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Mean field model for spatially extended systems in the presence of mnltiplicative noise
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We present a mean field model that describes the eSect of multiplicative noise in spatially extended
systems. The model can be solved analytically. For the case of the P'potential it predicts that the phase
transition is shifted. This conclusion is supported by numerical simulations of this model in two dimen-
sions.
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I. I¹RODUCTION

Since the late 1970s there has been an increasing in-
terest in the influence of external noise on phase transi-
tions and bifurcations [1]. In particular, it was found
that multiplicative noise can change the location of the
critical point. This conclusion was reached through the
study of zero-dimensional models, based on a phenome-
nological equation for the macroscopic order parameter,
which is subject to perturbation by a multiplicative noise
of finite amplitude. The resulting fluctuations of the or-
der parameter are macroscopic and the location of the
critical point becomes a matter of contention. Instead of
noise-induced bifurcations or phase transitions, research-
ers have coined the terms stochastic bifurcations or
noise-induced transitions to refer to a change in the shape
of the probability density of the order parameter. Other
criteria, yielding different results for the location of criti-
cal points, such as changes in sign of the Lyapunov ex-
ponents or the properties of the extrema of the probabili-
ty density, have also been proposed [2]. In spite of these
interpretation problems, the zero-dimensional models
have been useful to describe systems with macroscopic
fluctuations, such as lasers excited by noisy signals [3],
and have been the paradigm of the so-called noise
induced transitions for more than a decade

Recently, a spatially extended system —the Swift-
Hohenberg equation —has been studied under the
influence of a multiplicative noise affecting the evolution
of microscopic variables [4]. The numerical simulations
presented in this paper indicate that a transition to roll
structures appears in a regime in which a deterministic
analysis predicts a homogeneous solution. In other
words, an ordered state has been induced by the multipli-
cative noise. A similar phenomenon was observed in a
real experiment involving a photosensitive reaction [5].

'Permanent address: Departamento Fisica Aplicada I, Univer-
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The important difference with the above discussed zero-
dimensional models is that these structures are stable, in-
dicating that the macroscopic state of the system retains
its well-defined nonfluctuating character. Furthermore,
the shift in the bifurcation point has the opposite sign of
that predicted by the zero-dimensional theory and is in
good agreement with the prediction based on the sign of
the Lyapunov exponent (linearized theory). These three
facts: the absence of fluctuations in the macroscopic state
of the system, the negative shift of the bifurcation, and
the goodness of the linear analysis, are quite intriguing
for the noise-induced-transition community since they
are in contradiction with what has been found so far in
zero-dimensional systems. A theoretical analysis of multi-
plicative noise perturbing spatially extended systems is
necessary to clarify this new situation. The diSculty of
such an analysis, arising from the lack of detailed balance
or of an equilibrium potential, is probably the reason why
attention has been focused for so long on the study of
zero-dimensional systems. In this paper, we study the
effect of multiplicative noise in spatially distributed sys-
tems by taking into account the spatial coupling in a
mean field kind of way. The resulting mean field model
can be solved exactly, even in the presence of multiplica-
tive noise, and its predictions are in qualitative agreement
with the above-mentioned observations and with detailed
numerical simulations of the P model in two dimensions.
In spite of its simplicity, this exactly solvable model is, to
our knowledge, the first one to explain the properties of a
system driven by multiplicative noise with infinitely many
degrees of freedom.

II. MODEL

To avoid unnecessary mathematical complications, we
will consider here a model defined on a lattice with a sin-
gle scalar variable. The state of the system is thus
characterized by the values [x;] of a variable x at the lat-
tice sites i of a d-dimensional cubic lattice. The rate of
change of [x;] is given by the following Langevin equa-
tion:
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aU(x;) + g (x„—x;)+g"g(x;)+(," .
c)x; 2'

The sum over n runs over the nearest neighbors of i. The
corresponding term stands for the discretized form of the
diffusion operator. g," and g" represent independent
Gaussian white noises with zero mean value and correla-
tion

(g," (t)g'," (t')&=o', 5,,5(t t') —. (2)

The additive noise term g,"models the presence of ther-
modynamic fiuctuations, while the multiplicative noise
g" represents the effect of an external noise. Note that
both types of noises are assumed to be independent of
each other, white in time and uncorrelated in space. The
multiplicative noise term will be interpreted according to
the Stratonovich calculus. Furthermore, we will concen-
trate on the case of the so-called P model, although more
complicated models can be treated along similar lines.
The potential U is thus given by

U(x)= ——x +—x
2 4

(3)

To keep matters simple, we also assume that the external
noise acts directly on the control parameter a, i.e.,
g (x)=x. Finally we note that we can set P= 1 and o, =1
by an appropriate choice of the units for the x, variable
and the time variable. We choose this parametrization
given by D and a instead of some of those used in the
literature (see Ref. [6] for a review of such parametriza-
tions) because the limit D~ao clarifies some points of
the analytical treatment of our model. A Langevin equa-
tion with this type of potential, but without the multipli-
cative noise term, has been used to describe a wide
variety of both equilibrium [7,8] and nonequilibrium phe-
nomena [9,10] and has been studied in great detail. In
particular it is known that the system undergoes a phase
transition in dimensions larger or equal to two (see, e.g. ,

[6] for a recent study of the critical properties in dimen-
sion 2; for a discussion about universality in 1 dimension
see [11];for the effect of colored noise see [12]).

An analytic study of Eq. (1) is very difficult. In partic-
ular, the explicit form of the steady-state solution for the
multivariate probability P( [x,. j ) is only known in the ab-

sence of multiplicative noise, when it is nothing but the
thermal equilibrium state. In order to make progress, we
decouple the behavior of one cell from the others by the
following mean field assumption: the spatial coupling of
cell i to its neighbors is replaced by a coupling to the
average value or mean field p(t)

x; =ax; —x; +D(p, —x;)+g,"+g"x; (4)

a P(x;t)=-
at

a 3
[—ax+x D(JM —x)]-

ax

1 a' o'. a a+— + x x P(x;t) .
2 ax 2 ax ax

The stationary solution of this equation is found to be

and the value of y, (t) has to be calculated self-consistently
imposing p, (t)= (x;(t) &. The advantage of the mean field
ansatz is that Eq. (4) is now closed in the variable x, .
Moreover, the self-consistent equation for the stationary
value of p is nonlinear, opening the possibility for multi-
ple solutions which are to be expected in the case of the
breaking of ergodicity associated to a phase transition.
Similar mean Seld models, but in the absence of multipli-
cative noise, have been studied in detail under the name
of the independent site a-pproximation in the context of
structural phase transitions [7,13] and in other related
problems [14—20].

The Langevin equation (4) is equivalent to the follow-
ing Fokker-Planck equation [1]for the probability distri-
bution P(x;t) of the process x (t) [we will drop the sub-
script i in the following since Eq. (4) is similar for every
site i]:

—ay+y D(p —y)+o —y/2
P„(x) =N exp —2j dy ~2 @2+1

&being a normalization constant, and the following self-consistent equation for p=lim, „p(t) results:

v=0(u)

with

(6)

(7)

f "„dzz exp —2fody

f „dz exp 2fOdy—

—ay+y D(p y)+cr yl—2—
~m3' + ~

—ay +y D(p —y)+cr~—y l2
a y+1

Before proceeding to an analysis of this equation, it is
revealing to give a simple argument valid in the hmit of a
very large spatial coupling D~(x. From the Fokker
Planck equation (5), one easily obtains the following exact
evolution equation for (x(t) & =p(t)= f„P(x;t)x dx:

2

(x &= a+ ™(x &
—(x'& .

2

In the limit D~~ the Quctuations of the variable x
around its mean value (x & are expected to vanish since
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the coupling term D (p —x) in (4) will prevent such fiuc-
tuations. Consequently the steady-state equation (9) for
p= (x ) becomes

2

a+ p —p =0.
2

(10)

III. PHASE DIAGRAM

We now turn to a more detailed analysis of the self-
consistent equation (7}. Since P(0)=0, this equation

This result predicts that a branch of two new solutions
will arise at the value a= cr—/2&0 whereas no such
transition is possible in the absence of multiplicative
noise for a &0. In other words, the transition to bistabili-
ty is advanced. Note that the location of the critical
point coincides in this limit with the criterion of the
breakdown of linear stability: the phase transition is pre-
dicted at the point at which the coefficient of the linear
term in the equation for (x(t) ) vanishes. This criterion
was used in the previously cited study of the Swift-
Hohenberg equation [4] to locate the transition to a roll
structure, and good agreement with the simulations was
found. In these simulations, the internal noise amplitude
was taken to be small, which is tantamount to having a
strong spatial coupling. The observed agreement with
the linear instability criterion is thus in accordance with
our mean field analysis.

At this point, we would like to stress the difference of
this situation with what is happening in the well-known
zero-dimensional case. Indeed consider Eq. (4} with
D =0. The stationary probability density can easily be
obtained and is found to be an even function of x. Conse-
quently, the corresponding stationary state value of the
average of x is identically zero and this happens whether
or not the system is linearly unstable. In fact, in the re-'

gime of linear instability a+o /2&0, small initial devi-

ations from zero ( x ( t =0))%0 will on the average grow
for small times if the initial probability distribution is
sharply peaked, but relax back to zero at larger times.
This difFerence between the zero-dimensional and spatial-
ly distributed case persists even in the absence of any
rnultiplicative noise. Indeed consider a thermally activat-
ed particle in a bistable potential, symmetric around
x =0 and with a metastable maximum located at this
point. For small intensities of the noise, a particle that
starts for example at an initial location x 0 will, on a
short time scale and following essentially the determinis-
tic dynamics, move to the stable well located at the
right-hand side of the origin. Consequently (x(t)) will
increase. On a much longer time scale, however, the
thermal noise will induce transitions between the two po-
tential wells. Therefore, the value of (x (t) ) will decrease
until eventually the stationary state is reacted with
p=(x) =0. In the presence of a spatial coupling be-
tween several particles each in their own potential, which
is exactly the situation encountered in the P model, the
relaxation to this symmetric situation is compromised
since it is known that the system can undergo a phase
transition (in two or more dimensions) with a breaking of
the ergodicity between the p & 0 and p (0 states.

possesses the trivial solution }Lt=0. Furthermore, the
function P(p) is a continuous even function of IM with
P'(p) &0, Vp&0 and P(p) &p for large values of p. A
pair of new solutions symmetric around p, =O will there-
fore appear at the values of the parameters for which
P'(p=O)=1. The explicit form of P'(p=O) can be easily
found:

P'(p =0)= (y arctan(tr y) )
2D

Om

where the average ( ) is calculated with respect to the
following probability density:

2/ 2

N being a normalization constant. In the limit D~oo
one finds by steepest descent that P'(IM =0)
=1+(2a+0 )/2D+O(1/D ), which confirms the va-

lidity of the simple analysis given above with the critical
point located at a, = cr2—/2. In Fig. 1, we have plotted
the phase transition line P'(p, =O)=1 in the D versus a
plane for several values of the external noise intensity
o . We have included the transition line obtained in the
absence of multiplicative noise 0 =0, the location of
some points at which a phase transition occurs in the
two-dimensional P model as obtained numerically in
Ref. [6] and transition points resulting from our simula-
tions (see below). From this figure, it is clear that the
multiplicative noise always advances the transition for
large values of the spatial coupling, i.e., it induces a shift
to lower values of a, whereas the opposite result is true
for small values of this coupling.

To compare the results of the mean field theory with
the two-dimensional model, we have performed numeri-
cal simulations of Eq. (1). We have also performed simu-

-2

FIG. 1. Phase transition lines predicted by the mean field
theory in the D versus a plane for several values of the multipli-
cative noise amplitude. The triangles correspond to the location
of the critical point for the two-dimensional lattice in the ab-
sence of the multiplicative noise given by Ref. [6] while the
cross and the square are the results of our simulations for the
two-dimensional model with multiplicative noise (cr =1) and
without multiplicative noise (o =0), respectively. These two
points result from fitting curves to the corresponding points in
Fig. 2.
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FIG. 2. The order parameter (x ) as a function of a with a
fixed value of D =3.7 for the mean field model (full lines) and
the two-dimensional lattice (dashed lines), in both cases without
multiplicative noise (o =0) and with multiplicative noise
(o „=1).The full lines correspond to the analytic result, Eq. (7),
and the dashed lines are the result of a power-law fit to the nu-

merical data (crosses for o =1 and squares for 0. =0). The
circles correspond to simulations of the mean field model and
are in perfect agreement with the curve given by Eq. (7).

IV. CONCLUSIONS

To conclude, our mean field model predicts that exter-
nal noise acting on the control variable a in the P model

lations of the mean field model itself, with each site cou-
pled to all the others. The location of the transition is es-
timated by plotting the stationary value of (x ) as a func-
tion of a (see Fig. 2). For the two-dimensional system,
we have used square lattices of different sizes XX1V,
X =50, 100, 150 and the integration of the Langevin Eq.
(1) has been done by means of a standard Euler algorithm
with time step between ht =[10,10 ]. Additive and
multiplicative noises were implemented into the algo-
rithm by means of a standard procedure [21]. In Fig. 2
we have plotted the results of our simulations. The
points corresponding to the mean field model (circles) are
in very good agreement with the theoretical curve. The
simulation of the two-dimensional model gives a higher
critical value of a than the mean field model. This is a
usual feature of mean field approximations and it also
occurs in absence of the multiplicative noise. One can
notice that the discrepancy between the two-dimensional
and the mean field model is increased by the noise. In
any case, the simulations confirm the negative shift in-
duced by the multiplicative noise.

will advance the location of the critical point for a
sufficiently strong spatial coupling and delay it for a weak
coupling. Moreover, for a strong spatial coupling, the lo-
cation of the critical point coincides with the onset of
linear instability. The same qualitative features are ob-
served in the numerical simulation of a two-dimensional
system. The fact that multiplicative noise can induce or-
der may at first seem surprising, but this may be intuitive-
ly understood as follows. Consider the case of a negative
value of a. No transition is possible in the presence of
additive noise only. However, with multiplicative noise,
the value of the control parameter plus the noise contri-
bution at a given site will be positive from time to time
and the system will then locally behave as if it is in a bist-
able state. If the noise intensity is sufficiently strong, this
situation will be encountered at about half of all the sites
and a symmetry breaking under the influence of a
sufficiently strong spatial coupling cannot be ruled out.
This is precisely what is predicted by our mean field mod-
el. It remains to be seen of course what is the range of
validity of this model. We expect that it is correct in a
system with a sufficiently high dimensionality. If we as-
sume that the multiplicative noise does not change the
universal properties of the system, the critical dimension
above which the mean field theory becomes exact for the

model will be d =4. Furthermore, as is made plain by
the intuitive discussion presented above, we believe that
the shift of the phase transition under influence of the
multiplicative noise is a very general phenomenon, also to
be observed in lower dimensions and not restricted to the

model. Apart from the evidence discussed in the in-

troduction [4,5] and the one gathered from the simula-

tions presented in this paper, preliminary simulation re-
sults indicate that the introduction of a fluctuating tem-

perature field on the boundary plates of a Benard cell
leads to the appearance of the convection rolls below cri-
ticality [22]. This again is in agreement with our general
assertion that spatially uncorrelated or weakly correlated
external noise, which is coupled in a non-additive way to
the state variables of the problem, can shift the location
of the transition point.
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