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The kinetics of monoatomic steps in diffusion-controlled crystal growth and evaporation processes are

investigated analytically using a Green s function approach. Integro-differentia1 equations of motion for

the steps are derived; a systematic linear stability analysis is carried out treating simultaneously pertur-

bations both along and perpendicular to the steps. Morphological fluctuations of steadily moving steps

in response to ambient thermodynamic noises are also studied within a general Langevin formalism. Fi-

nally, a phase field model is developed to investigate the time-dependent, collective motion of steps. An

application of the model to a finite step train recovers a variety of kinetic behaviors such as the bunching

and spreading of steps.

PACS number(s): 05.40.+j, 61.50.Cj, 68.35.Ja

I. INTRODUCTION

The kinetics of atomic steps play a central role in the
growth of singular crystal surfaces from vapor, liquid,
and solid phases, in a wide variety of materials. Step
motion is also a predominant elementary process govern-
ing such macroscopic changes of crystal surface topogra-
phy as dissolution, faceting, etching, and coarsening.
Numerous investigations, both theoretical and experi-
mental, have been devoted to understand the morphology
and dynamics of atomic steps. Recent resurgence of in-
terests in step dynamics is largely stimulated by the de-
velopment of crystal growth methods with atomic pre-
cision, and by the advances in high-resolution micros-
copics.

This paper addresses several theoretical aspects of the
kinetics of diffusively coupled steps. Our investigation is
based upon the classical model of step kinetics developed
by Burton, Cabrera, and Frank (BCF) [l]. The ideal BCF
model visualizes the singular crystal surface as consisting
of closely packed terraces separated by elementary steps.
Growth of crystal then proceeds through the lateral pro-
gression of these steps by incorporating diffusing adatoms
from the terraces. The BCF model, supplemented with
later modifications and extensions, has been extensively
investigated and remains the most mathematically well-
posed model of crystal growth by step flow dynamics.
Although we restrict ourselves to the behavior of monoa-
tomic steps governed by surface diffusion, and to situa-
tions where other assumptions of the BCF model are val-
id, we hope that this study can stimulate progress in elu-
cidating the role of steps (not necessarily elementary) un-
der other growth conditions, e.g., the growth of crystal
by molecular epitaxy, or the ledge growth by volume
diffusion in solid-solid phase transformations.

One central question in step kinetics concerns the mor-
phological stability of step patterns. Steps are seldom
seen to be equally spaced. It is also observed that fluctua-
tions in the distance between steps can often lead to the

bunching of them into multistep bands. Furthermore,
meandering of the steps along the step direction on scales
much greater than molecular length scale is common-
place. Bales and Zangwill [2] recently pointed out that,
in addition to the effect of equilibrium fluctuations, a
diffusive instability can contribute to the meandering of
steps under growth situations. To address the stability is-

sue, linear stability analyses, treating separately fluctua-
tions in the spacing between adjacent steps and that along
the step direction, have been carried out. Nevertheless,
two popular approximations are often adopted. First,
when considering perturbations in the step spacings, it is
commonly assumed that the velocity of a step only de-

pends upon the width of its two adjacent terraces.
Second, in treating fluctuations along the steps, and in

studying the motion of steps in general, a quasistatic ap-
proximation is used by assuming sufBcient slow motion of
steps. While these approximations are believed to be
good for widely separated steps and under small driving
forces, a fully time-dependent analysis is warranted in the
opposite situations. As emphasized by Ghez and Iyer [3],
such situations may arise particularly in certain epitaxy
experiments where the so-called fast steps are encoun-
tered and where nearby steps are strongly coupled by
their overlapping diffusion fields. Linear stability
analysis which takes account of the overlap of diffusion
fields has recently been carried out numerically [4,5]. In
this paper, the step flow problem is formulated using a
Green's function approach. Time-dependent integro-
differentia equations of motion for the step positions are
derived, from which a systematic linear stability analysis
is carried out. This formulation allows a simultaneous
treatment of generic perturbations both along step exten-
sion and in the step spacings. The validity of the quasi-
static approximation and the effect of the overlap of ter-
race diffusion fields are also examined. These works are
discussed in Secs. II—IV. Section V analyzes the effect of
asymmetric attachment kinetics on the linear stability of
infinite step trains, under both growth and evaporation
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situations.
In Sec. VI, we discuss the morphological fluctuations

of steps during nonequilibrium growth using a Langevin
formalism. In this formalism, local thermodynamical
noises on the terraces and on the steps are assumed to be
the sole sources of fluctuations which get amplified
dynamically during growth and lead to the roughness of
steps. We show that this method consistently recovers
the equilibrium fluctuations. While step roughness in
equilibrium does not depend on step spacing, we found
that the diffusive coupling of steps in motion during
growth gives rise to a correlation between fluctuations on
different steps.

While stability analysis gives important information
with regard to the role of step kinetics in crystal growth,
more insights can only be provided by detailed investiga-
tions of the temporal development of step configurations.
It is crucially required, for example, to interpret in situ
experimental observations. In Sec. VII, we develop a
phase field approach to study the time-dependent motion
of finite and generically nonequidistant step trains. This
method is numerically efficient, easily adaptable to two
dimensions, compatible with shape fluctuations along the
step extension, and able to simulate complicated time-
dependent morphology of step patterns.

c, U„= D[( Vc) +—(Vc) ] n, (2.2)

where c, is the change of atomic density in the area swept
by the moving step, n is the unit normal to the step, and
( Vc )+ are gradients computed on the two sides of a step,
respectively. Secondly, another boundary condition re-
lates the density of adatoms at the step to its local equi-
librium value, taking into account the curvature correc-
tion via the Gibbs-Thompson relation:

The condition of molecular roughness of steps is also a
prerequisite for us to safely neglect lateral diffusion of
adatoms along the steps, and to assume isotropic ad-
vancement of steps. A lower kink density hence smooth-
er steps often implies stronger effect of attachment kinet-
ics and more pronounced anisotropy in step motion and
morphology. These and other assumptions of the BCF
approach must be carefully examined when applying the
original model to experiments, particularly to such non-
conventional situations as molecular beam epitaxy [3] at
low temperatures.

Relevant microscopic details of the atomic processes
near the steps are reflected in the boundary conditions on
the sharp steps. First, conservation of materials requires
that the normal velocity of a step satisfies

II. THE BCF MODEL Csee& =CP 1 + K
yO,

B
(2.3)

Consider the mathematical formulation of the original
BCF model, for a close-packed crystal surface below its
roughening transition temperature, growing from a su-
persaturated mother medium. We concentrate on the
layer-by-layer growth mechanism characterized by the
diffusion-controlled propagation of monoatomic steps,
and neglect entirely the effect of two-dimensional island
nucleation, under the assumption of small supersatura-
tions. For concreteness, it is further assumed that the
growth units are incorporated to the steps through
diffusion along the terraces only. Although this mode of
building growth units is predominant in vapor and solu-
tion growth, the alternative mode of depositing growth
units directly from the bulk mother medium is important
in certain solution growth environments and particularly
in solid-solid phase transformations. The BCF formula-
tion is equally applicable to crystal evaporation and dis-
solution processes.

In the BCF model, transport of adatoms on the ter-
races proceeds through surface diffusion according to

Bc =DV c-
at 7s

(2.1)

where c(r, t) is the adatom density, r, is the mean life-
time of adatom on the terraces before evaporating into
the vapor, c„ is the adatom density far away from the
steps, and D is a diffusion coefficient assumed isotropic
over all terraces. In the present macroscopic description,
steps are regarded as mathematically sharp dividing lines
between terraces. A crucial assumption, inherent in most
continuum treatments, demands that the rnonoatomic
steps are molecularly rough with numerous kink excita-
tions so as to behave as ideal line sinks for growth units.

where co is the adatom density for a straight step in equi-
librium, y is the isotropic line tension of the step, 0 is the
atomic area of the solid, and ~ is the step curvature. The
density of adatoms far away from the steps is maintained
above the equilibrium density at c„)eo through supersa-
turation, providing the driving force for step propaga-
tion. We have neglected the effect of crystalline anisotro-

py and also temporarily ignored the elevation of adatom
density at the steps due to attachment kinetics. Equa-
tions (2.1)—(2.3) complete the description of the sym-
metric BCF model for crystal growth by the step flow
mechanism, where atomic processes on both sides of a
step contribute equivalently to step progression. The cor-
responding asymmetric version of the model, accounting
for nonequivalent attachment kinetics as first discussed
by Schwoebel and Shipsey [6], will be considered in Sec.
V.

Multiple length scales are involved in the current prob-
lem, whose relative ratios characterize different growth
regimes and determine the validity of various approxima-
tions. With the assumption of mathematically sharp
steps, the continuum model is understood to apply on
length scales much 1onger than the microscopic capillary
length do (to be defined below). Among the relevant mac-
roscopic length scales, the mean adatom diffusion length
on the terraces is given by x, =+Dr„and the typical
step spacing is denoted by A, . Another quantity 1=2D/U
with dimensionality of length can be conveniently intro-
duced as an alternative measure of the speed of step
motion. Defining a quantity

c c(r,t)—
u(r, t)=

C
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and measuring time in units of ~„ length in units of x„
and velocity in units of QD/r„ the equations of motion
can be written in the dimensionless form

rs

aa

~ s as ~ ~ ~ a as ~ a s a as a s a a s ~asss aa
~ s ~ ~ ~ ~~ ~ ~~ ~ a ~ assa ~ s ~ ass ~ ~ s r

~a ~ a~ s ~ s
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(2.5) V

dG
r' ~ s ~r sa Sss ss ~ ~ ~ assssaassss

s a ~ aaassaa~ asssssaas ~ s ~ a
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z= f"(x,t)
v„=—[(Vu }+—(Vu ) ] n,
g„, =5—dost,

(2.6)

(2.7) PIE
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where h=(c„—co)/c„ is the dimensionless supersatura-
tion and do =yQco/(ka Tc„x, ) is the dimensionless capil-
lary length. The problem defined by (2.5)-(2.7) resembles
closely the problem of solidification [7], in spite of the ex-
tra homogeneous term —u on the right-hand side of (2.5).

FIG. 1. Schematic representation of a train of steps moving
in the z direction.

V2+ V —1 ——u(x, z, t)=0,
Bz dt

(3.1)

dV+ dx = —[(Vu )+ —(Vu )" ] do ",
dt

(3.2)

III. EQUATION OF MOTION FOR THE STEPS

The moving boundary problem (2.5)-(2.7) belongs to a
general category of problems known as the Stefan prob-
lem, and is strongly nonlinear in character. One must
solve a diffusionlike equation subject to boundary condi-
tions which themselves depend upon the solution of the
same diffusion equation. Complete analytic treatment of
the entire problem in 2-space and 1-time dimensions is
difficult. Even the linear stability analysis has only been
carried out for synchronously moving equidistant steps,
under quasistatic approximations. Studies of time-
dependent step motion, particularly for nonequidistant
steps, are even more limited. Fortunately, progress can
be made analytically by reformulating the full (2+1)-
dimensional problem in terms of a closed set of integro-
differential equations for the positions of the steps. This
boundary integral method, using Green's functions, was
first put forward by Langer and Turski in their study of
directional solidification fronts [8]. A straightforward
application of their procedure to our present problem
yields the dynamical evolution equations for the moving
steps, starting from which many detailed analyses can be
made.

Consider an in5nite train of nonoverlapping steps on
the crystal surface shown schematically in Fig. 1. The
time-dependent position of the nth step is parametrized
by z =g"(x, t ). In a coordinate frame moving with veloc-
ity V in the positive z direction, the free boundary prob-
lem takes the form

u(x, g", t)=h —doe{/"I, (3.3)

where the superscripts label the steps and the vector step
length element do is defined according to Fig. 1. To
proceed, we define a Green's function in the moving
frame by

V —V —1+a
Bzi Bti

«p l pi }=—&(p —pi » (3.4)

+~ dtl xldzl Q P1 G P P1zi

(3.5}

where the Green's theorem has been applied to the region
A, containing the point p but excluding all the steps
bounded by the boundary surface S, . The volume contri-
bution in (3.5) vanishes identically because the integra-
tion over dzi gives canceling terms from two sides of
each step. This cancellation is speci6c to the symmetric
model, where the continuity of adatom density across
each step is maintained. Further application of this con-
tinuity property to the 6rst part of the surface integral in
(3.5) also gives a null result. Hence (3.5) reduces to

with the short notation p=(x,z, t),p, =(xi,zi, t, ). The
causality condition that G(p lp, )=0 for t (ti is also im-

posed. For an arbitrary space-time point p, we have,
from (3.1) and (3.4),

u(p)= J dt, I der, [u(p, )V,G(pip, )

—«p lpi )Viu(p i }1

+ co

u(p)= g f dt, f G(plpi {[Viu(pi)] —[V,u(p, )]+]-do,+, (3.6)

which, upon using the boundary condition (3.2) and letting p approach the nth step, leads to the equation of motion for
the nth step:

+ m

do@{@]= g f dt f dxiG(x P tl xg, , )tiV+
m=

L

(3.7)
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Here the curvature is by definition
. 2- —3/2

1+
dX dX

(3.8)

This set of closed, nonlinear, integro-differential equa-
tions describes the time-dependent evolution of an infinite
train of steps mutually coupled through the overlapping
adatom diffusion fields. With little modification, the
boundary integral approach can also be used to investi-
gate pattern selection problems for spiral steps. Finally,
we point out that, in the present consideration, no ener-
getic interaction between steps, such as that due to elasti-
city, is yet incorporated.

IV. LINEAR STABILITY ANALYSIS

The boundary integral formulation makes possible cer-
tain analytical treatments otherwise infeasible using the
original full difFusion model. For example, this approach
is particularly suitable for determining various steady
state solutions and for analyzing their stabilities. Al-
though Eq. (3.7) supports in general steady state solutions

!

of both straight and curved steps, we restrict our con-
sideration in this paper to straight steps only.

This section presents a linear stability analysis of uni-
formly moving step trains. The advantages of using (3.7)
for linear stability analysis, rather than using the full
diffusion equation, are twofold. First the method is sys-
tematic and allows us to treat simultaneously perturba-
tions both along and perpendicular to the steps. Second,
the calculation can be carried out without having to use
the quasistatic approximation, which becomes unreliable
for both fast-moving and densely packed step trains. The
situation of fast step trains is likely to occur in molecular
beam epitaxy (MBE) growth where the dimensionless su-
persaturation is typically large [3]. Some of our results
reported here were previously known but were obtained
using different methods under quasistatic approxima-
tions.

First we concentrate on steady state solutions for
straight steps. Consider an infinite train of equidistant
steps moving uniformly with velocity V in the positive z
direction. In the comoving frame of the steps, letting
g"(x, t ) =n upwith , A, being the step spacing, and using the
real-space representation of the Green's function

(x —x)) +[z—z)+V(t t, )]-
G(p ~p) )= exp4~(t t,)— 4(t t, )— (4.1)

we obtain, from (3.7},

b = V g I dr J dx)G(0, 0, r~x„mt(, ,0),
0 (X)

m = —oo

for all n. Equations governing the time evolution of per-
turbations are derived by expanding (3.7) in powers of the
small quantity g ". We shall use the Green's function in a
Fourier representation

which leads to the transcendental equation [3]

(4.2) ik(x —x) )+iru(t —t) )

( )'

a+ —a
a++a

a+A, a t)(,

coth +coth
2

(4.3)
where

X
2M(k, co)

(4.6)

where we have defined for convenience
1/2

I 11+— +—.
I2

(4.4)

Equation (4.3) can be solved numerically for the velocity
of steps V= V(h, t(, ), which is monotonically increasing in
both 6 and k.

Next let us analyze the morphological stability of this
system of equidistant steps. Consider small-amplitude
perturbations to the steady state step profiles in the gen-
eral form

M(k, co) —= k +1+—+iso
1

l2

1/2

(4.7)

(0) ())
nm nm

where the zeroth order term is given by

g (0) —(n —m )A. /1 —
I n —m ~A,M

~'nm

(4.8)

(4.9)

with a positive real part. The integrand in the Green's
function can be readily expanded to first order in pertur-
bation to read

( "(x,t)=g"(x, t } nA— . (4.5)
I

and the first order term takes the form

—(g"—g&)/I —(g"—g, )M for n =m
I() ) —. (MI + 1 )e

—(M+ )/l)(" —~)k(g" g~)/ti for

(Mi 1 )e™1~~)(n—m )k(g n g~)/'() for n & m

(4.10)
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Now these expressions can be inserted into the right-hand side of (3.7) which has the expansion

ik(x —
xi )+i co(t t—

i )

x)
(2m )

m

dt's

(4.11)

It is more convenient to work in the Fourier space by defining Fourier transforms as, for example,

g (k,co)= I dt J dx e ' '"'g "(x,t) . (4.12)

After grouping together all the terms that are linear in perturbation in the expansion of Eq. (3.7), we obtain the linear
stability equation

X(k, co, g) =0,
where

(4.13)

X(k, to, g)= +1 Ml —5 dolk2—+ 1

a+A,e+ —1

1

a A.

e —1
g "(k,a))

e
—(M+ i/l)( nm)kg m(k )+ + 1 M1 y (M —1/l—)(m n)

g
km—(k

m&n . m)n

(4.14)

Linear dispersion relations under general perturbations
are solutions of (4.13},as we shall show below.

Before moving on, we reiterate that, although we have
so far considered only straight steps, Eq. (3.7) also has
steady state solutions corresponding to curved steps. In
general, these solutions can be approximately evaluated,
in the small-amplitude limit, by expanding (3.7) to higher
orders in g. The linear stability of these solutions can in
turn be similarly investigated. However, these calcula-
tions are in practice quite cumbersome [8].

ECOl +1—(5—dolk )/M(k, to) =0, (4.15)

A. Stability of an isolated step

As a special case, let us consider the linear stability of
an isolated step. This situation is equivalent to the limit
of infinite step spacing /I, =ec. Stability equation (4.13)
simplifies to

I

portant difFerences, in two respects. First, in
solidification, steady state planar fronts growing into su-

percooled liquid do not exist at general supercoolings, in
contrast with the situation here where uniformly moving
straight steps are valid solutions at arbitrary supersatura-
tion. Second, a planar front in solidification is always
linearly unstable to perturbations of suSciently long
wavelength, with the efFect of surface tension merely sta-
bilizing the front on short length scales. But, again by
contrast, straight steps can be completely stabilized by
strong enough line tension on all scales (see below). Both
differences between the two problems are due to the pres-
ence of the extra length scale, the adatom diffusion length
x„in the step problem.

It follows from (4.16) that, as long as do&lb, /2, a
straight step is linearly stable against all infinitesitnal
perturbations, i.e., Re(ito} & 0 for all k. Since
1=+1—b,~/5, this condition is equivalent to

which gives the linear dispersion relation in the closed
form

0.10

=(b, —dclk )Ql k +1 —1+(b —dolk )
0.05-

—1+(5—dclk ) (4.16) 0.00

where the quantity 1=+1—b, /b, is solved from (4.3).
This dispersion relation is plotted in Fig. 2.

It is evident from Fig. 2 that, within a certain parame-
ter range, a straight step becomes linearly unstable
against infinitesimal, long-wavelength fluctuations. This
diffusive instability is of the same nature as that
discovered by Mullins and Sekerka [9] for planar
solidification fronts. The relevance of Mullins-Sekerka
instability in step Bow was first pointed out by Bales and
Zangwill [2]. The step problem in question here, al-
though resembling closely that of solidification, has im-

-0.05-

-0.10
0.0 1.0 2.0

I

3.0

FIG. 2. Linear stability spectrum (4.16) of an isolated step
against shape perturbations, in the symmetric model. Curves
correspond, from top down, to values of line tension (do) 0.25,
1, aud 2 times the critical value 62t 1 —tt2/2.
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0— (4.17)

1/2
01—

doI 2b, I

1/2 1/2
0 + 0

On the other hand, for smaller values of d0, the straight
step is unstable against long-wavelength perturbations.
The critical wave number below which perturbation
grows is given bv

equation (4.13).
In this section we first investigate the linear stability of

steps with respect to fluctuations of the first type, assum-

ing to this end that the average spacing between steps is

maintained at fixed value k. Still, shape perturbations on
difFerent steps need not be synchronous, but the most un-

stable situation corresponds to all steps having in-phase
fiuctuations. That is, g™(k,co)=g "(k,co) for arbitrary
m, n In. this case, Eq. (4.13) yields

(4.18)
1

IM
l COI 1 A, 1+1 coth M+ ——+coth M ——

2 I 2 I 2
To see if (4.17) can be satisfied in realistic experimental

situations, we estimate various quantities using values
typical to crystal growth from solution. As an example,
usual crystal growth from solution has a value of supersa-
turation (c„—co ) /co = 10 . Further, we use

yQ/k&T=25 A, c,q/c„=10, X, =800 A, for NaC1
crystals at T=600 K. This gives an estimate that
10=3X10,b, =10, and therefore do/6 »1. Thus
(4.17) is most likely to hold for conventional crystal
growth, implying complete linear stability of straight
steps. However, instability may occur under MBE
growth situations where much higher supersaturation can
be achieved, as suggested in Ref. [3]. Of course, at higher
supersaturation, the nucleation of adatom islands on the
otherwise flat terraces becomes important and can no
longer be neglected. Eventually, for sufBciently large su-

persaturation, we expect the layer-by-layer growth pic-
ture underlying the BCF model to break down complete-
ly, and the growth of crystal should proceed three dimen-
sionally.

Although (4.17) is derived within the symmetric model,
the qualitative conclusion, that there exists a critical
value of line tension above which the step is linearly
stable, is unaltered when asymmetric attachment kinetics
are taken into account. Only the numerical value of the
threshold (4.17) is modified. It will be shown later that in
a one-sided model with strong attachment kinetics, the
threshold (4.17) changes to dc & 5/2. So step instability
is relatively easier to realize, even for the parameters of
conventional crystal growth quoted above.

B. Stability of step train under lateral fluctuations

We now examine the linear stability of an infinite train
of equidistant steps. It is useful to distinguish two types
of morphological perturbations: the lateral fluctuations to
the shapes of steps, and the longitudinal displacement of
steps from steady state positions. Both kinds of perturba-
tions are accounted for simultaneously in the stability

1 1+ coth M+ ———coth M ——
I 2 l 2

a+A a
=2(b, —d Ik )+ coth —coth0 2 2

d co(k)

dk k=0

which gives the formula for the threshold line tension:

a+A, a A,

a+ —a a+Re + a ke
d0 lgL +

a++a —) (e ' —1)' (e —1)'

(4.20)

where a+=a+(b, A, ) have been defined previously and

can be solved from the steady state solution (4.3). Two
limits, of large and small step spacing, respectively, are
analytically tractable. Specifically, we obtain from (4.3)
that

a =1+—A++ 2

for A, &&1 and

(4.21)

(4.19)

which can be solved implicitly for the dispersion relation
co=co(k). The presence of a zero mode in the spectrum,
due to the translational invariance of the steady state
solution, is evident by explicit inspection: ~=k =0
solves (4.19). Unfortunately, Eq. (4.19) does not afford an

explicit analytic solution of co(k). However, one can still

demonstrate that steps become completely linearly stable
for strong enough line tension. The critical value of the
dimensionless capillary length is determined via the con-
dition

' 1/2
—+[(1—5)/(1+5) jA. + —+[(1+5)/(1—5) jA,e e

1 —62
(4.22)

for A, »1. Then condition (4.20) reduces, in the two limits, to

Q2
do & A. +O(A, 7) (4.23)
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for A, «1 and

0&
2

( 1 g)e
—+[(1—6)/(1+6))k

+ oo

A„(iso)e'~ "=0,

where the coefficients A „(iso) are given by

(4.25)

( 1+g )e
—&[(1+6)/(1 —h)]A. (4.24)

Ao(iso)= +1—4 5+l COE 1 I
a A.

e —1

(4.26)
for A, ))1. Hence the critical value of do needed to
linearly stabilize straight steps of finite spacing against la-
teral perturbations is always smaller than that required
for an isolated step. This observation is consistent with
the intuitive expectation that smaller A, suppresses lateral
fiuctuations of the steps, due to greater overlap of adatom
diffusion fields. For asymmetric attachment kinetics, this
conclusion remains qualitatively true as well, and has
been reached by previous authors [2] using quasistatic
analyses.

Our analysis is strictly linear and therefore does not
address the inquiry regarding what happens once straight
steps become linearly unstable. A natural expectation is
that the steps may adopt profiles corresponding to other
steady state solutions. A recent nonlinear, quasistation-
ary analysis by Misbah and Rappel [10] for the asym-
metric model established the existence of cellular step
solutions with a continuum band of possible wavelengths.
Whether or which of these solutions can be actually
selected is intimately related to their stability, an issue
which remains unresolved.

C. Stability of step train under longitudinal fluctuations

We now investigate the linear stability of an infinite
step train against perturbations in the distances between
steps. In this situation, an instability could lead to the
coalescence or bunching of individual monoatomic steps
into multiple-step bands, a feature frequently observed
during crystal morphological changes. For simplicity, we
assume that the line tension is large enough so that all
steps remain fiat so that we can set k =0 in the stability
equation. Arbitrary displacement of steps from their
steady state positions can be decomposed into the normal
modes as g "(k,co}=e'~ "u, with q being the real wave
number. Without loss of generality, the wave number q
can be further restricted to its first Brillouin zone
q E [ —n. /A, , m /A. ]. The stability equation (4.13) then
reads

A„&o(ice)=
~ 72 —(ik —1 )n k/I

2
(4.27)

T

(3k+1)niL/I (4.28)

nA„
QI(q) =—,(q A, )+O((q A, ) },

gA„'
(4.29)

A„" nA„'Qg(q)=, QI+, (qA, )QI
2+A„' gA„'

n A„+, (q}[,) +O((q A, ) ),
2+A„'

(4.30)

where primes denote derivatives with respect to iso evalu-
ated at ice=0. Note that in the long-wavelength limit,
QI(q } is linear but Qz(q) is quadratic in the wave num-

ber. Formula (4.29) can be evaluated to give

where Q(iso): IM(k —=O, co)=+I +1+ical The . fre-

quency co is in general complex, so it is appropriate to
separate the dispersion relation into a real and an imagi-
nary part, iso(q) =QR(q)+iQz(q) Posi. tive values of Qz
imply exponential amplification of small perturbations
hence linear instability. Once again one can check by ex-

plicit substitution the presence of a translational zero
mode Qn(q =0)=QI(q =0)=0.

First let us examine in detail the analytically tractable
limit of long-wavelength perturbations ~qA, ~

&&1, corre-
sponding to dispersion spectrum near the center of the
Brillouin zone. Taylor expansion of the stability equation
gives in this limit the relations

QI(q) =
a+A, a

(a~+a ) a+sinh +a sinh

a+A, a A,

45l —A,a+sjnh +A,a sjnh
2

(4.31}

The expression for the real mode is much more compli-
cated and is not displayed here. Despite the complexity,
behavior in the limits of large and small step spacings can

still be extracted, using the expansions (4.21) and (4.22).
The results are, for A, ))1,
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QI(q) =
(1—b, )(1+9)

2 1Qs(q)= —,b+
I 2 Q+A,

1
a A,

e 1

X, &~(1 ~)/(1+~)]~
Xcoth A, 1+—1

I2

1/2

—1 -(1—cosqA, ),

X e
—+[(1—5)/(1+ 5) ]A.

(4.32)
2+1+I sinh(A, /I )Qiq=

1 sinh(k+1+1/I )

1 1
X coth ——5— +

a+A a A,l e + —1 e —1

(4.36)

slnqA, .

(4.37)

1+6 v'((1+6)/() —h)]A, +. . .
( g)2

1 —6

(4.33)

and for k«1,

Ql(q) = [b, +0(A, ) ]qA, , (4.34)

Qs(q)= —
/(, +O(A, ) (qA, ) (4.35)

These asymptotic expansions are obtained from the full
linear stability equation, hence involve no approxima-
tions. We note in particular that our result for QI(q)
agrees with that of Bennema and Gilmer [11],obtained in
a simple model assuming a step velocity depending upon
only nearest terrace widths. Most importantly, however,
in contrary to a pure neutral mode Qs(q)=0 found in

their approximate model, we obtain a weakly stable mode

AR ~0.
While the magnitude of Qs(q) refiects the typical de-

cay or amplification rate of perturbations, QI(q) is relat-
ed to the wave velocity for the propagation of distur-
bances. When the wavelength of disturbances is large
compared with the step spacing, i.e., qA, «1, the group
velocity of disturbances coincides with the phase velocity
since QI(q) is linear in q. Both are given by U = —QI /q
in the comoving frame. We immediately see that for
small step spacing A, «1, v= —V, so the disturbances
remain stationary in the laboratory frame. On the other
hand, for large step separation A. ))1, v =0, and the dis-
turbances propagate along with the steps.

The exact linear stability spectrum (4.25) over the com-
plete Brillouin zone can only be solved numerically.
However, we can attempt an approximate solution utiliz-
ing a quasistatic approximation. As is usually done, this
approximation assumes that the diffusion field adjusts
quickly in response to the displacement of the steps.
It amounts to neglecting the frequency dependence,
or the memory effect, in the Green's function:
l&(ice)= (/ I +1+icol2='I/I +1. Now (4.25) can be
easily solved over the whole Brillouin zone to yield

0.00

-0.02

-0.04

0.2

0.0

-0.2
-1.0 -0.5

I

0.0
qX/z

I

0.5 1.0

FIG. 3. Dispersion relation of an infinite train of parallel

steps against perturbations in step spacings, in the symmetric

model. Solid lines are obtained numerically from (4.25), and

dashed lines correspond to the quasistatic spectrum (4.36) and

(4.37}. Curves in the upper figure, from top down, are for
X=O.5, 1, and 2. Order of curves is reversed in the lower part.

The quasistatic dispersion relation is shown, in dashed
lines, along with the numerically determined exact spec-
trum, in Fig. 3. The most important feature is that
Qs (q ) & 0 for all q, suggesting complete linear stability of
the equidistant step train against fluctuations in step
spacings.

To suppress the frequency dependence in Q(ice) when

adopting the quasistatic approximation, we need ~co~ && l.
From the quasistatic spectrum, it can be seen that typi-
cally QI=O(h) and Q„=O(b, ). Hence the condition of
small supersaturation 6« 1 is necessary. Another, more
subtle, source of inaccuracy may occur in the quasistatic
procedure, if the magnitudes of QR and Ql have large
disparity between them. This seems to explain the
discrepancies between the quasistatic and the exact spec-
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tra near the center of the Brillouin zone for small A. in
Fig. 3.

Z

V. GROWTH AND EVAPORATION
WITH ASYMMETRIC ATTACHMENT KINETICS

V

c,«&~
—co 1+ a =P+D(Vc ) n+,yQ

B
(5.1)

where differences in the coefficients P+ measure the asym-
metry of attachment kinetics. We have for simplicity
neglected the effect of anisotropy. In this section, we
consider a situation with the most asymmetry, assuming
local equilibrium near lower terraces but complete inhibi-
tion of adatom exchange from upper terraces. This
amounts to setting P+=0, P = oo in (5.1). We further
distinguish between two particular cases of crystal
growth and evaporation, respectively, shown schemati-
cally in Fig. 4. Again working in the moving frame with
velocity V in the z direction, the boundary conditions
(3.2) and (3.3) are modified to the dimensionless form

V+ dx = —(Vu )+ do ", (Vu ) do "=0, (5.2)

u+ (x,g", t ) =6 doe [g"]—
for the case of growth and

(5.3)

1l

V+ dx=(Vu)" der", (Vu)+ do"=0,
dt

(5.4)

u (x,P, t ) =5—doa [("] (5.5)
I

In the preceding discussions, steps are assumed to be
ideal line sources or sinks near which a continuous ada-
tom density is maintained at the local equilibrium value.
This picture must be modified, in several respects, to ac-
commodate to more realistic growth situations. First of
all, effects such as the finite rate of adatom exchange at
steps, insufBcient concentration, and nonideal distribu-
tion of sink sites on steps, all lead to deviations of adatom
density at the steps from the equilibrium value. In other
words, growth rate is no longer solely controlled by ada-
tom transport, but also by interface kinetics. Secondly,
atomic exchanges on difFerent sides of steps involve
different kinetic barriers and are therefore nonequivalent.
This asymmetry in attachment kinetics was pointed out
by Schwoebel and Shipsey [6], and discussed extensively
in subsequent literature. Lastly, interface kinetics usually
exhibit pronounced anisotropy.

The effect of interface kinetics is usually taken into ac-
count by assuming an elevation of c„, from the equilibri-
um value linearly proportional to the adatom Aux. Ac-
cordingly boundary condition (2.3) is replaced by

(b)

A

V

z=~"(x,t)

FIG. 4. Schematic representation of step flow during (a) crys-
tal growth and (b) evaporation with asymmetric attachment
kinetics.

for the case of evaporation. The bulk diffusion equation
(3.1) remains intact in both cases. Note, however, that
for evaporation, the quantity b, ( & 0) is identified with
the dimensionless undersaturation and the dimensionless
diffusion field in this case is defined according to
u =(c—c„)/c„ in contrast with (2.4). The above models

are analogies of the one-sided models in solidification.

A. The case of growth

Integro-differential equations for the step displacement
are derived using the same method as before by applying
Green's theorem to the domain shown in Fig. 4. Since
adatom density will not be continuous across a step,
twice as many equations are needed compared to the
symmetric case. A static version of the Green's function
method was recently used by Misbah and Rappel [10] in
a bifurcation study of the steady state solution of cellular
steps.

Consider an arbitrary point p&A& on the terrace be-
tween steps A and 8 in Fig. 4. Green's theorem gives

dye
u(p)= f dx, G(pip, ) V[1—u+(p, )]+

dt's

+f do, u+(p, ).V, G(p~p&)

+f do, us (p, ) V, G(pip, )
B

+V QxiQ pi 6 p pi (5.6)
B

where to save notation the integration over dt, is implied
in the above expression. When we let the point p ap-
proach step A, the second term on the right-hand side
with V&6 develops an integrable singularity. After
separating the contribution of this singularity, we obtain

u+(g", t)=2f do, u (p, ).V,G(p[p, )+2Vf dx, u (p, )G(p[p, )
B B

u+(pi)+f dx, V[2—u+(p)]+2 + g"—g,
"— (x —x) G(pipi) .

A
(5.7)

Another equation is similarly obtained letting p approach step B,
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A

u (g, t }=2f der, u+(p, ) V, G(p~p) )+2f dx, V(1—u+ )+ G(pip) )
dt&

dg, u (p )
+ f dx, G(pip) ) V —

g
—

g,
— (x —x, )

a dx& t —
t&

(5.8)

Once again, linearization of (5.7) and (5.8) leads to the
stability equation. Here we first briefly mention the
linear stability of an isolated straight step under lateral
shape perturbations. In our formalism, it turns out the
dispersion relation can again be solved closely, from the
relation

idol +2=(b, dolk —)(1M+1)

+El(k 1++1+!M 1M —), (5.9)

where M(k, ei)=+k +1+I/1 +in The. actual expres-
sion for co(k) is lengthy and not shown here. We only
point out that the threshold line tension needed to linear-

ly stabilize the straight step is now given by

aV'I —a
0— (5.10)

while for smaller do the step is unstable to long-
wavelength perturbations. Thus suppressing adatom at-
tachment from the upper terrace makes the step more
susceptible to shape fluctuations. Further, it can be
shown that the effect of finite step spacing A, is stabilizing,
which merely reduces the above threshold to smaller
values. The calculation is straightforward and repro-
duces the results of previous authors [2].

Below, our major attention will be paid to the longitu-
dinal modes of an infinite step train. For straight steps,
the equations of motion are much simpler. Since u + =6
and g(x, t ) is independent of x, the integration over dx,
can be carried out explicitly. And the equations for steps
A and Bare

l

Uniformly moving steady states are zeroth order solu-

tions of (5.11}and (5.12). Setting g"=0,g =A, , we obtain

u =e + (a2++l), l)=e— (a +b, —1), (5.14)

from which both the velocity of the step and the adatom
density at the upper side of the steps can be calculated.
And the magnitude of discontinuity in adatom density
across the step equals 6—u

The linear stability equation, derived from (5.11) and

(5.12) by linearization, follows the same structure as
(4.25), but with only two terms n =0, 1 in the summation.
It reads

"ii [i~! +2 —g —2/+i))gV 1+l ]+l
(4+))altficol +2 6+21&+—bJ& ]

=u e'~ Q(1Q'+a 1 —1},
(5.15)

where as before Q(iso)=+1+1 +ical I.t is easier in

this case to extract the dispersion relation near the center

of the Brillouin zone. We find, to leading order, that

2b, (2 —5 ) —((2—5) /+) —6])
Oil(q j=

(1—6) (4—2b, —b )
e gn,

(5.16}
3

( )

—b, (2—6) —((z —s)w') —a]).
( g)28

(1—5) (4—2b, —b, )

(5.17)

d(A
b, = fdt, V(2 —b, )+2 G(gA, t i()A, t, )

1

+2fdt)uz (t, )

X [ VG(0",t i0), t, ) —~),G(0",t ~0), t) ))

in the limit of large step separation A, » l and

Qt(q)=[6, +O(A, )]qA, ,

3h
Q (q)= — —+b, + +O(A, ) (q){,)

2 32

(5.18)

(5.19)

d(A
u (t)= f dt, 2V(1 b, )+2 G(g, ti)g)", t—

) )

+2!)f dt, ))T„G(ge, tip,",t, )

+ Vf dt, uz (t, )G(ge, t)g~), t, ),

(5.11)

(5.12)

sinqk, (5.20)

2 2A!1

in the limit of narrow step trains. The spectrum solved

under the quasistatic approximation also takes a particu-

larly simple form:

2 2A. /1

with the reduced Green's function
Q„(q)=— (1—cosq){,) . (5.21)

(5.13)
[z —z, + V(t t,}]'—

Xexp
4(t —t, )

Note that both QR and Qt are of the same order O(b, ).
In Fig. 5, a comparison of the exact spectrum with the

quasistatic one suggests the latter to be a very good ap-
proximation. Since Qa(q) 0 for all q, the infinite step
strain is linearly stable against perturbations in step spac-
ings.
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0.0 Stationary state adatom density and step velocity can be
solved from

02

-0.4

0.2

0.0

u+=e {1+5,—a )=e + (1+6,—a+)
Q A, cx+ A, 2

and the linear stability equation is

e'~+'""[i~I'+2+ a+2& a&—&1+I']—1

~~~ [jc0I +2+/ —2g —gy i]

= —u+ e 'q"Q(k+a+I+1) .

The quasistatic dispersion relation,

2 e
—2A/Iu+e

Qz(q}= sinqA, ,

g2 e
—2A/I

Qz(q)= (1—cosqA, ),

(5.25)

(5.26)

(5.27)

(5.28)

-0.2
-1.0 -0.5

I

0.0
qLz

I

0.5 1.0

FIG. 5. Dispersion relation of an infinite train of parallel
steps against perturbations in step spacings during crystal
growth, in the one-sided model. Solid lines represent the nu-

merically solved exact spectrum, and dashed lines correspond to
the quasistatic spectrum. Curves, in increasing amplitude, are
for A, =2, 1, and 0.5.

B. The ease of evaporation

With little modification, procedures used in the last
subsection can be applied to the case of crystal evapora-
tion. We will not repeat the analyses, but only quote the
results. For an isolated straight step, the linear stability
spectrum for lateral fluctuations is the closed solution of

is displayed in Fig. 6 with the exact spectrum. We im-

mediately observe that Qz(q)~0 for all values of q.
Therefore, while the infinite step train is linearly stable
against lateral shape fluctuations, it is unstable to pertur-
bations in step spacings, of all wavelengths.

VI. MORPHOLOGICAL FLUCTUATIONS OF STEPS

At finite temperatures, a monoatomic step on a singu-
lar crystal surface contains kink excitations. As the tem-
perature is raised, the density of kink and other short-
range structural excitations increases and the step can be-

04

icoii+2=(b, dplk )—(IM 1)—
hl(k 1++1+—I M —IM ) . (5.22)

& 0.2

It follows that ice is pure real and ico(k ) ~ 0, for arbitrary
dp and k. So a straight step is completely linear stable
against shape fluctuations. This conclusion remains valid
for equidistant step trains with finite A, as well.

The equations of motion for parallel steps resemble
those in the case of growth and read

0.0

0.2

6=fdt, V{2+5)+2 G(g, t~g', , t, )

1

2f dtiu+(ti)—

X[VG(g, t~g,",t, ) V„G(g, t—~g,",t, )],
(5.23)

0.0

-0.2
-1.0

I

-0.5
I

0.0
qk,iz

I

0.5 1.0

deu+(t)= f dt, 2V(1+6)+2 G(g", t~g Bit, )
1

2b, f dt, V „G(g",t lg, , t—, )

—Vfdt, u+(t, )G(g",t)g(",ti) . (5.24)

FIG. 6. Dispersion relation of an infinite train of parallel
steps against perturbations in step spacings during evaporation,
in the one-sided model. Numerically solved exact spectrum is
shown in solid lines, and the quasistatic spectrum is shown in

dashed lines. Curves, in increasing amplitude, correspond to
A, =2, I, and 0.5.
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du(r, t) =V u —u+q(r, t),
Bt

u(x, ("",t ) =t(z doe [/" ]
—PU„[P]+—71 [/"],

(6.1)

(6.2)

where the two independent Langevin forces q and q mim-

come molecularly rough. In fact, in our previous con-
siderations of step kinetics, molecular roughness of steps
is necessary for them to behave as good sources and/or
sinks of adatoms so that the continuum description ap-
plies. Moreover, roughness of steps can persist to macro-
scopic scales comparable to step extension, since a step is
always thermodynamically rough at finite temperature
meaning that the amplitude of fluctuations diverges with
the system size. Besides contribution from equilibrium
fluctuations, step roughness is also affected by nonequili-
brium properties of the growth process itself, for exam-
ple, by the amplification of noises by the Mullins-Sekerka
instability as we shall show below.

Previous studies of step morphology were mostly
confined to treatments of the equilibrium fluctuations on
weakly interacting steps [12]. In addition, the effect of
thermal and other excitations on the terraces are routine-
ly neglected. It is not until recently that attention has be-
gun to be paid to step fluctuations under nonequilibrium
situations. In one such study by Uwaha and Saito [13],
step roughness is examined by adding to the linear stabili-
ty equation a hypothetical stochastic noise term
representing the cumulative effect of all thermal fluctua-
tions. The origin of their choice of the randomness, how-
ever, remains elusive. Another study, by Salditt and
Spohn [14] on the time-dependent step roughness, took
into account bulk random noise from the terraces but
neglected noise contributions from excitations on the
steps. Neither investigation considers multiple steps.

In this section, nonequilibriurn step roughness is inves-
tigated using a Langevin formalism. Our approach is an
extension of the general theoretical framework for the
study of morphological fluctuations of solidification
fronts at or near equilibrium, developed by Langer [15]
and Karma [16], based on the procedures introduced by
Cherepanova [17]. In this formalism, nonequilibrium,
hydrodynamical fluctuations of the phase boundaries are
evaluated as responses to the Langevin forces represent-
ing local thermodynamical fluctuations. %e demonstrate
that this Langevin formalism provides a consistent
description of the kinetic roughness of steps. The effect
of finite step spacing on step roughness, and the correla-
tion between fluctuations on different steps, can aH be
conveniently evaluated. Our approach is limited in
several aspects. The first and foremost limitation is relat-
ed to the unresolved fundamental question of statistical
mechanics of whether the Langevin formalism itself is ap-
plicable in treating statistical fluctuations of nonequilibri-
urn systems. Second, our calculation is carried out in the
small-amplitude limit and allows neither overhangs nor
crossings of steps. Similarly, no interactions between
steps beside the pure diffusive coupling is taken into ac-
count.

In the Langevin approach, stochastic noises are intro-
duced to the diffusion equation and to the Gibbs-
Thompson boundary condition as

ic fluctuations in adatorn density on the terraces and near
the steps, respectively. The noises are assumed to be
Gaussian distributed with zero mean and variances

(q(r, t)q(r', t')) =2I (1—V )5(r—r')5(t —t'),
(q(x, t)rt(x', t')) =2PrS(x —x )gt —t ) .

(6.3)

(6.4)

=g Jdt, dx, G(x, g", t~x„g(, t, ) V+
m

dt (

where the two-dimensional noise is projected as

o(x, g",t)= Jdt, dr, G(x, g", t ~r„t, )q(r„t, ) . (6.6)

Considering small-amplitude fluctuations around straight
steps we linearize the above equation in the Fourier rep-
resentation. The step profiles in response to the noises
satisfy

A„(k,to)g™(k,to)=cr"(k, to) rt"(k, to—), (6.7)
m = —oo

where coefficients A„only depend on the difference
n —m:

Ao= —5+1 1
0 a+A

e

1 1

-~—1
Mle 1

—iso +P —d k
1

2M
(6.8)

l N + 1, 1 (M+1/1)(n —m )A.+ e n)m
2M Ml' I

(6.9)
(M —1/1)(n —m )&

2M Ml'

(6.10)

with M(k, co) as previously defined. Also, we have

+ ac —(z( — A. n)/ —( z( —nA. M'q(kr~rz()
o "(k,to) = dz(e

ZM(k, to)

(6.1 1)

The infinite set of equations (6.7) have the Toeplitz form
and can be solved straightforwardly using Fourier series.
Defining

Note that the two-dimensionally distributed noise q
comprises two contributions: one corning from the ran-
domness in the impinging flux of atoms from the vapor,
and the other from the adatom terrace diffusion processes
itself. The magnitude I, as yet unspecified, will be fixed

by the requirement that the method recovers correctly
the equilibrium fluctuations.

Restricting ourselves to an infinite equidistant step
train in the symmetric model, we write the stochastic
equation of motion for the nth step as

b, —do(t —PU„+g{g" ] o(x, g—",t )
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A(8) = g A„e'", Z(8)= g g "e'", (6.12)
A (8)Z(8)=S(8) .

Inverting the Fourier series, we obtain

(6.14)

$(8)= g (o "—r/")e'"e, (6.13)
~ de ()'(8)e

"(k,co) = —~ 2n. A(8)
(6.15)

we have
which leads, noticing that & o "a

& only depends on n —m

and that & r/ "vP &
=

& r/ r/ &5„,to the result

& r/ (kco)r/ (k'co') &+g e'"
& cr "(kco)o (k'co') &

&g™(k )g'(k )&=f e—~ 2' kro k'ro'
(6.16)

This expression is the fluctuation spectrum for the infinite
step train in response to stochastic noises from both the
terraces and the steps. The stationary fluctuation spec-
trum can be evaluated from (6.16) by integrating out the
arguments k', co', and co:

&g P' &=f, &g™(kco)g'(k' ')& .
(2m)

(6.17}

where

I' ~ dec ' a(8)
1T — ~b(e)c( e)+b( —8—)c(8)

~

(6.20)

To proceed further with (6.16), we shall adopt the qua-
sistatic approximation as before by neglecting the co

dependence in M(k, co). Consequently, the noise correla-
tors can be evaluated:

& o "(kco)cr (k'co') &
= I'(2m. ) 5(k+ k')5(co+co')

~„~)I 1+sinh(nA, //)
M

&r/(kco)r/(k'co')&=2PI (2m') 5(k+k')5(co+co') . (6.19)

After some algebra, we find the general expression for the
stationary fluctuation spectrum of steps

&g, p, &„=„,",'.
0

(6.24)

We observe that the step roughness in equilibrium is in-

dependent of the step spacing /(, . And apparently, in
equilibriuin, fluctuations on different steps also decouple
since & gz P' k &,q=0 and m%0.

Under nonequilibrium growth situations, however,
fluctuations on different steps become correlated since in

general & gzP k &%0 for m%0. Furthermore, Eq. (6.20)
exhibits the familiar divergence of fluctuations at the on-
set of Mullins-Sekerka instability when b(8=0)=0. To
see this more clearly, we consider the simple limit of a
single step corresponding to A, =ao. In this case the
kinetic roughness spectrum of the step reduces to

I
Id k b //+1 M/ i— (6.25)

where the denominator is proportional to the quasistatic
dispersion relation of an isolated step. Extensions of the
present calculation to include energetic interactions be-
tween steps and to incorporate asymmetric attachment
kinetics may be warranted for direct comparison with ex-

perimental observations.

(8 ) 2pM + sinhllf )(

coshMA, —cos8 ' (6.21) VII. COLLECTIVE MOTION OF STEPS—THE PHASE FIELD METHOD

b (8}= 5—do/k ~+—1 p 1

/ Q+A,

1 1

Ml

1 1+M/
Ml 2 (M+1/I )A.—t8 + 1 —MI

e (M —I /I )A.+i8

1 1

(M+)/l)) ie
1 e(M —)—/l)A, +i&

(6.22)

(6.23)

and the quasistatic M='}/1+k +1// . Equation (6.20)
is the main result of this section.

First it is important to examine what (6.20) suggests
about the equilibrium fluctuations. Setting 6, =0, l = ao,
we have a(8)=c(8), b(8}=—dok and hence the equi-
1ibrium fluctuation spectrum

A rich variety of collective behavior of steps is com-
monly encountered during changes of crystal surface to-
pography. Steps are seldom uniformly spaced; pairwise
grouping of steps, bunching of steps into macrosteps with
height of multiple atomic units, collision and annihilation
of step with antisteps, have all been observed in various
surfaces of, for example, alkali halides [18], semiconduc-
tors [19],and metals [20]. To address these effects, fully
time-dependent treatments of the collective movement of
steps are necessary.

Theoretical analysis of the time-dependent multiple-
step kinetics turns out to be formidable. The most well
known continuum approach is the kinematic wave theory
of Frank [21] using the method of characteristics [22].
Frank's theory treats bundles of steps as basic entities
and monitors the temporal changes of the average step
density. It does not trace the position of individual steps
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au(r i), 1 ay=V u —u+ — +q(r, t),
at 2 dt

=g V /+a sin(~P) —u+5+q&(r, t),8 (r t) 2 2

(7.1)

(7.2)

where the last equation can be derived through a pure re-
laxational dynamics r8$/B)t = 5F/5$+q& fro—m the hy-
pothetical free energy

2 aF[P, u I
= Id r ~(VP) + cos(mP)—+(u —b, )P

2

(7.3)

and is therefore more coarse grained than the continuum
BCF model. However, the method is found particularly
useful in describing large scale changes of surface mor-
phology involving macrosteps. Time evolution of step
spacings in finite trains of steps has been discussed by
Mullins and Hirth [23], based on the assumption that the
step velocity is a function of only two adjacent step inter-
vals. Both approaches apply to straight steps only and do
not allow lateral variation of step profiles. Other time-
dependent studies [24] of step motion either follow the
spirit of Mullins and Hirth, or resort to explicit micro-
scopic Monte Carlo simulations of the growth processes.

Meanwhile, the attempt towards a direct numerical
solution of the original Stefan problem (2.5)—(2.7) is also
dificult, hindered by the need to track explicitly all mov-
ing boundaries. This difficulty has highlighted in studies
of dendritic solidification [7], and can be partly relieved
using the so-called phase field method. It is the purpose
of this section to develop a phase field model for the step
problem. We shall demonstrate that this method pro-
vides a powerful tool permitting detailed study of time-
dependent step kinetics.

The crux of the phase field approach [25] lies in the in-
troduction of an order parameter P(r, t) indicating the
phase at a particular position. In our model, local stable
minima of the order parameter correspond to terraces
whereas rapid spatial variation of the order parameter lo-
cates the position of steps. Now we introduce a stochas-
tic phase field model in the dimensionless form

the thickness of steps and ~ reflects the rate of response of
the phase field. Parameter a is the strength of the poten-
tial which can be taken as a constant of order unity, when
considering the limit of small supersaturations.

Formal methods have been used to establish the phase
field model as a proper regularization of the original
sharp interface problem (2.5)—(2.7). It has been shown

[26], again formally using matched asymptotic expan-
sions, that the phase field model recovers the sharp inter-
face model by taking appropriate limits of quantities
r~0, (~0, and a &&1. Following the standard pro-
cedures, it can be shown for our present model that the
value of u at a step satisfies

(7.5)u„, =b, —doe —PU„+ri,

with the correspondences do-)&a, p-rv'a /g, and
that the projected Langevin noise g is governed by the
correlator (6.4).

Equations (7.1) and (7.2), although stiff for small pa-
rameters g and r, are suitable for direct numerical
analysis [27]. While simulation on the physical two-
dimensional geometry is straightforward, we focus here
on the deterministic one-dimensional problem, corre-
sponding to straight steps. First of all, numerical evi-
dence suggests that (7.1) and (7.2) support steady state
solutions with constant velocity, for infinite equidistant
step trains with arbitrary spacing k, and at all values of
supersaturation 0&5&1. The most interesting applica-
tion, however, concerns the time-dependent motion of
finite, in general nonequidistant step trains. Such a situa-
tion is illustrated in Fig. 7, where a snapshot of the ada-
tom density and order parameter profiles is displayed for
a nonequidistant train of six steps. The parameters used
in our numerical calculation are 5=0. 1, a = 1,
r =2.5 X 10, (=0.05, and the average spacing between
steps is A, =2.5. Strong overlap of the terrace diffusion
fields is evident, even for average step spacing of A, =2.5.
To dispel a reasonable misgiving, it is not hard to realize
that an effective short-range repulsion exists between
steps spaced on the scale of g. This conveniently avoids
the possibility of steps behind overtaking others in the

(q&(r, r )q&(r', r') ) = Air r')6(r r') .— —2I g (7.4)

The Langevin noise q satisfies (6.3) while q& has zero
mean and variance

(a)

The magnitude of variance is so chosen as to reproduce
the correct interface noise g in the original sharp inter-
face model discussed in the previous sections.

Equations (7.1) and (7.2) are extensions of the classical
phase field model for solidification to the present problexn
with thermal fluctuations. A sinusoidal potential term is
introduced to facilitate the description of multiple steps,
by identifying the degenerate minima P-(2i+1)m, where
i is an arbitrary integer, with terraces. The location of
the moving steps is defined by the condition p(r, r )=2im. .
The phase field model captures, phenomenologically, the
effect of line tension and finite attachment kinetics by
having finite values for g and r, since g can be regarded as

0.0
10

5
(b)

0

-10
0.0

I

10.0
Z

20.0 30.0

FIG. 7. Snapshot of (a) adatom density and {b)order parame-
ter profiles, for a train of six steps. 6=O. 1.
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front, which in reality would create overhangs and in-
volve prohibitive energy penalty.

A train of&Site number of steps cannot propagate with
equal spacing indefinitely, because there is no corre-
sponding steady state solution. In Fig. 8, we consider the
temporal evolution of a train of six steps starting from a
configuration of equal step spacing A, =0.5 at 6=0.1.
Step configurations at t =0.5,20, 60, 100, 140 are shown in
sequence. Both the leading step and the trailing step
move faster than the steps inside the train, because each
of them borders on an infinite terrace with richer adatom
supply than other terraces. Therefore one expects the
step train to pile up at the rear and spread at the front.
This intuitive conclusion is indeed vividly observed in
Fig. 8, where we see the bunching of the last three steps
into a triple step, and the continuous breaking away of
the leading steps from the train. Meanwhile, the overall
extension of the step train increases monotonically in
time. At t=140, the total length of the train has in-

creased from an initial value of 3.0 to 16.14, by a factor of
5. It is also interesting to monitor the subsequent evolu-
tion of the triple step at the rear in Fig. 8. First it is clear
that a step with multiple height moves much slower than
the isolated steps. Consequently, the triple step lags far-
ther behind the other steps until the leading step within
the bunch finds a larger terrace in the front and ac-
celerates to break away from the group. After a further
dissociation of the remaining double step, the triple
bunch eventually disassembles into elementary steps
again. The qualitative conclusions we can now draw,
that finite step trains are susceptible to bunching at the
rear and spreading in the front, and that the average step
density in a bunch decreases with time, are consistent
with the analysis of Mullins and Hirth [23] and with the
general results of Frank's kinematic wave theory [21].

In short we see that the complex dynamics of a finite

step train result from the combined action of two
effects —of step grouping from the rear and spreading
from the front —each initiated from the two ends of the

2.0

0.0
20

0-

-20-

-40
5 10 15 20 25

Z
30 35 40 45

FIG. 9. Pairwise bunching of steps at the rear of a semi-

infinite step train with uniform initial spacing A, =0.75 at
6=0.2. Curves from left to right are at t =24, 48, 72, 96, and

120. Adatom density profiles are vertically displaced by multi-

ples of 0.2 to show clearly the propagation of bunching instabili-

ty into the step train.

step train. Both effects can nevertheless be more instruc-
tively illustrated when examined separately, in Figs. 9
and 10. For instance, Fig. 9 shows the temporal develop-
ment of pairwise bunching undulations on a semi-infinite

step train. Clearly, the configuration of the step train at
any time consists of a region with disturbances and an
unperturbed region, separated by a propagating "shock"
front. Within the region of disturbances, a pairwise
bunching of steps occurs. In addition, the front appears
to propagate uniformly with a constant velocity. A
different behavior is observed for a moving semi-infinite

step train which terminates on the right, as shown in Fig.
10. Here no bunching instability is present and the step
train spreads smoothly. It is then inferrable from the
foregoing discussions, confirmed by our numerical simu-

1.5
3.0

1.0- 2.0

C10

0.0
10

0.0
80

0 40

-10
0.0

I
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l 1

I
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z

I

30.0 40.0
0

0 10 20 30 40 50 60 70

FIG. 8. Time evolution of a finite step train, starting from an
initial configuration of six steps evenly spaced at A, =0.5. In the
phase field (P) plot, time sequences are, from left to right,
t =0.5, 20, 60, 100, and 140. For clarity, only three instances of
the diffusion field (u) at t=0.5, 60, and 140 are shown. 6=0.1.

FIG. 10. Uniform spreading at the front of a semi-infinite

step train with constant initial spacing A, =0.75 at 6=0.2. Step
configurations from left to right correspond to t =24, 4S, 72, 96,
and 120. Adatom density profiles are vertically displaced by
multiples of 0.4 for clarity.
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lations, that whenever a large step train of lower step
density invades that of a higher density, a shock front
forms at the interface which propagates into the train of
higher density and leaves behind a region of bunched step
configurations. For a high density train running into a
low density train, on the other hand, step spacings at the
interface vary smoothly in space and interpolate between
values characteristic of the two step trains.

These one-dimensional examples which we have hither-
to considered are used to illustrate the utility of the phase
field model to the study of microscopic kinetics of
monoatomic steps. The major limitation of the present
method lies in its difticulty in being generalized to the
case of asymmetric step kinetics, due to the discontinuity
in adatom density across the steps. Nevertheless, many

physically important factors, such as the impurity ob-
struction to step motion, temporal changes of growth en-

vironment, spatial inhomogeneity in supersaturation,
crystalline anisotropy, and the effect of island nucleation,
can all be conveniently investigated using this phase field

approach. Detailed studies of these aspects, in two di-

mensions, will be presented in the future.
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