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Spectral properties of a time-periodic Fokker-Planck equation
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The Floquet spectrum of the time-periodic Fokker-Planck equation for a driven Brownian rotor is

studied. We show that the Fokker-Planck equation can be transformed to a Schrodinger-like equation,

with the same set of eigenvalues, whose dynamics is governed by a time-periodic Hamiltonian in which

the diffusion coefficient plays a role analogous to Planck s constant. For a small diffusion coefficient, nu-

merical calculations of the spectrum starting from the Schrodinger-like equation are more convergent

than those starting from the Fokker-Planck equation. When the Hamiltonian exhibits a transition to
chaos, those decay rates affected by the chaotic regime exhibit level repulsion. This level repulsion of de-

cay rates, in turn, changes the behavior of a typical mean first passage time in the problem. The size of
the diffusion coefficient determines the extent to which the stochastic dynamics is affected by the transi-

tion to chaos in the underlying Hamiltonian.

PACS number(s): 05.40.+j, 02.50.—r, 05.45.+b

I. INTRODUCTION

In a recent paper, Millonas and Reichl [I] studied the
Brownian motion of a particle in a two-dimensional quar-
tic potential well in the presence of white noise and
strong friction. They showed that the dynamics of the
Fokker-Planck equation governing this system is
equivalent to that of a quantum system governed by a
Hamiltonian in which a particle moves in a sixth-order
potential well. The diffusion constant in the stochastic
system plays the role of Planck's constant in the quantum
system and also affects the shape of the potential well in
the quantum system. The energy eigenvalues of the
quantum system are the decay rates of the stochastic sys-
tem. The Hamiltonian exhibits a transition to chaos and,
when this happens, the energy-level nearest-neighbor
spacing statistics changes from Poisson to Wigner-like, as
one would expect in a quantum system which exhibits the
manifestations of chaos [2]. However, since the Hamil-
tonian system is equivalent to the stochastic system, the
Fokker-Planck equation is also affected by the transition
to chaos. When the transition occurs, the decay rates of
the Fokker-Planck equation exhibit level repulsion and
the distribution of probability for the Brownian particle
is shifted. This change in the behavior of the Fokker-
Planck equation is the stochastic manifestation of chaos

In this paper, we shall show that a similar analysis is
possible for Brownian motion in which a time-periodic
force acts on the Brownian particle. We will consider a
one-dimensional Brownian rotor in the presence of a time
and angle periodic force and in the presence of white
noise and strong friction. A similar problem has been
considered by Reichl, Chen, and Millonas [3,4] in which
they study the statistics of the Floquet spectrum of the
Fokker-Planek equation for such a periodically driven
Brownian rotor, and by Chen [5] in which he studies the
dynamical behavior of the Langevin equation for exactly
the problem we consider here. Reichl, Chen, and Millo-
nas have shown that there is a difFerence in the spectral

spacing statistics of the Floquet eigenvalues for an inte-
grable and a nonintegrable time-periodic Fokker-Planck
equation. For the nonintegrable Fokker-Planck equation
there was a transition in the spectral spacing statistics, as
parameters were varied, which coincided with a change
in a first passage time for the rotor. Chen showed that a
qualitative change in the dynamics of the Langevin equa-
tion occurs in this same parameter range. None of the
above papers attempted to connect the change in the dy-
namics of the Fokker-Planck equation to a transition to
chaos in an underlying Hamiltonian system. The purpose
of the present paper is to show that there is a Hamiltoni-
an system underlying the dynamics of the time-periodic
Fokker-Planck equation, and that by transforming to the
Hamiltonian picture one can significantly improve the ac-
curacy of numerical calculations of the Floquet spectrum
for the system.

We begin in Sec. II by introducing the model for the
periodically driven Brownian rotor and writing the
Fokker-Planck equation for it. We also transform the
Fokker-Planck equation to a Schrodinger-like form, us-

ing a transformation which preserves the Floquet spec-
trum and we compare the numerical results for the spec-
trum obtained from the Fokker-Planck equation and
from the Schrodinger-like equation. The Schrodinger-
like equation allows us to identify the Hamiltonian which
governs the dynamics of this stochastic system. In Sec.
III, we explore the properties of the Hamiltonian both
classically and quantum mechanically. We find that the
Hamiltonian undergoes a transition to chaos locally as
parameters are varied. This transition leads to significant
level repulsion in the Floquet eigenvalues of the quantum
system governed by this Hamiltonian. In Sec. IV we re-
turn to the Schrodinger-like equation and show the tran-
sition to chaos in the Hamiltonian leads to level repulsion
in those decay rates affected by the chaotic regime. This,
in turn, strongly afFects a typical mean first passage time
for this system if the di6'usion coefficient is sufficiently
small. Finally, in Sec. V we make some concluding re-
marks.
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II. MODEL

We will consider a model siinilar to the one described
in [3—5] of the periodically driven Brownian rotor in a
very viscous Quid. The motion of the rotor is constrained
to the x-y plane. Its dynamics is eS'ectively described by
a one-dimensional Langevin equation

where A& is the Floquet eigenvalue and $&(8, t) is the Flo-
quet eigenstate and is time-periodic [P&(8,t)
=P&(H, t +2m)]. After the substitution of Eq. (2.6) into
Eq. (2.3), we obtain the eigenvalue equation

Agp(H, t)= —E(—H, t) $&(H, t)
a

y =e' sin(co~)sin(8)+F„„d(~), (2.1) = kFp(8, t)gp(8, t), (2.7)

=e sin(t)sin(8)+ ~g ((t), (2.2)

such that {g(t))=0 and (g(t)g(t')) =5(t t'), e is—the
dimensionless driving field amplitude, and g is the dimen-
sionless diffusion coefficient. Note that co is no longer ex-
plicitly present in the equation.

A. Fokker-Planck equation

where 8 is the angular position of the rotor in the x-y
plane, v is the time, y is the friction, e is the amplitude of
the external torque, co is the frequency of the external
torque, and F, d(~) is a random external torque. The
random torque is assumed to have a zero average,
(F„„z(~))=0 and is 5 correlated, {,F„„d(r)F„„e(r))
=D5(r r'},—where D is the diffusion coefficient. In Eq.
(2.1) we have neglected the inertial effects because of the
assumed large viscosity (and therefore large friction) of
the fluid. The angular momentum of the rotor relaxes to
equilibrium on a time scale much smaller than the period
of the driving field and on a time scale much smaller than
required for the rotor to relax to equilibrium in space.

Let us now make a transition to dimensionless vari-
ables e=e /toy, t =NT, and F„„e(r)/(toy)=v g ((t),
where g =D/y to is a dimensionless diffusion coefficient
and g(t) is a dimensionless 5-correlated random torque.
The Langevin equation now has the form

P(8, t)= g C&P&(H, t)e
P

(2.8)

where the coefficients C& are determined by the initial
condition P(8,0}. This method of solving the Fokker-
Planck equation has been used by several authors
[3,4,7,8]. The Floquet eigenvalues A& and eigenvectors

$&(8,t} can be obtained numerically. We now shall show
that there is another way of proceeding that allows con-
nection to a Hamiltonian system and as we shall show,
gives improved convergence of numerical results.

.B. Schrodinger-like equation

Let us now introduce a transformation,

P(H, t)=%(H, t) exp
—V(H, t)

(2.9)

After substituting Eq. (2.9) into the Fokker-Planck equa-
tion, we obtain what we will refer to as a Schrodinger like-
equation.

where @'pp(H, t) =5/dt E(8—, t) is the Floquet matrix as-
sociated with the Fokker-Planck equation. If the Floquet
eigenstates are assumed to be complete, the probability
P(8, t) takes the form

Given Eq. (2.2), w'e can write the Fokker-Planck (Smo-
lukhovskii} [6] equation to describe the probability densi-

ty P(H, t)—the probability of the rotor having the posi-
tion between 8 and 8+dH in the time interval from t to
t+dt:

8%' g 8 4
g + V'(H, t)%=Pal,

dt 2 528

where V'(8, t) is a new effective potential energy,

V'(8, t) = ——Vee+ —,'( Ve) —V,

(2.10)

aP
Bt

(V,P)+g, =EP,
2 a'8

where Ve ——dV/dH and

V(8, t) = —ecos(8)sin(t)

(2.3)

(2.4)

cos(8)sin( t)
g6'

2
2—ecos(8)cos(t)+ —sin (8)sin (t),

2
(2.11)

is the time-periodic potential well in which the Brownian
rotor moves. The operator,

E= Vee+ Ve +—8 g 8
BH 2&82 ' (2.5)

P (8,t) =$&(8, t)e (2.6}

is a non-self-adjoint operator that governs the dynamical
evolution of the Fokker-Planck equation. Because it has
time-periodic coe%cients, we can use Floquet theory to
"solve" the Fokker-Planck equation. For example, we
assume the Floquet solution,

and

8 + V'(H, t)
BH

(2.12)

is a self-adjoint Harniltonian operator which governs the
dynamics of the Schrodinger-like equation [Eq. (2.10) is
not a Schrodinger equation because it does not have a
factor i on the left]. Note that the diffusion coefficient g
plays the role of Planck's constant A' in the Hamiltonian
equation (2.12).

We may also perform the transformation, Eq. (2.9),
directly on the Floquet eigenvectors if we let
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Ptt(8, t) =ytt(8, t) exp
—V(8, t)

(2.13)
Aa'&', = y (m, q ~ k, ~n, p)a'„&,',

n=0
p= oo

The Floquet eigenvalue problem now takes the form

Ay'tt(8, t) = —P(8—, t) hatt(8, t)

= @'st (8, t)hatt(8, t), (2.14)

0&m & oo, —oo &q & oo, j =FP,SL . (2.20)

In the formulas above we have used a scalar product
defined as follows:

(n,p ~ W~m, q )

=N(n, m) f dt f d8e 'P'cos(n8) W'(8, t)
0 0

where 0 si(8, t)=B/Bt —8(8, t) is the Floquet operator
associated with the Schrodinger-like equation. The Flo-
quet spectrum remains unchanged. The probability now
can be written in the form

X e+'~'cos( m 8), (2.21)

where N(n, m) is a normalization factor computed by the
rule

P (8, t) = g C&hatt(8, t) exp
P

—V(8, t)
(2.15)

N(n, m)= '

I/(4n. ) for n =0, m =0
I/(2~2m ) for n =0, m/0

or m =0, n%0
One can use either Eqs. (2.7) or (2.14) to obtain the Flo-
quet eigenvalues and eigenvectors. We will now compare
the results of the two approaches.

C. Numerical results

Since the Floquet eigenstates P&(8, t) and y&(8, t) are
periodic in angle 8, we can expand them in Fourier series,

Ptt(8, t)= —a'" '(t)+ — g [a„'" '(t)cos(n8)

+b„'" '(t)sin(n8)],

(2.16)

and

hatt(8, t)= —ao '(t)+ —g [a„' '(t) cos(n8)

Aa' '(t) = g ( m
~

k. ~n )a„' '(t),
n=0

0&m & oo, j=FP, SL . (2.18)

Since the coefficients a„'" '(t) and ai "'(t) are time-
periodic we can expand them in the Fourier time series,

a'~'(t}= — a"' e ' ' ' =FP SL .1
n =~~ np

7T p co

We finally arrive at the eigenvalue equations

(2.19)

+b„' '(t)sin(n8)] .

(2.17)

Because of the symmetry E(8,t)=L( 8, t) an—d
8(8, t) =8( 8, t), when Eqs—. (2.16) and (2.17) are substi-
tuted into Eqs. (2.7) and (2.14), respectively, the
coefficients a„"'(t) and b„'~'(t) (j =FP,SL), decouple. We
will only consider the eigenvalue equation involving
coefficients a„'J'(t) because it contains the long time state
of the system. The eigenva1ue equations then take the
form

1/2m. for n@0, m %0.

The Floquet matrices (m, q~@' ~n,p) are infinite di-
mensional, complex, and are not self-adjoint. Their en-
tries are given in Appendix A. Notice that this matrix
consists of two decoupled blocks. In one block, even
combinations n +p are coupled to one another (the even
block). In the other block, odd combinations are coupled
to one another (the odd block).

To solve the eigenvalue problem numerically one has
to truncate the matrix. The spectra for the even block of
(m, q~@'si ~n,p) for 0&m, n &25, —25&p, q &25,

g =0.2, and a=0. 1,0.5, 1.0,2.0 are presented in Fig. 1.
The spectra for the even block of (m, q~}II Fp~n, p)
for 0~m, n ~25, —25+p, q ~25, g =0.2, and
@=0.1,0.5, 1.0,2.0 are presented in Fig. 2. The eigenval-
ues are complex. The real part gives the decay rates and
the imaginary part gives oscillatory (in time) contribu-
tions to the probability. Because of the structure of the
matrices (m, q~A, ~n,p), the spectrum has the form
A=A+ip, whe, re A, is real and p is an integer (a proof is
given in Appendix B). We see that in both cases the
lowest value of the real part of the Floquet eigenvalue is
zero, corresponding to the long time state. For small e
they agree fairly well but become significantly di8'erent as
e increases.

We believe that the disagreement between the calculat-
ed spectra of the Fokker-Planck and the Schrodinger-like
Floquet operators can be understood in terms of the
transformation [Eqs. (2.6) and (2.13)]. As the parameter
e/g increases, the function exp[ —(e/g)V(8, t)] rapidly
becomes sharply peaked and becomes very dificult to
represent by a finite Fourier series, very much like a 5
function. Thus in making the transformation, we have
removed a highly singular contribution from the proba-
bility and as a result the Fourier expansion of the
Schrodinger-like Floquet matrix appears to be much
more convergent than the Fokker-Planck Floquet matrix
as we shall show in the next section. Furthermore, the
fact that the Schrodinger-like Floquet matrix is dominat-
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ed by a Hamiltonian allows us to use ideas from classical
and quantum chaos theory to analyze our results. This
we will do in subsequent sections.

III. SCHRODINGER-LIKE SYSTEM
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We now look at the Schrodinger-like system from
several points of view to show that it exhibits the mani-
festations of chaos.

A. Classical system

The Hamiltonian which determines the evolution of
the Schrodinger-like system is given in Eq. (2.12). This is
simply the quantum Hamiltonian for a rotor in potential
field V'(8, t) if we let g~R. Therefore, we ran obtain its
classical analog. Let us introduce the angular momen-
tum operator J= ig (8—/88) Then. , the classical Hamil-
tonian is
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FIG. 1. Floquet spectra of the Schrodinger-like Floquet ma-

trix with imaginary parts plotted against real parts: {a)g =0.2,
a=0. 1; (b) g =0.2, a=0.5; (c) g =0.2, @=1.0; (d) g=0.2,
@=2.0.

H =
—,'J + cos(8)sin(t)

2—icos(8) cos(t)+ —sin (8)sin (t) .
2

(3.1)

This Hamiltonian contains a number of primary non-
linear resonances. The terms (eg/2)cos(8)sin(t) and
coos(8)cos(t) give rise to primary resonances [2] at
J=El. The term (e2/2)sin (8)sin (t) gives rise to pri-
mary resonances at J =0,21. These primary resonances
can be seen in Fig. 3(a). In addition, the interaction of
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FIG. 2. Floquet spectra of the Fokker-Planck Floquet matrix
with imaginary parts plotted against real parts: (a) g =0.2,
a=0. 1; (b) g=0.2, a=0.5; (c) g=0.2, e=l.0; (d) g=0.2,
@=2.0.
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and

2——sin(8) cos(8)sin (t)
2

(3.2a)

8 =J .
dt

(3.2b)

Strobe plots of the (J,8) phase space are shown in Fig. 3

for the same values of the diffusion coefficient g and field

amplitude e considered in Figs. 1 and 2. At low e the
phase space is dominated by KAM surfaces indicating
the presence of two global constants of the motion. As
the amplitude of the driving field increases the
Kolmogorov-Arnold-Moser (KAM) surfaces are des-

troyed (indicating that one of the constants of motion is

destroyed in this region of the phase space by the non-

linear resonances) and chaos appears in the neighborhood
of the nonlinear resonances. Before we look at the impli-
cations of this transition to chaos for the Brownian rotor,
it is of interest to look at the quantum version of the clas-
sical system, Eq. (3.1).

B. Quantum system

The quantum version of the classical system, Eq. (3.1),
is governed by the Schrodinger equation

B ~ + V'(8, t)1(,
Bt 2 (j 8

(3.3)

where g ~Pi in Eq. (2.11}.Because this partial differential

equation has time-periodic coefBcients, we again can use

Floquet theory to study its time evolution. %e assume

Floquet solutions of the form

g(8, t)=e '~z(8, t)

these primary resonances introduces infinite families of
higher-order resonances into the phase space in the
neighborhood of the primary resonances. As a result, the
system can exhibit a transition to chaos in the region of
phase space dominated by the nonlinear resonances.

The equations of motion for the angular momentum J
and the angle 0 are

dJ Eg sin(8)sin(t) —e sin(8) cos(t}
2
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n=0

p= oc

0 & m & ce —oo &
q & oo . (3.5)

where M=ifi(d!dt) A—is the Hermitian quantum Flo-
quet Hamiltonian. The Floquet eigenvalues for the quan-
tum system are real.

The onset of chaos in the classical system manifests it-
self in the quantum system through a change of the Flo-
quet eigenvalue spacing statistics, indicating that a good
quantum number (constant of the motion) is being des-
troyed locally [2,9—11]. For small c, when two good
quantum numbers dominate the behavior of the system,
the Floquet spectrum forms the purely random distribu-
tion of points on a line and the nearest spacing s between
Floquet eigen values obeys a Poissonian distribution
P(s)-e, indicating that there is a high probability of
finding very small spacings between eigenvalues. Howev-
er, as e increases, one of the good quantum numbers is
destroyed locally and eigenvalues associated with eigen-
vectors localized in that region begin to exhibit level
repulsion. The nearest-neighbor spacing distribution
tends to a Wigner-like distribution P(s)-se ', with a
deficiency of close spacings. This can be seen in Fig. 4,
where we show histograms of the level spacings for the

e
1—O.O

0
0 0.1 0.2 0.3 0.4 0.5

oo

+ g a„cos(n8)
n=1

(3.4)

N(s) 30 '

20

10

0
0 0.2 0.4 0.6 0.8

s

where A& is the Floquet eigenvalue and hatt(8, t) is the
time-periodic Floquet eigenvector. Substitution of Eq.
(3.4) into Eq. (3.3) yields the eigenvalue problem

FIG. 4. Level spacing statistics for quantum system with po-

tential V: (a) g =0.2, @=0.1; (b) g =0.2, a=0.5; (c) g =0.2,
e=).0; (d) g =0.2, m=2. 0.
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quantum system with Pi=0. 2 and @=0.1, 0.5, 1.0, 2.0.
The spectra used to obtain the histograms in Fig. 4

were calculated from the eigenvalue problem, Eq. (3.5),
with the truncation of the infinite-dimensional matrix
(m, q]&~n,p ) in a manner similar to the cases discussed
in Sec. II C. The criterion for the validity of the trunca-
tion is the locality of the wave function, i.e., that the en-
tries to the eigenvectors do not run of to the edges. We
know that eigenvectors will spread throughout the region
dominated by chaos in the underlying classical system.
Therefore, the matrix must be large enough to include all
eigenstates in the chaotic region. We can easily deter-
mine this if we note that the quantum system can be ob-
tained from the classical system by quantizing the angu-
lar momentum J. That is, we know that J=knfi, where
n is the quantum number. If we look at Fig. 3(d), we see
that the chaotic region extends from —4&J&+4. If
%=0.2 then there are about 41 spatial modes which lie in
the chaotic region of the phase space in Fig. 3(d). Since
the Floquet matrix decomposes into four uncoupled
blocks, these 41 spatial modes form four independent
sets, one containing 11 modes and three containing ten
modes. The matrix we use to obtain the Floquet eigen-
values from which we construct the histograms in Fig. 4
is the "even" part of the Floquet matrix obtained using
24 spatial modes (n =0 to 23) and 47 time modes

(
—23 &p & 23). To improve the statistics, for each value

of e we also obtained spacings for matrices whose value
of e differs by 0.5%%uo. For example, Fig. 4(b) contains
spacing for matrices with a=0.500, 0.505, 0.495.

By increasing fi and keeping e constant we can in-

directly change the number of modes spanning the chaot-
ic region. The size of the chaotic region depends primari-

ly on the value of e, whereas the number of states that
sample the chaotic region for a given value of e depends
on the size of iii.

The manifestations of chaos in the quantum system are
delayed as compared to the underlying classical system as
e is increased. In the classical system, when KAM sur-
faces are destroyed they form Cantori. As e increases,
the gaps in the Cantori grow larger. In the classical sys-

tem, trajectories can pass through the holes in the Can-
tori, regardless of how small they are. However, the
quantum system cannot "see" the holes (the wave func-
tion cannot penetrate them) until they have a size vari, the
size of a quantum state. Thus, in Figs. 3 and 4, level
repulsion between Floquet eigenstates lags behind the on-
set of chaos in the classical phase space as e increases.

IV. STOCHASTIC MANIFESTATIONS OF CHAOS

We now want to show that the transition to chaos in
the classical system also manifests itself in the spectrum
of the Fokker-Planck equation and in the stochastic
properties of the driven Brownian rotor. In practice, we
can obtain this spectrum from either the Fokker-Planck
Floquet matrix or from the Schrodinger-like Floquet ma-
trix. As we indicated in Sec. II, the Schrodinger-like Flo-
quet matrix, when performing actual numerical calcula-
tions, gives more accurate results.

We have found that the behavior of the Schrodinger-

like spectrum can be understood from the behavior of the
underlying classical Hamiltonian system. Let us note that
for small e, ReA&= J = (ng), while ImA&=p (p is an in-

teger). Thus, the smallest decay rates (those determining
the long-time transient behavior) are directly affected by
the chaotic region of the classical system and we expect
them to exhibit level repulsion as e increases and chaos
sets in. In order to study this effect, in Fig. 5 we plot the
difference between each rate of decay for a given e and
the corresponding rate for s=0. 1, as a function of e.
Thus Fig. 5 illustrates exactly how much each consecu-
tive level was shifted from its value at a=0. 1 as the chaos
sets in. Note that relatively high decay rates (levels) do
not exhibit mutual level repulsion, while the low ones do.
Note also that the number of mutually repelling levels in-

crease with e. This increase happens at the same ranges
of e as the change in statistics in Fig. 4 and the onset of
chaos in Fig. 3. For example, the strobe plot in Fig. 3(d),
where a=2.0 and g =0.2, about ten states sample the
chaotic region between J=—4.0 and 4.0 since we are
only looking at the spectrum of the even block of Eq.
(2.14). Of these ten states, only about six are completely
in the chaotic region. If we look at Fig. 5, we see that
only six states repel one another.

The effect of the transition to chaos in the classical sys-

tem can also be seen rather dramatically in the first-

passage time. In Ref. [4], a mean-first-passage time [12]
for a Brownian rotor moving in the potential
V(8, t)= —2eocos(8)cos(coot) was computed. In that pa-

per, the dimensionless amplitude e'0 and dimensionless

frequency coo, were used as parameters, and the diffusion

coefficient was taken to be 1. The Fokker-Planck equa-
tion for the system in Ref. [4] can be written in the form
shown in Eq. (2.3) by rescaling the time and taking
co=a/g and coo=2/g. The classical Hamiltonian under-

lying the Brownian motion in Ref. [4] is identical to ours
if g =2/bio and a=260/coo except that the resonances
will be phase shifted relative to ours. The extent of the
chaotic region as a function of the parameters will not
change. Therefore, we can relate the mean-first-passage-
time results of Ref. [4] to the extent of chaos in our Ham-
iltonian system.

In Ref. [4], the mean-first-passage time for the Browni-
an rotor was computed for the case when the rotor is
started at 8=m. /2 and absorbing boundaries are placed at

2.5—
2-.

I 4 I ~ & ~ ~ ~ e

~ ~ ~ ~ IH

1

0.5—
I ~

Q
0 1

I I I

2 3 4 5 6 7
5 (ReA)

FIG. 5. Shift in each decay rate (ReA) with increasing e,
measured with respect to its value when @=0.1. In all cases

g =0.2.



2636 P. ALPATOV AND L. E. REICHL 49

1.2
II ~ o o ~ ~ ~

1

0.8

(T& 0.6

0.4

g=0.2

1.6

0.8

~o oo oo ~ ~o oo~o

a]

0.2
~ ~ ~ ~

ss" ~ cQ~+ ~e '0—
b]

0
0.02 0.2 2.0 20.0

FIG. 6. A plot of a mean-first-passage time for the Brownian
rotor as a function of e for g =0.2 (based on data from Ref. [4]).

8=0 and 8=n The .data from Ref. [4] are reproduced in

Figs. 6 and 7, but plotted as a function of g and e. It is
important to note that the behavior of the mean-first-
passage time is largely determined by the behavior of the
lowest decay rates and varies as the inverse of the lowest
decay rates. Since the lowest decay rates ReA& repel and
increase in value when chaos sets in our underlying Ham-
iltonian, the mean-first-passage time should decrease
when chaos sets in.

Let us first consider Fig. 6, which is a plot of the
mean-first-passage time for g =0.2 as a function of e. We
can therefore compare it to the strobe plots in Fig. 3. We
see that for e=O. 1 there is no chaos and the mean-first-
passage time has its largest value. However, as e in-
creases there is a perfect correspondence between the on-
set of chaos and the drop in the mean-first-passage time
due to level repulsion.

Let us next look at Fig. 8, which is a sequence of strobe
plots for e=lOg and g =0.02, g =0.1, g =0.2, and
g =2.0. These correspond to points on the mean-first-
passage-time plot of Fig. 7. Note that for g =0.002 and
e=0.2 [cf. Fig. (8a)] there is almost no chaos (the neigh-
borhood of 1=0 is regular) and a large mean-first-
passage time. When g =0.1 and a=1.0, chaos has set in
and the mean-first-passage time has dropped. For g =0.2
and @=2.0 there is an even more chaotic area, and the
mean-first-passage time has dropped still further. How-
ever, for g =2.0 and a=20.0 the mean-first-passage time
starts to rise even though a large region in the neighbor-
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FIG. 8. Strobe plots for the classical system with potential
V*: (a) g =0.02, @=0.2; (b) g =0.1, t. =l.0; (c) g =0.2, a=2.0;
(d) g =2.0, @=20.

V. CONCLUSIONS

hood of J =0 is chaotic. This can be understood if we
note that the size of the states is now increasing faster
than the area of the chaotic region. The size of the
chaotic region increases as &e. The number of states that
sample that region goes as n =&a/g. The mean-first-
passage-time points in Fig. 7 lie along a curve e=10g.
Thus, the number of states that sample the chaotic region
vary as n =ling. The rise in the mean-first-passage-
tirne curve as g increases occurs because the stochastic
states "see" less and less of the chaotic region.

12
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o ~ ~

0.2 2 200

FIG. 7. A plot of a mean-first-passage time for the Brownian
rotor for e= 10g as a function of g (based on data from Ref. [4]).

Reichl, Chen, and Millonas [3,4] have shown that level
repulsion exists in the spectrum of the Fokker-Planck
equation for a model similar to that considered here.
They examined the Fokker-Planck Floquet spectrum for
both an integrable Fokker-Planck equation and a nonin-
tegrable one such as that considered here. They found a
distinct difference in the spectral statistics of the two sys-
tems. The integrable system had a large number of close
spacings. The nonintegrable system showed level repul-
sion. What is amazing is that these differences showed up
in the Fokker-Planck spectrum, even though this widely
used method of finding the Floquet spectrum appears not
to be as accurate as the method we have introduced in
this paper. The results we have obtained here strongly
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support the conclusions of that earlier work and the work
of Millonas and Reichl [1] for a time-independent system.
More specifically, we have found that, for Brownian par-
ticles moving in time-independent or time-periodic poten-
tial wells in the presence of white noise, a transition in
the statistical properties of the decay rates occurs when
an underlying Hamiltonian system exhibits a transition to
chaos. Furthermore, the decay rates afFected by the
chaotic region generally repel and become larger, thus
affecting the rate of decay of the Brownian particle, the
way in which it is distributed as it decays, and other sto-
chastic quantities such as the mean-first-passage time.
What is most striking is that in many respects, this sto-
chastic system behaves as if it were "quantized. "
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APPENDIX A

The matrix elements of the operator OFF in Eq. (2.20)
are the following:

(i) For m =0, (m, ql O'FFlnp )=ip5„p5p «.
(ii) For m%0,

&m, ql +FPln P ~
2

n 5, 5p, q (5p, q T15p+2, q 2'5p —2, «)5m, 25n, o (5p+l, q+5p —1, q) 5ml 5,no

2

(5n+2, m +5n —2, m +5n —2, —m )(5p, q Y5p+2, « Y5p —2, q )

X(1—5„o)— (5„+, +5„1 )(5p+1 q+5p 1 q)(1 —5„P)

g2+ (5n —2, m 5n+2, m+5n —2, —m )(5p, q Y5p+2, q 25p —2, q

X(1 5 P)+ (5 1 5 +1 )(5p+1 q+5p 1 q
)n (1 5 11)

E+iP5 5„—i —(5p+, q
—

5p 1 q)5 15„P

—i —(5„, —5„+, )(5 +, q
—

5p 1 q )(1—5„p)

+—(5„, —5„~, )(5 +, +5, q)n(1 —5„11).

The matrix elements of operator ksL in Eq. (2.20) are the following:
(i) For m =0,

2

(m, ql ksl lnp) = 5„5„11 6(5,+2—,,+5, -2,, In o
—

5p «5n 2+ (5p+2 q+5p 2«I'2-
E' lE'

(5p+1 q+5p —1 q)5n 1 P5n, 05p, q g p+1,« p

(ii) For m%0,

g2 p2
(5p+l, q 5p —l, q )5m, l5n, p

g
5m, n5p, q 16 (5p+2, q p —2, q n, m

2

(5„+2 +5„2 +5„2 )5p «(1 —5„p)

2

+ (5p+2, q+5p —2, q (5n+2, m 5n 2, m n —2—, —m )( n, p

(5„+, +5„, )(5p+1 q+5p 1 q )(1 5„,o)+iP5p, «5—,,
1 E' l E'

(5 +, —5, )5„o5,——(5 +, —5, )(5„+, +5„1 )(1—5„p) .
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For the numerical formulation of eigenvalue problems
these expressions are to be substituted in Eq. (2.20) with
—X &p ~ X and 0 ~ n ~ N, where X is the desired num-
ber of modes in the Fourier expansion.

APPENDIX 8

Examination of the Floquet matrices ( m, q ~ W, ~
n, p &

in Appendix A shows the general structure of their spec-
tra. Let us translate the indices q and p so that

q q +po and p ~p +pa. %e 6nd

&I q+polWJln p+po&=&tn qlWJln p&

+ipo5

Thus, the matrix (rn, q~Wi~n, p & has a periodic block

structure, except that the imaginary term on the diagonal
of each block changes by an integer value as we move
from one block to another. (This same property has been
pointed out by Shirley [13] for the quantum Floquet ma-
trix (m, q~M~n, p &.) The secular equation which deter-
mines the spectrum of the Floquet matrix is

det( W AI—)=0,
where I is the unit matrix. Now let A~ A+ip p. Then,

det[W, (—A+ipo)I] =det( W +ipoI AI)—

=det( W AI) =—0 .J

Thus, if A is an eigenvalue, so is A+ipo, and the spec-
trum must have the rigid lattice structure seen in Fig. 1.
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