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We consider the evolution of a temporal signal X (¢) that is an intrinsic random field of order zero. In
the sense of a certain measurement-estimation experiment, the state of disorder of X (¢) should increase
toward an equilibrium state. The disorder of X (¢) is measured by its “physical information” J, and the
equilibrium state is determined by the condition that J be an extremum. The equilibrium state is shown
to have a power spectrum S (@) of the form o™ % 1< a <2, that of 1/f noise.

PACS number(s): 05.40.+j, 02.50.—r, 89.70.+c, 43.75.+a

INTRODUCTION

A power spectrum of the form 1/0% o the frequency,
is commonly called “1/f noise.” As a physical
phenomenon, 1/f noise describes an astonishingly
diverse range of phenomena. Only a partial list includes
voltage fluctuations in resistors, semiconductors, vacuum
tubes and cell membranes [1-5], traffic density on a high-
way [6], economic time series [7], musical pitch and
volume [8], sunspot activity [9], flood levels on the river
Nile [9], and the rate of insulin uptake by diabatics [10].
(See succeeding references for other 1/f phenomena.)
What single effect could exist that would cause such a
disparate array of phenomena to share the same form of
power spectrum?

The name “1/f noise” implies that a 1/f power spec-
trum describes “noise” behavior, as if noise is the only
phenomenon that all such effects could conceivably have
in common. In fact, this intuitive notion agrees with the
theme of this paper. This is that the related concept of
disorder, in particular extreme physical disorder, gives
rise to all 1/f phenomena.

Numerous mathematical models have been advanced
to achieve 1/f noise in specific scenarios. Examples are
for fractal shot noise [11], filtered white Gaussian noise
[12], fractionally integrated white noise [13], fractal
Brownian motion [14], superposition relaxation processes
with different time constants [15], fractal renewal pro-
cesses [16], quantum particles in a disordered lattice in
the presence of dissipative forces [17], and a diffusion
process driven by a white noise boundary condition [18].

The latter is of particular interest, since a diffusion pro-
cess obeys increasing entropy [19], which implies increas-
ing disorder. Maximum disorder will be the basis for the
derivation in this paper, although disorder will be mea-
sured by Fisher information rather than by entropy.

The aim of this paper is to establish a universal model
for 1/f noise. A recent attempt at a universal model was
that of extremal dynamics [20], which predicts a se-
quence of 1/f laws of different powers a depending on w;
however, most 1/f phenomena are characterized by a
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single a. It will be seen that, likewise, our model has lim-
itations, specifically in the assumption of an intrinsic ran-
dom field (IRF;) noise process (defined below), which
leads to an overly restrictive range 1 <a <2 for the 1/f
power.

PROBLEM DEFINITION

Let S(w) denote the power spectrum (defined below)
for a temporal signal X(¢). A 1/f power spectrum
S(®w)=w™* must obey nonstationary statistics [21], since
(as has been amply confirmed experimentally [22]) the
spectrum generally holds down to the smallest o that is
measurable. For example, in weather data a 1/f noise
phenomenon has been observed down to @=10"'" Hz or
1 cycle in 300 years [9]. A small o corresponds to a large
time ¢, indicating a correlation time extending back to the
onset of the process. Hence fluctuations X(¢) have an ab-
solute dependence upon time and are therefore nonsta-
tionary. The “strength” of the nonstationarity is, on this
basis, dependent upon the strength of S(w) near the ori-
gin, i.e., the magnitude of a. For example, in [8] typical
records X(¢) for values =0, 1, and 2 are plotted, show-
ing decreasing randomness as « increases. In the context
of musical compositions X(z), which obey a 1/f
phenomenon, it has been observed that power a=0
defines music that sounds too discordant or random,
a=2 defines music that is too repetitious and “boring,”
and a=1 defines just the right tradeoff between random-
ness (novelty) and repetition [8]. Mozart’s music reput-
edly obeys a=1.

Correlation with the past implies memory. Keshner
[22] plots the autocorrelation functions for RC circuits
that approximate a 1/f spectral law for each of a=0, 1,
and 2, and finds these to have increasingly negative slopes
in the order a=1,2,0. Thus, a system with =1 has a
very long memory. The closer a is to 1, the greater is the
influence of the distant past when compared with that of
the recent past. For a near either O or 2 the X(t) process
is influenced by the recent past much more strongly than
by the distant past. In summary, a 1/f noise process has
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memory, and the extent of memory is governed by the
size of a.

Nonstationary statistics, however, present a problem of
definition of the power spectrum. The usual route to its
definition is the Wiener-Khintchine theorem [23], accord-
ing to which S(w) is the Fourier transform of a station-
ary autocorrelation function. However, there is an alter-
native [24,25]. Consider a real-valued, temporal, stochas-
tic signal X(¢) over a time interval (0,T) T finite. It has
an associated (complex) Fourier spectrum

Zr(w)=[[aexwe ™ [VT, i=v=1,
and a periodogram
I(0)=|Zr(0)]?. 2

As an example, the signal X(¢) may be a randomly select-
ed musical composition, where X(¢) is the instantaneous
squared voltage wave form [8]. For simplicity, assume
that the DC component of X(¢) has been subtracted out,
so that (X (¢))=0. (This is equivalent to subtracting out
a fixed amount from the power spectrum at the origin,
which has no effect on its shape elsewhere.)
Define a power spectrum

S(a))=Tlim (If (@), 00 . (3)

In practice, the infinite limit can be well approximated by
practicable time spans of modest length, since most musi-
cal compositions (and signals) are eventually ergodic.
Any of Mahler’s symphonies, e.g., are certainly long
enough to be ergodic. We seek to derive S(w) as obeying
a 1/w® form, a constant.

Equation (3) shows that we are seeking an equilibrium,
or time-invariant, form for S(®). The principle of ex-
treme physical information (EPI) may be used to derive
such equilibrium functions [26]. This principle is intro-
duced in the next paragraph, and is described more fully
in the second section following. Some previous uses of
EPI have been the derivation of the stationary forms of
the Schrodinger wave equation, Klein-Gordon equation,
and Dirac equation [27].

The EPI procedure is briefly as follows. (a) Form a to-
tal information quantity J, which is the difference be-
tween a Fisher information term 7 and a “constraint” in-
formation J,

I=1—J. (4)

Fisher information I is of a universal form [(6b) below],
while J defines the particular scenario. Both I and J are
to be expressed as functionals of the unknown distribu-
tion, here S(w).

(b) The latter is then varied so that both conditions

J=I—J=(extremum) (5a)
and
IJ=I—-J=0, I=I[S(0w)], J=J[S(w)], (5b)

are met [28]. This procedure will be followed below [see
Egs. (20)-(22)] to form an output equilibrium law S(w).
In any scenario the solution [here S(w)] will satisfy
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(5b), since (5b) is an axiom [axiom (iii) below] of the ap-
proach. However, a solution to (5b) does not necessarily
satisfy (5a), since generally a root of a function (say, a po-
lynomial) is not necessarily an extremum as well. For ex-
ample, in the scenario of relativistic quantum mechanics
the Klein-Gordon equation obeys both (5a) and (5b),
while the Dirac equation obeys (5b) but not necessarily
(5a) (depending on the form of the potential field present)
[27]. A tenet of the theory is that every solution to either
(5a) or (5b) has physical significance, i.e., occurs in na-
ture. We call a solution that obeys both (5a) and (5b) a
“principal solution” of the EPI problem.

A principal solution for S(w) will be sought below.
This is for two reasons: (a) Since a principal solution
arises as the solution to either (5a) or (5b), it is, in a sense,
a dominant solution, which complies with the ubiquitous
nature of the 1/f law; and (b) an information J that
satisfies both properties (5a) and (5b) is also, mathemati-
cally, an “information divergence” (see [29]). Briefly, an
information divergence measures the “distance” between
two functionals. Terms I =I[S(w)] and J=J[S(w)] in
Eq. (4) are such functionals; and I —J is obviously a mea-
sure of the distance between I and J. Hence, J is an in-
formation divergence. This class of information quanti-
ties includes Kullback-Leibler entropy and Shannon infor-
mation as members. [Recall that both are expressible as
the difference of two entropy terms, as in (4).] Extremum
principle (5a) then represents a generalized second law of
thermodynamics, where the maximum is replaced by an
extremum. This gives added physical significance to the
solution S(®) found below.

TEMPORAL EVOLUTION AND DISORDER

We next describe the evolution of the time signal X (¢)
in terms of Fisher information. It will be shown that, as
T— oo, the disorder of X(¢) increases and consequently
I—a minimum value. This provides a basis for use of
the EPI approach.

Consider the gedanken measurement experiment in
Fig. 1. Time signal X(¢) is a musical composition; say, a

X Z(w)

FIG. 1. Gedanken measurement-estimation experiment. The
unknown tone amplitude 6(w) is caused by signal X(z) over

ideal interval (0,7,). Subsequent tone amplitudes
Z,(0),Z,(w),. .. are due to listening over ever-longer time in-
tervals.
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randomly selected violin sonata. Signal X(¢) is produced
over increasing time intervals, (0,T,), (0,T,),
(0,T,),..., where Ty <T,<T, . Suppose that a
note o occurs in the first interval (0,T,), and with com-
plex amplitude Z)(w)=6(w) via Eq. (1). However, we
are not listening during the first interval, and so do not
know either X(¢) over the interval or O(w), w fixed. In-
stead, we know spectral amplitudes Z,(w), n=1,2,. ..,
over increasing, nested time intervals (0,7,). The ob-
servable numbers Z, () are formed through Eq. (1), but
without our knowledge of the underlying X(¢) values.
From simple observation of any one Z,(w) we are to best
estimate 6(w). Which value Z,(w) ought to lead, on
average, to the best estimate? How should mean-square
error in the estimate vary with interval length T,?

If the time sequence X(t) over interval (0,T,) were
known, by Eq. (1) 8(w) would be known with zero error.
Therefore we call interval (0,7T,) the “ideal data inter-
val.” Suppose that the next interval (0,T,) includes the
ideal interval plus a small amount. Then, by Eq. (1), its
Fourier transform Z,(w) should depart from 6(w) by a
small amount. Likewise, an optimum estimate of 6(w)
made on the basis of observation Z,(w) should incur
small mean-square error. The trend continues. Interval
(0,T,) includes the ideal plus more “tail” of X(¢) than its
predecessor. Therefore, the resulting Z,(w) will incur
more error from 6(w) than did Z,(w), and so will any es-
timate of O(w) based upon Z,(w). Hence, as time T in-
creases, the optimized mean-square error e* in knowledge
of 8(w), w fixed, should increase.

The Cramer-Rao inequality [30] states that optimum
error e? varies inversely with available information. This
is for a one-dimensional unknown 6. However, our un-
known 6(w) is complex and therefore two dimensional.
An outgrowth of the Cramer-Rao inequality is that [31]
for a 2-D unknown the error relates to a Fisher informa-
tion quantity I as

—13 %‘—'I, el=e’+e?, (6a)
e; e;

(3p /9Z,)*+(3p /3Z,)?
1= [ [dz,dz,~~ ; ? . (6b)

where p=p(Z,,Z;) is the probability law defining the
joint fluctuations of the real and imaginary parts Z,,Z,;,
respectively, of Z;. The integration limits for all in-
tegrals dZ,dZ; are infinite. Note that by Eq. (6b) quanti-
ty I is the trace (here a two-term trace) of the usual Fish-
er information matrix [30]. It is this scalar, trace quanti-
ty that derives physical laws [26]. The trace I also re-
lates, via a Poisson equation, to many other forms of in-
formation including Kullback-Leibler entropy, and forms
due to Jeffreys, Rao, and Wootters [32]. In this sense, I is
a kind of “mother information.”

From the form of (6b), I also measures the roughness
of p, through the strength of its gradient; see also [33].
The broader and smoother a function p(Z,,Z;) is, the
more randomness it exhibits in its variables Z,, Z;.
Hence, I is also a measure of the amount of disorder that
is present.

Mean-square error e? in estimation of  was found to

increase with T. Also, by (6a) with e>=e?=e?/2 (since
Z, and Z, are identically distributed; see below),

I=4/e?. (7a)

Then I must decrease with T. It follows that as 7— o,
tends toward a minimum value,

I(p)=(minimum) . (7b)

The solution p that attains the minimum, and the value of
the minimum, depends upon one or more inputs of con-
straint information regarding p. Achieving (7b) subject to
these constraints was the basis for a derivation procedure
that predated EPI called minimum Fisher information
(MFI); see [34].

EXTREME PHYSICAL INFORMATION
(EPI) PRINCIPLE

The EPI principle is an offshoot of relation (7b). As
discussed [35], it is a stronger approach than MFI since it
has a wider scope of derivation, and follows from a physi-
cally meaningful, axiomatic definition. A quantity J
called physical information is to obey the following ax-
ioms [36].

(1) Disorder aspect. J is a measure of the disorder, or
smoothness, in a paradigm p for a physical scenario. J
measures smoothness through a direct, linear dependence
upon the Fisher information I of (6b),

J=<I(p) . (8)

(ii) Second law of thermodynamics aspect. J is mini-
mized, or more generally, extremized, by formation of p,

J=(extremum) . 9)

(iii) Equivalence of all paradigms. The value of the ex-
tremum should be a universal constant over all phenome-
na. All phenomena are equivalent in their “information
content.” The information J value is zero. As a corol-
lary, J is zero as well when the same phenomenon is
viewed under different choices of coordinate system.
(This is used abundantly below.)

(iv) Invariance to coordinate space. For a given physi-
cal scenario, the same solution p to principle (9) should
occur whether information J about unknown amplitude
0 is initially expressed in the direct measurement space w
or in the Fourier conjugate space ¢. (This property is not
used below.)

As shown [37], the solution to axioms (i)—(iv) is a prin-
ciple (as specialized to our one-component p, two-
dimensional Z,,Z; problem)

(3p /3Z,)*+(3p /Z; )?
p
—f de,dZ,—F[Z,,Z,-,p]==(extremum)=0 (10)

J=[ [dz.dz,

that derives physical paradigms. The first right-hand
term is Fisher information I; see Eq. (6b). This is of a
fixed form independent of scenario. Its effect on the solu-
tion is to produce a smooth output p [by principle (7b)]
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regardless of scenario. The second term is J in Egs.
(4)-(5a) and (5b). Functional F identifies the particular
physical scenario. This gives the principle its scope of
application.

APPLICATION TO 1/f SCENARIO

EPI is a principle of wide applicability in statistical
physics [26,31,34], and it would be surprising if it did not
have something to say about the widespread occurrence
of the 1/f power spectrum. Use of the principle requires
identification of the two contributions I and J.

As was discussed, a time signal X(z) that exhibits 1/f
behavior is intrinsically nonstationary, essentially because
of its long memory. The latter is indicated by the blowup
of 1/f near the origin (the so-called “infrared catas-
trophe” [38]). A wide class of nonstationary signals X(¢)
was recently defined and analyzed by Solo [25]. This is
the class of intrinsic random fields (IRF;) of order zero
[39]. An IRF, is a second-order, mean square continuous
process X (t) obeying X (0)=0, whose values are nonsta-
tionary but whose increments are stationary. A particle
exhibiting ordinary Brownian motion, e.g., has these
properties [40]. The IRF; class of signals achieves non-
stationarity as, effectively, a time-dependent sequence of
stationary processes of short duration (as anticipated by
Keshner [22]). We shall regard X(¢) as an IRF,,.

It was shown [25] that such a process obeys a central
limit theorem. Thus, both the real and imaginary parts
of Z;(w) are independent Gaussian, with the same vari-
ance, at each o, and over all w. This allows us to com-
pute I. If a density p(x) is Gaussian, with variance ol a
simple calculation [using one component of Eq. (6b)]
shows that

I=1/0*. (1ny

Here we have p(Z,,Z;) separable Gaussian, with
0*=S(w)/2 [25]. Then Eq. (6b) gives 1/0? for each
term, or a total of 2/02=4/S(w). Hence,

Ilw)=4/S(w) . (12)

This is the behavior at one frequency w. Since Z ()
is independent over frequencies, the information quanti-
ties (12) add [34], and the total information is

1=4[ do /(@) (13)

Q
This is the amount of Fisher information present about
many (now) unknown tone amplitudes O(w),

0w€E€Q, Q=(w;,0,), in independent, Gaussian data values
Z(w), o€Q. The dc “tone” ©=0 is excluded from Q;
it has no physical reality. All subsequent integrals are
over range ().

The other contributor to J is J. At first, allow J to
have a general form

J=A[doF[S(0)0], (14

where F is a general function of S and w. Obviously F
must be known if solution S(®) is to be found.

Subtracting (14) from (13) [see (4)] results in a physical
information,
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=4[ do [Stw)=1 [doFlS)0] . (1)

We next find function F by demanding S(w) to be a prin-
cipal solution of EPL

FINDING F[S(0),0]

A principal solution S satisfies both axioms (ii) and (iii).
Then the solution obtained by extremizing (15) is the
same as by equating (15) to zero. The Lagrangian for
problem (15) is

L=4/S—AF(S,0) . (16a)
The Euler-Lagrange extremum solution is

oL _,__4 _, |oF

as 52 A as |- (16b)

The condition that (15) be zero is satisfied by equating L
of (16a) to zero,

0=+4/S—A,F(S,0) . (16¢)

We allow for different Lagrange parameters A;,A, in (16b)
and (16c) since they are independent solutions. Placing
Eq. (16¢c) in the same form as (16b) by multiplying
through (16c) by — 1/ gives

0=—4/S*+A,F(S,0)/S . (16d)

Since both (16b) and (16d) must have one solution, we
equate the two. The result is a simple differential equa-
tion, with solution

F(S,0)=G(w)Sb b=—MN/A,. (17)

The new function G(w) arises out of the partial derivative
d/0S operation in (16b), causing an integration constant
G to become an integration function G(w). The informa-
tion (15) now becomes

=4[ do [s(@)=1 [ doS(0)G(a) . (18)

The form of G(w) is found next.

FINDING G(o)

By axiom (iii), J should remain invariant at value zero
to different choices of the underlying coordinate system
(here ®). In past uses of axiom (iii), invoking invariance
to moving frame of reference gave rise to the Lorentz
transformation group of special relativity, and invoking
invariance to arbitrary geometrical distortion of coordi-
nate space gave rise to the kinetic equations of general re-
lativity [26].

Imagine that a solution S(@) to (15) has achieved
J=0. Axiom (iii) requires that J remain zero under, in
particular, an arbitrary change of units in . Define a
new unit ®; =aw, a constant. Then the new power spec-
trum S, obeys

@

Sl(w1)=%S . (19a)

a
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The new information J, is of the form (18),
7,=4fdw,/Sl(a)1)—A(a)fdwlsl(w,)bG(wl) . (19b)

We used the fact that parameter A=A(a) will generally
vary with unit a. Substituting (19a) into (19b), and
changing integration variables back to

o=— (19¢)

gives
=40> [ do [Sto)~1a)a'~* [ doS(0)'Glaw) .

(19d)

Compare Eqgs. (18) and (19d). The extremum solution
S(w) to (18) attained J=0. In order for the extremum
solution to (19d) to retain J,=0, the Lagrangians in (18)
and (19d) must be proportional. We see that they are
(with proportionality constant a?) if and only if G(®)
satisfies

Ma)a' °Glaw)=AM1)a’G(w), A1)=A (19¢)
If A depends upon unit a as a power law,
Ma)=A(1)a¢, c=const, (19
then the solution to (19e) is
Glw)=o* k=1+b—c . (19g)

Interestingly, this is independent of unit a. If, on the oth-
er hand, A(a) does not have the special form (19f) the
answer for G(w) will still be a power-law solution as in
(19g), but the power will now depend on unit a.

SOLUTION

With F and G now known by Egs. (17) and (19g), the
physical information (15) becomes

7=4fdo [S(@)=1 [ doSto)ro* . 20)

Parameters b and k are undetermined numbers. The in-
formation quantity J (far-right term) that fixes the
scenario is a generalized Mellin transform of S(w). In
the particular case b =1, J becomes the ordinary Mellin
transform. The Mellin transform has been shown [41] to
be a solution to classes of fractional differential equations.
Fractional and fractal effects (as previously noted) of
many types dominate the analyses of 1/f noise.

We may now find the equilibrium solution S(w). The
Lagrangian in (20) is

L=L[w,S(» ]———ka k. 3))

The solution by either Euler-Lagrangian equation

dL /38 =0 or L =0 is the same (as required above),

S(w)=Cw™ % C,a=const, a=1—c/(b+1)=20. (22)

Equation (19g) was also used. The exponent is negative
because, physically, S(w) should attenuate with », not
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grow. The case a=0 represents white noise. The case
¢ =0 is of interest. By Eq. (22) it causes pure 1/w noise,
and this is independent of b. Also, by Eq. (19f), A does
not then depend upon the choice of unit a.

Solo [25] has shown that a solution (22) is consistent
with the IRF; assumption if 1 <a <2. Empirically, this
includes the majority of 1/f phenomena [22]. However,
there are physical cases for which a <1 [3] or a>2 [42].
These are beyond the scope of this derivation. It appears
that the IRF, assumption is slightly too restrictive in this
regard. Indeed, the only property of an IRF, process
that was used is that its spectrum Z () obeys a central
limit theorem [see Eq. (11) et vecin.]. It may be that a
less restrictive process exists that likewise obeys a central
limit theorem.

The scope of the approach can be somewhat
broadened. The same solution (22) results from extremiz-
ing the information at a single frequency o,

I=J(w)=4/S(w)—AF[S(w),0] . (23)

Arguments (16a)-(17), and (19a)—(19g) follow for this J
as well. Therefore, the condition for integral form (13) to
hold may now be lifted, this is that Z () be independent
over frequencies w.

The EPI approach allows further generalization. In-
stead of Eq. (15), which has one input of scenario infor-
mation, postulate the simultaneous presence of many
such inputs, as in

N
1=4fdo [S@)~ 3 &, [doFS0). Q4

n=1

This physically represents the presence of N competing
processes. Interestingly, as in the previous case (N=1)
the functions F,(S,») may again be fixed by the argu-
ments (16a)- (17 and (19a)-(19g) that the solution S(w)
should be a principal solution and that J should remain
zero under a linear change of coordinate . The result is
an information

1=4do [Sw)- zx [dos@ o™ 25

[compare with Eq. (20)]. The principal solution must
then obey a transcendental equation,

N bk
4/8(w)— I A,S(w) "0 "=0. (26)

n=1

This is a polynomial equation of power B=max,(b, +1)
in S, and so does not have a closed-form solution unless B
is 4 or less. The solution simplifies if all b, =b, a con-
stant, to

4 1/(b+1)
S(w)= |———— . @7

S Mo
n=1
In the case b=—1,k,=0,1,2,..., this becomes Burg’s

[43] maximum entropy spectral estlmate. Hence, the two
estimation principles of extreme physical information and
maximum entropy are convergent in this case.
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DISCUSSION

The principle of extreme physical information derives
paradigms of physics, i.e., phenomena that are unexplain-
able by other, known phenomena. The Schrodinger wave
equation is a good example. The EPI approach requires
one physical fact, defining the particular scenario, which
is insufficient in itself to derive the paradigm. [Here, it is
that X(z) is an IRF,.] This fact combined with a condi-
tion of maximum disorder, in the Fisher sense, derives
the paradigm. The answer that EPI provides to the ulti-
mate question of why a paradigm arises, is that the para-
digm is an expression by nature of extreme disorder. No
other mechanism need be invoked.

Turning to the problem at hand, we note that attempts
at unifying 1/f power spectra from a phenomenological
viewpoint have been only partially successful; see surveys
[3] and [44] covering decades of past work, and the more
recent approaches described in the Introduction. To us,
this suggests that the phenomenon is a distinct paradigm,
unexplainable by other phenomena, and hence of the type
derivable by EPI.

The EPI derivation rests upon the validity of the IRF,
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assumption, and upon internal consistency of the EPI ap-
proach including its axioms. No other physical mecha-
nism has been used. The random fields considered are,
roughly speaking, filtered versions {Eq. (32) in [25]} of
“nicely behaved” white noise. To the extent that such a
field is present, the 1/f result (22) follows as an expres-
sion of extreme disorder. It would be useful to determine
the extent to which the numerous physical examples of
1/f phenomena follow the IRF, model, and if the model
can be broadened to permit a slightly wider range of a
values. We leave these questions to future research.
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