„'+', ]. We can adjust these d„Xdo free parameters C" such that the eigenvalues of U„,
A'„'= A, („'—f'„'+,p'„'Dh( ) will all be less than 1. Since U„ is d„dimensional, by setting all its eigenvalues to be less than
1 will only provide d„conditions. In other words, we will have d„X(do —1) parameters left for our disposal. This is an
advantage that is not possible in the case when the observed output is a scalar (i.e., do =1). In the simplest case, when
we set all eigenvalues of U„and the rest of the d„X(do —1) parameters (i.e., C,"=OVj & 1) to be zero, the control ma-

trix C„ is given by the following equation:

„dJ„(i)C=~ ".e"' V.n ~ + Dh(i) n+1 1

i=1 I n

2 0 —' 2

will be infinite while the eigenvalues of each individual
matrix are less than 1, i.e., —'.
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