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Dynamic instability in crack propagation
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A linear stability analysis of the steady state solutions to a model for propagating cracks implies dy-

namic instability beyond a critical crack speed, oscillatory behavior of the crack tip velocity, and the em-

ergence of spatial structure. The results are in qualitative agreement with experiment.

PACS number(s): 05.70.Ln, 46.30.Nz

A well known phenomenon of brittle fracture, studied
using longitudinally stressed samples of Plexiglass that
have been seeded with a small flaw, involves riblike pat-
terns found on the crack surfaces. The roughly periodic
structure emerges from a smooth region, becoming larger
in the direction of propagation. A second problem of
fracture mechanics concerns the fact that propagating
cracks do not attain the limiting Raleigh surface wave
speed predicted by linear elasticity theory [1,2].

In their investigation of mode I fracture in Plexiglass,
Fineberg, Gross, Marder, and Swinney [2] found that the
two phenomena are closely linked. They report that
cracks accelerate smoothly up to a critical speed, beyond
which the crack tip velocity oscillates about an average
value. Structure on the crack surface develops only in
conjunction with these oscillations. It was proposed [2]
that both phenomena, the patterns and smaller limiting
speeds, are manifestations of a dynamical instability.

This hypothesis is borne out by the work presented
here: (i) an equation of motion for the crack profile; (ii)
steady state solutions of the equation of motion; (iii) a
linear stability analysis of these solutions. The model
equation and its steady state solutions were originally in-
troduced by Langer [3].

The results of this stability analysis display the proper-
ties of fracture mentioned above and provide an under-
standing of other observations as well. The results are
also consistent with the behavior of other continuum sys-
tems. For example, the dynamic instability is related to a
viscous energy dissipation mechanism, and we find that it
occurs only in a regime of sufficiently large e8'ective Rey-
nolds number. This is analogous to situations in fluid
mechanics.

In this paper, etnphasis is placed on the method and re-
sults of the stability analysis. A derivation of the model,
which establishes its connection to elasticity theory, will
be presented elsewhere.

A detailed presentation of the model was given by
Langer [3]. It describes a crack with a cohesive zone [1]
at the tip. The crack is driven by elastic energy of the
strained material, and energy dissipation takes place by
way of a viscous term. In the following summary of the
model and its solutions, Eqs. (1)-(9)were taken from Ref.
[3].

The differential equation for the displacement U(x, t),
which describes the crack profile at position x and time t,
1S

a', U ="a„'U—m'(U —~)—f (U)+~a', a, U .

The cohesive force has the form of a step function,

fo, 0(U(5
F(U)= 0 5(U (2)

where 5 is the range of cohesion.
With times and lengths scaled so that c =1, the steady

state solutions U(g), where g=x +ut, are found by solv-

ing

s)vU"'+(1 —u )U"—m (U —b)=f(U) . (3)

Figure 1 shows the quantities characterizing a crack [a
solution to (3)] moving with velocity —u.

In front of the tip the displacement is identically zero;
far behind the tip the displacement approaches b„a mea-
sure of the applied force or strain. The length of the
cohesive zone (I) is l.

Equation (3) is piecewise linear and its solutions in I
and II have the form

U=const+g A, exp(qg}, (4)

U

crack+
tip

X+ Vt

FIG. 1. Schematic picture of the displacement U(x +vt) and
the quantities that characterize a crack propagating with veloci-

ty —v.

where the q are roots of

rivq +(1—v )q
—m =0 .

The term containing the positive root of (5), which is
defined as q„ is missing in zone II.

For given values of m, si, fo, 5, and b, there are the five

coeScients A, the length of the cohesive zone l and the
velocity of the crack v to be determined. The required
seven equations are

1063-651X/94/49(4)/2597(4)/$06. 00 49 2597 1994 The American Physical Society



KARL RUNDE

U'"'(0) =0, U'"'(I +e)= U'"'(I —e), U(1)=5, (6)

for n =0, 1,2. Here U'"' denotes the nth derivative of U.
A particular goal of the calculation in [3] was to deter-

mine the relation between crack velocity and applied
force —that is, the function v (b )—which provides infor-
mation on the existence and character of the family of
steady state modes. To find v (5) one has the equation

In the preceding paragraphs we discussed the viscous
mode1 of crack propagation and its steady state solutions,
henceforth referred to as Uo(x+vt) .For these exact
solutions to occur in nature, they must be stable with
respect to infinitesimal perturbations. The investigation
of this question will proceed as follows. Substituting
U = Uv+ U, into the differential equation (1) and linear-
izing leads to

m 6
exp( —q, I)= 1—

and some approximations. For small values of Ug,

(7)
a', U, —a„'U, +m U, —gB B, U, = 5(x+vt —1)U,

0

(10)
v= (b —bG),

m

foe

' 1/3
3b,G

25
(9)qi(v) .

with m b,G=2fo5 the Griffith criterion for this system

[1,3]. For larger velocities,
1/3

Assume that U, = U, (x +vt, t) and has continuous first
partial derivatives. By integrating (10) with respect to
time, over an interval defined by x +vt =I, one obtains
the boundary condition,

O' U (I +e, t) O' U (I—e, t)= — U (l, t) .x i x i U, (l)

Two features of these solutions to the model were
stressed in [3]. First, that propagation at speeds in excess
of the sound speed seems to be possible at arbitrary
values of m and g. Also, it was noted that two of the
roots of (5), q2 and qs, are complex at speeds greater than
the solution v„of the equation (1—v ) /v =27m rI /4.
when the wave numbers q23 have imaginary com-
ponents, the crack profile (4) acquires oscillatory struc-
ture.

In fact it can be shown from (5), (7), and (9) that v =1
is a limiting speed in the following sense:
max v(b, )=1+e(rl), where e can be made arbitrarily
small for small rl. The form that v(b, ) takes in this re-
gime is shown in Fig. 2. Furthermore, minute values of a
dissipation coefficient are a natural assumption for brittle
fracture, which has often been modeled with no dissipa-
tion at all [1]. Since the speed v, defined above also ap-
proaches unity as g decreases, we conclude that super-
sonic propagation and the oscillatory structure associated
with complex wave numbers q are features of an unphys-
ical region of parameter space.

Now, the steady state modes Uo must be investigated
for stability with respect to perturbations of the crack
profile and the tip speed. Thus we seek solutions
U = U(x + vt +h (t), t } in the vicinity of Uo. The deriva-
tive of h (t} is equal to the velocity of the crack tip in the
moving frame. Expand U to obtain the form of the small
quantity,

Ui =G (x + vt, t) + Uii(x +vt)h (t) . (12)

U, = Uo(x +vt)g (x +vt)e"'+h Uti(x +vt)e ' . (13)

Because Uo has discontinuous higher (than second)
derivatives at x +Ut =0 and x +Ut = I, the function g
must satisfy g'/(g+h)= —rv/3v at these two points [see
Eq. (14), ff.]. To explicitly evaluate this (necessary) condi-
tion, and solve for m, let g =bke'""+' ". With
T=—8, —8„+m —i}r}„B„the three equations

Note that 6 describes the perturbation to the shape of
the crack profile, while Uoh corresponds to a small dis-
placement of the entire crack. Using the original
diff'erential equation (3), it is easily shown that
with a sufficiently smooth P(x, t), any function
U, = UIi(x +vt)P(x, t) will satisfy the boundary condition
(11). We therefore write

10 30

TU1(0, t) =0,
TU, (1+e,t) =0,
TU, (l —e, t) =0,

(14)

(15)

FIG. 2. Three examples of steady state crack velocity v as a
function of h. The maximum displacement 5 is proportional to
the applied force or strain. Times and lengths have been scaled
so that the wave speed equals 1. The parameter values that
were used in calculating this function are m2=1, fo=100,
5 =0.1, and g = 100 (dashed line), g = 1 (dotted line), and

g =0.001 (solid line).

allow one to solve for k, h (or b), and co. From (14) we
find that (3ikv +tv)b = rob Subt—ractin. g (15) from (16)
results in (fore/v)(e'" 1)=0. Thus the—values of k are
restricted to k =2mn /I. For simplicity, we define
I„'= Uo'(I)/Uo(1), where I» -1. The relation
re= Re(ei)+i Im(co) follows from (15}or (16).

The wave speed c has been inserted into the following
expressions, which give the central result of the calcula-
tion, ro=N '( 3 +i8), with
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N=gk + U+
2

1,

gv Z 2A = —gk c —2v + —2(2v +c )

(18}

8 =—uk rPk +c —
U

— +2 2 2 2 3gv 6g
I, lz

As stated here, the exact expression for co appears to be
rather complicated. Fortunately, it simplifies in the re-
gime of small g.

We now turn to the analysis of co, noting again that it
derives from an attempt to evaluate a necessary condi-
tion, not a full solution of the difFerential equation. As is
evident from (13), negative values of its real part describe
damping of the perturbation, while positive values imply
instability of the steady state mode. The imaginary part
of co is the frequency with which the crack speed oscil-
lates about its steady state value. For sufBciently small
values of the dissipation constant ri we will find instabili-
ty, oscillation, and spatial structure.

At this point it is useful to state some approximations
that are valid in the regime of small g. As shown in Fig.
2, U(h) becomes very steep as ri decreases. For crack
speeds less than c, b, =66. The positive root of (5) will be

q, =m/Vc —v and if m b, G/fo «1 we have from (7)
and the definition of hG,

m 5G = ')/25/f 0+c v-
qifo

(20)

1 — + (0.2v v

c2 I c2
(21)

The positive root of this expression defines a critical ve-
locity U, . In the regime under investigation, v, =c/~2
and the dispersion relation takes on a more inviting form.
Near v„

co= '
[gk (v —u, ) —(c'/I, )]—ivk .

gk +v
(22)

Thus the number gv/I, c can be made arbitrarily small.
Note that this corresponds to the regime in which the
efFective Reynolds number I,c/ri takes on large values.

Inspection of (18) reveals the necessary condition for
instability:

An increase in the wavelength of structure with crack
speed has been observed in fracture experiments [2].

The imaginary part of co describes the oscillatory fre-
quency of the tip speed in the moving frame;
0—:—Im(co) =vk. It was pointed out by Fineberg et al.
that elastic theory does not naturally provide the time
scale corresponding to the observed oscillations [2]. This
question can be addressed in the context of the present
work. The values reported by Fineberg et al. for period
of oscillations, crack velocity, and wavelength of struc-
ture are in accordance with the relation 0—uk =v2nn /l.
Furthermore, near the critical speed, the length of the
cohesive zone is I =c+5/fo, which makes r= +5/—fo a
natural time scale of the system and its oscillations.

Consider the physical situation depicted in Fig. 3. An
approximation of fo as the derivative of stress suggests
that

' 1/2

fo

5'~ (density)'~

(tensile strength)'~
(24)

where H is the height of the sample. This expression
yields a simple dependence of the time scale on sample
geometry.

The results of this analysis allow predictions of fracture
phenomena that can be experimentally investigated.
First, it is necessary to stress that we have been discuss-
ing cracks propagating with constant velocity, whereas
brittle fracture typically involves large accelerations. It is
therefore desirable to obtain data from experiments in
which accelerations are systematically reduced. Under
these conditions, one can expect to find critical velocities
that approach but do not exceed ca /v'2, approximately
seven-tenths of the Raleigh wave speed.

Apparently, (U —v, )/U, can be taken as a control pa-
rameter of the instability; v is a monotonic function of 5,
and 6 represents the applied force or strain. Following
Landau [4], one expects the amplitude of the oscillatory
structure that emerges, also perpendicular to the direc-
tion of propagation, to increase as

Am, „~[(U —u, }/U, ]'~ . It was reported in [2] that the
measured amplitude is linear in this parameter. Howev-
er, the published data also carry a hint of the square root
behavior; again, the prediction is for steady state states,
and "smoother" experiments may clarify the situation.

According to Eq. (23), materials with lower viscous en-

ergy dissipation will develop smaller structure in the un-
stable region, and because Q=vk, the frequency of the

A( v ) ~ ri'~z( v —v, )
'r2 (23)

Recall that the perturbation of the shape of the crack
profile was represented by a Fourier mode bke'"~ With.
(22), ge '~e' & ' "'e ' " describes a perturbation mov-
ing to the right with velocity v, a localized structure in
the laboratory frame.

Suppose now that v is only slightly greater than v, .
Then instability sets in when the perturbation has a very
large wave number k. In this sense, there is a critical
wavelength that increases with the velocity of the crack:

cracA.

FIG. 3. Model I rupture in a sample of height H. Applied
stress is in the z direction.
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corresponding oscillations will be higher. Both of these
tendencies have been observed in fracture experiments.
In Plexiglass samples of varying molecular weight, Kusy
and Turner found a marked decrease in the size of oscil-
latory structure as the molecular weight of the polymer
was reduced [6]. The reduction of molecular weight how-

ever, which causes the samples to become more brittle
and glasslike [6], clearly implies less viscous energy dissi-

pation. More recently, fracture experiments with glass
and Plexiglass samples of the same size showed
significantly higher oscillatory frequencies in the glass
samples [7].

The nature of the transition to instability can be inves-

tigated without having access to crack velocity as a func-
tion of position. Square root behavior near the critical

velocity, of both the amplitude and the wavelength, im-

plies a linear relation between these latter quantities. A
dependence of time and length scales on sample size, as
given by (24) and Fig. 3, might also be easy to test.

We have shown that the unstable behavior of this
crack propagation model corresponds to some phenome-
na observed in fracture experiments. The existence and
character of the instability appear to be features of a
model which incorporates a viscous energy dissipation
mechanism. It should be noted that this is a general form
of internal friction in continuum systems. When "energy
dissipation is not considerable [5]," it follows directly
from the dissipative stress tensor of elasticity theory. It
is as such a natural choice for a continuum description of
brittle fracture.
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