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Escape rates in bistable systems induced by quasimonochromatic noise
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Path-integral techniques are used to understand the behavior of a particle moving in a bistable
potential well and acted upon by quasimonochromatic external noise. In the limit of small diffusion
coeKcient, a steepest-descent evaluation of the path integral to leading order enables Incan Grst-
passage times and the transition times from one well to the other to be computed. The results
and general approach are compared with computer simulations of the process. It is found that
the bandwidth parameter I' has a critical value above which particle escape is by white-noise-like
outbursts, but below which escape is by oscillatory-type behavior.

PACS number(s): 05.40.+j, 02.50.Ey

I. INTRODUCTION

The study of noise-driven systems frequently focuses
on one of the simplest possible cases, the motion of an
overdamped particle in a bistable potential V(x), in order
to investigate the essential features of a particular type
of noise [1]. The model is described by the Langevin
equation

i + V'(z) = tc(t),

where the noise is taken to be Gaussianly distributed with
zero mean. The nature of the noise is then completely
characterized by the correlator,

(2)

and a clearly interesting limit is where C (u) is nearly
zero for some value of e. This corresponds to what has
been called quasimonochromatic noise (QMN) [4] or har-
monic noise [5], and is the subject of this paper. These
previous studies suggest that QMN differs in an essen-
tial way from white and exponentially correlated noise
in that, for instance, the particle passes over the top of
the potential barrier many times before making a well
transition. One of the aims of this paper will therefore
be to calculate the escape time for the system (1) with
QMN. We will use path integrals, as in earlier work by
Dykman and co-workers [4, 6, 7], however our approach
will be quite different and, me believe, more systematic
and transparent.

Apart f'rom the case of white noise, C(lt —t'I) = 2h(t-
t'), the most studied situation [2] is where the noise is
exponentially correlated, 1S

II. PATH-INTEGRAL APPROACH

The correlation function for QMN in frequency space

C(lt t'I) = —exp( —It —t'I/r) .

The power spectrum

c'(ru) = f ds e' 'c(~s~)

If we de6ne a new diffusion coefficient

D= —4,
D

0
(6)

may also be used to specify the noise, and the expansion
of its inverse

introduces coe%cients K; which define the type of noise
under consideration. %'hite noise corresponds to ~; = 0
(i & 1) and exponentially correlated noise r; = 0 (i & 2),
Ki ——7 2. Clearly the most straightforward generalization
consists in taking r; = 0 (i & 3). The case of a single
noise correlation time and ~i, K2 ) 0 has already been
investigated in an analogous fashion to the exponentially
correlated case [3]. Since C ~(u) must be positive for
all u (for the Gaussian functional integral over the noise
to exist), r2 must be positive. However, ez need not be,

then C '(~) is of the form (4) with leg ———2(u, '[1—
2(I'/tdo) ] and e2 ——wo . In the limit I' (( ao, C(u) is

sharply peaked at the finite frequency (uroz —2I' ) ~

hence the name "quasimonochromatic noise. " We will be
working within this limit for the rest of the paper. In
the same way as exponentially correlated noise may also
be viewed as resulting from a stochastic process 7( +

rl, where ri is Gaussianly distributed white noise
with zero mean and strength D, QMN can be viewed
as the result of passing white noise through a harmonic
oscillator filter,

(+21'(+ (uo( = g,
where the white noise g has strength D. VFe also require
that ( and $ are both zero as t m +oo for Eq. (7) to be
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equivalent to (5).
We can use (7) to transform from the probability den-

sity functional for white noise to that for ((t) [8],

where 1[x] is a Jacobian factor which is irrelevant to
leading order in D and S[x] is the generalized Onsager-
Machlup functional given by

P [(] = ~exp
~

— «( + 21'( + ~,'(4D (8)

Now we impose that (, ( m 0 as t ~ koo so that Eq.
(8) becomes

4

P[(] = A"exp~—
4D

2 ( I')
(2

i

1 2
i

(2
~o E ~or

P[z] = JV"J[z]exp
S[z]

(10)

Using (1) and (6) this gives the probability density func-
tional for x(t),

DO

S[x] =
4 OC

2r'l ..
, ]

1 —,
[ [z + i V"(x)]'

~o k ~'o )

+ —,[z'" +i V"(z) + i'V'"(z)]' dt .

Probability distributions, correlation functions, etc.
ran now be obtained by integrating over functions z(t)
with weight given by (10). For D -+ 0 these path
integrals may be evaluated by steepest descents; the
paths that dominate the integrals are the ones for which
SS[z]/bz = 0. Using (11) we obtain a sixth-order non-
linear differential equation for the paths. If this is mul-
tiplied by x and integrated with respect to time we can
derive a fifth-order nonlinear equation where z~"~ is the
nth derivative of x with respect to time, given by

2 2

(uo(i —V'
) + 2~o [

1 —
2 ~

(2z~ lz —x + 2i'V'" —i V" )
(do )

+2zl lz —2zl }z+(zl l} + 10zl lz V"'+ 10zz V""+2i V'""

-- 2z~'~zV"'+ ~'V"' —4~~'V"V"'+ x'V'"' —2~'V"V'"' = 0 .

Even in the limit I'/(uo w 0, this is a formidable look-
ing equation. It seems natural to try to make a pertur-
bative analysis in the interesting large ~0 limit, which
would be somewhat analogous to an expansion in v.

for the exponentially correlated noise problem. But the
QMN case is more subtle; the near vanishing of C '(~)
at 4) 4)o gives rise to rapidly oscillating solutions which
have to be carefully extracted from (12). In order to
make further progress it is useful to have a specific po-
tential in mind; we choose the much used bistable poten-
tial V(z) = —z /2 + z4/4. In the dirnensionless units
we are using, we are working in the limits I' &( ~o and
0 &) 1. The nature of the extremal solution can be
glimpsed by studying what happens near to the turning
points x = —1, 0, +1 where this potential can be approx-
imated by a parabola. Let x = x; + p, where x,- is the
turning point and p is a small quantity. Taking only the
lowest order of powers of p we get the approximate po-
tential to be V(p) = a, + —b;p where a; = —1/4 and
6,. =2ifx, =+landa, - =Oandb, - = —1ifx,. =0.
Equation (12), when expressed in terms of p, will have

solutions of the form p = P z C e ",where C and o.
are constants. Substitution into the equation gives

Re(n„) ) 0 and Re(a„) ( 0 solutions separately cor-
responding to the correct boundary condition p ~ 0 as
t ~ boo. Note that the oscillatory solutions are indepen-
dent of the shape of the potential. In the large wo limit,
where the form of the potential is unimportant, the oscil-
latory solutions of interest to us have precisely this form.
In order to make this more concrete, first look at the case
of the nonlinear potential gradient split into N segments
between x = —1 and z = 1, where the potential gradient,
is approximated by N linear segments:

( 2z,'V'(z)]., = (3z,' —1) [
z-

3z, —lj
Making the substitution

2x3
+ p

(14)

the approximate form of the potential gradient is then
given by U' = 6,p, where 6, denotes the gradient ax,- —1 at
the point x, Once again p will be the sum of exponentials
and we can say that locally at the point x, the motion of
x has the form

n„= +b; or o.„=+(I' + iO), (13)

where 0 = gwo2 —I'2. Clearly we can only have

+ g 1 +btl[,
~ 3x,' —1

+ p2 +I t iOt + p3 +Ft —iOt
; C C I (15)
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where here C," are constants at the particular point x;
and are such that x will be continuous.

Substituting this into Eq. (12), (15) can be shown to
be a solution to lowest order in inverse powers of uo which
suggests that x(t) has the form

x(ti

(i6)

to lowest order in inverse powers of uo, where zo is a
complex number so that z(t) is real. The parameter to
is such that —oo ( to ( oo and appears because of the
time-translational invariance involved and can be set to
zero without loss of generality. It is the time at which the
amplitude of the oscillations has its greatest value and as
a consequence the likelihood of a transition being made
at this time is enhanced. The smooth function x, (t)
represents the motion of the center of oscillation. We
have ignored terms oscillating at higher frequencies since
the magnitude of these components is related to the ratio
of the height of the power spectrum (5) at the resonant
frequency to that at the higher &equencies. For terms
oscillating at frequencies +nO this ratio is approximately
Fz/n2uro2. Since we are considering the regime I'/uo (( 1
this ratio is very small. Hence the assumption that terms

I

oscillating at higher frequencies have very little effect on
the motion and can be ignored.

III. CALCULATION OF THE ACTION

Returning to the case of a general bistable potential
V(x), we substitute the expected form of the solution

(16) into the action given by (11). For (11) to be finite
we require that x and x be continuous at t = 0, which
gives zo —2zo(1 —i&), where zo is the amplitude of the
oscillations at t = 0. The action consists of three contri-
butions: one involving the oscillatory terms in (16) only,
one involving cross terms between the oscillatory terms
and time derivatives of x, and V'(z), and one involving
time derivatives of z, and V'(x) only. Taking these in
turn, the first is evaluated by simply substituting in the
explicit expression given in (16). This may be facilitated
by integrations by parts which are in effect reversing the
steps taken to get from (8) to (9). The result is I'xo.
The second contribution may be evaluated by integrat-
ing by parts to obtain an integrand which has the form
of [z, + V (z)] multiplied by a function of the oscillat-
ing terms in z which vanishes identically. However the
discontinuity in x~ ) at t = 0 gives rise to an extra term
from this contribution which is essentially this disconti-
nuity multiplied by the time derivative of [z, + V (z)]
at t = 0. Using these results and writing out the third
contribution in full gives for Eq. (11)

S[z, ] = I'z,' — , zo „[—z.+—V'(z. , t)]~, + — [z. + V'(z, , t)]'

4F2) f.. dv'(z, , t)l 1 t'
~,1

d'V'(*. , t) l

(17)

where V'(z, , t) is defined by

V'(z. , h) = V' ...-'l'l. '"l'l+ z,*.-"l'l.-*"l'l+ z, (h)

The potential can be written as a sum of a smoothly varying part and oscillating parts:

V'(z, , t) = V,
' (x, , t'} + ) V„'(z, , t)e*" ',

~(go)

where V,
' and V„' are smooth functions. We will denote the second term by V'„(z, , t). The first term equals, by

integrating over a period,

27l

V,
' (x, , t) = — V' zoe I le" + zoe I le "+z, (t) ds.

2K 0
(20)

We can now integrate Eq. (17) by parts to give

~[x-] =

( 2 4I' 'l (.. dV,' (x, , t)) 1

k~o ~o) 4 dt ) ~op™
+ — (2[+, + V,

' (x, , t)]+ V.',.) V.'„+
~

—,—1 (2
—OO &~o

Fxo+ — [x, + V,
' (x, , t)]4

d'V. ' (z. , t) )
dh

4F'l~ d'V', .(*, , t) 1 d V',.(*, , t)
uro4 ) dtz (uo4 dh4

(21)
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where contributions due to discontinuities at t = 0 have been omitted since they are down by powers of I/~o on the
leading term.

We now show that the third term of (21) is of order I/wo. First consider the oscillating term with n = +1. The
curly brackets in the third term of (21) can be approximated by

2
I "o ~o ) ~o & ~(2) )

The terms in the potential oscillating at higher fre-
quencies are also of order I/wo by the same argument
used at the end of Sec. II.

The action is therefore given by

1 t' 1 b
S[z. , *,) =rx'o+- (*. +V.' )'dt + O~ —

]
.

Q 4
Sm sm

&~o)

if xo P 0 because of the explicit time dependence of the
potential.

In order to keep the white-noise solution as the limiting
case of zp ~ 0 we must use the boundary conditions,
along with Eqs. (24), given by

z, (
—oo) = -1.

(22)
z, (oo) = 0 . (27)

The extremal paths are found from bS/8x = 0, or in
terms of the new variables (x, (t), xo), bS/bx, = 0,
where we are not yet varying xp. This yields to lowest
order in up the equation

—[x (t)+V. (x. t)]

—[x, (t)+V,' (x, , t)]
' ' ' =O. (23)

cIV,' (x, , t)
+SII1

We can now use a substitution s = e ~'~ in Eqs. (24)
and integrate them numerically using the cOLSYs pack-
age [10]. We have to ensure that x, and f are contin-
uous at t = 0 in order for the original integral (25) to
make sense. Once we have calculated f we can obtain
the action (25) which is a function of the parameters xo,

p, and I . In Fig. 1 S is plotted as a function of zp
for several values of the bandwidth parameter I and a
fixed value of wp. We find that S varies very little with

For convenience this can be separated into two first-order
coupled differential equations which are given by

x, (t)+ V,
' (x, , t) = f(t), 1.4

I24)
1.2

So now the action given by (22) can be written as

2 1 2 (I)
S = I x,'+ — f'(t)dt + 0

~

4 (~o)
(25)

We now introduce a specific potential, the quartic poten-
tial V(x) = —z /2 + x /4, and attempt to calculate the
action for a well transition and the action for a mean first
passage. First we have to find V,

' . It is given by

v,
' (z. , t) = zs — . (I — ' (1+ ",

I
' I'~i)

2

(26)

0.8

0.6

0.4

We can now use (26) to integrate Eqs. (24). In this
case there is no easy transformation of variables x(t) =
y(x) as used to solve similar equations in [9]. Notice
that in the limit xo m 0 the solution of Eqs. (24) is

that of the extremal path of the white-noise case, that
is, x, (t) = —V,

' and f = Oorx, (t) = +V,' and

f = 2V,' . The first case is the dotunhill solution and
leads to a zero contribution to the action. This case also
remains a solution even when xo g 0. The second case is
the uphitt solution but this no longer remains a solution

0.2

0 I

0 0.2 0.4
I I I I I I I I I I I I I I

0.6 0.8 1.2

FIG. 1. The action calculated from (25) for varying values

of xo. Notice how as I' decreases a minimum begins to form
for values of xo g 0.
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wo as long as this parameter is large enough and in what
follows we 6x it to have the value 10.0. It still remains
to minimize S with respect to xo which means we have
to determine the value of xo for which OS/Bzo ——0 and
02S/Ox2ois positive. The value of the action where these
criteria hold is denoted by S* and is calculated numeri-
cally. It is then plotted as a function of the bandwidth
parameter I' in Fig. 2. The ratio S*/I' is plotted as a
function of I' in Fig. 3. In the limit I' ~ 0 the value
S*/I' will be shown to tend to a finite quantity. In the
work of Dykman and co-workers [4, 6, 7] the white-noise
strength has a linear dependence on I' and so this value
is studied to make a comparison between our work and
theirs.

There are a number of interesting points in Figs. 1—3
which are worthy of further discussion. In Fig. 1 there
are two important limits which can be picked out. The
6rst is the xo —+ 0 limit. One sees that the action tends
to 0.25, which is the value found in the white-noise case-
the barrier height being 0.25 in dimensionless units. The
second limit is when zo ~ oo. The action now tends to
r~,' and we see that the major contribution of the action
arises due to the energy associated with the oscillatory
motion. In Fig. 2 we see that for I' & 0.46, the minimal
action S* is just that obtained when the noise is white.
It follows that the particle escapes from one well to an-
other by white-noise-type outbursts. This means that

3 ss—2 t —~4z 1+~ e
x, '(t) = 2e

3a2
2 t' —~ 1+~ e

x e . . dt' (28)

the action associated with mean erst passages and the
action associated with well transitions are equal. On the
other hand, for I' + 0.46 the minimal action occurs when

zo g 0. As a consequence we deduce that the particle
escapes &om one well to another by an oscillatory type
of motion. This leads to differences between the action
associated with a mean first passage and the action asso-
ciated with a well transition. If one plots the envelope of
x against t subject to the boundary condition (27), then
one finds that the particle actually crosses the potential
barrier top many times before t = +oo. Finally, in Fig. 3
one sees that for I' & 0.46, the result is as for white noise

(having the constant value 1/4I'), whereas for I' & 0.46,
S'/I' peaks around I' 0.05. The value at I' = 0 can be
calculated analytically and is found to be s, as we now

show.
As I' ~ 0, the paths for f found numerically around

the point where cIS/Bzo ——0 and s9 S/oIzoz is positive are
found to tend to zero for all values of t Settin. g f = 0 in

(24) enables us to obtain the uphill solution analytically.
For t & 0 one finds that

0.25

0.2 0.9

0.8

0.15
0.7

0.6

0.1

0.5

0.05
0.4

0.3

0
0

I s «s I s s» I s s s s I s s s s I s s s

0.1 0.2 0.3 0.4 0.5 0.6 0 7 0.8 0.9

FIG. 2. The action S versus I' together with results from
simulations. Squares represent mean well transitions and cir-
cles mean first passages. Both show a gradual decrease in the
value of the action.

0.2 I ssss I ssss I ssss I »ss I ssss Is sss I ssss I ssss I

0 0. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIG. 3. The ratio S'/I' versus I' together with results
from simulations. Squares represent mean well transitions
and circles mean first passages. Notice that the value of S'/I'
tends to a finite value as I' tends to zero and that its value
peaks at I' 0.05.
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&sm

FIG. 4. The potential V, [given by (32)j
versus x, in the limit 1 = 0, when (a) xo .-
2/3 and (b) x„ ) 2/3.

and the action given by (25) becomes

We can now expand e ' = 1+ 21't + O(I' ) and Eq.
(28) becomes

3X2
s+O(l )

x, (t) = 2e2r e

At large positive times double wells develop again, but
in the limit I' = 0 the system remains at x, = 0, which
is the correct value as t m oo. We therefore see that we

require xp & 3 to obtain a correct picture when I' = 0.
To determine S*/I in the limit I' ~ 0 we have to

minimize S/I' = zo with respect to xo subject to the
condition xo & s. This leads to the value s for 9*/I in
this limit, as claimed.

3z2
2 Z —,--'- t'+O(I')

cB (30) IV. COMPUTER SIMULATION OF QMN

This can now be integrated easily to give

3x 2 21 — 2, XP (
x,' (t)=i (31)

, 0, 2 2
xp ) — .

3x2 I'2

It is easy to check that (31) holds also for positive t
The I' ~ 0 limit can be made more transparent by

proceeding in a slightly di8'erent way. If we begin frolic
the expression f(i+ At) = 2f(t) —f(t —At)

—21'At [f(t) —f (t —At)]
at'~,' f (-t) + N(t), (33)

Since QMN can be viewed as arising from the second-
order differential equation (7), we cannot easily imple-
rnent the Fox integral algorithm [11] for noise simulation.
There are two possible approaches. The first is to use
an extension of the Sancho algorithm [12] which makes
use of the Box-Muller algorithm [13] for the generation
of Gaussianly distributed random numbers. Then QMN
is generated using a finite-difference form of (7) given by

4+ SIII4
(32)

where N(t) is

N(t) = [ 4DAt In(Rq)]—~ cos(27rR2)
we see that if xp ( — and I' ~ 0, the potential has two

minima given by x, (t) = 1 —2xoe ~'~. However, if

xp + 3 the potential has a single minimum at x, = 0.
These two possibilities are illustrated in Fig. 4. Since
x, is independent of time when I' = 0, the system is
found in minima of the potential at all times. This can
be seen directly from (24), where a rescaling of the time
by I' shows that when I' = 0, f = 0 and V,

' = 0 for all
Rnite times. In spite of these simpli6cations it is easier to
think of the time evolution of x, (t) if we imagine I' very
small, but nonzero. Suppose, erst of all, that xp
In the infinitely distant past V, has a double-mell form
with x, = —1. As t increases, then x, takes the value
—(1 ——xo2) ~ and remains at this value until large positive
times when it moves back to —1. This clearly violates the
boundary condition z, (+oo) = 0. Now suppose xo & s.
Once again x, (—oo) = —1, but at some large negative
time the double wells merge into a single well at x, = 0.

ig ———V'(xg) +. x2,

xs = —21'xs —~ox2 + v 2D((t), (34)

where xq ——x, x2 ——f, xs ——f, and ((t) is Gaussian
white noise of zero mean and mean square value unity.

Here Aq and R2 are random numbers, uniformly dis-
tributed in the range [0,1], and Dt is the step length
used in the simulation. The second approach is to con-
sider the system as three coupled diH'erential equations
and to use the work by Mannella and Palleschi [14]. In
the notation of that paper the equations governing the
system are written in the form of three first-order difFer-
ential equations,
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This system can be simulated by

*,(t+ at) = *,(t) + at [-v'(, (t)) +,(t)]

+ O(b, t'~'),

z, (t i At) = z, (t) + Atz, (t) y O(d t'~'), (35)

z3 (t + At) = zs (t) + At y'2DM

+ At —2I'z (t) —ur z (t) + O(ht ~ ),

M = [
—21n(Ri)]& cos(2vrR2), (36)

where Ri and R2 are as before.
With the simulation step length 6t small enough (in

our case equal to 0.001) these two approaches are con-
sistent to fractions of a percent. Using small At also
eliminates the need to use any corrector steps as in [14].
However a full discussion of the merits of using diferent
algorithms or different step lengths is not included in this
paper.

During the simulations care must be taken to measure
both mean first-passage times and the mean well transi-
tion times since the theory predicts different values of the
action for these two quantities. Since we are dealing with
small values of D = D/top, we expect that these charac-
teristic times will have a simple activation energy-type
dependence on the associated action. It is then natural
to extend this to the limit of D ~ 0 by plotting the quan-

tity (where 7 is either the mean first-passage time or the
mean well transition time)

S(t', top, D) = Din(~) (37)

against D. This will coincide with S (the quantity
shown as a function of I' in Fig. 2) when D goes to
zero. As in [15], the action has a near linear dependence

on D and the value of the actions measured for top = 10
are compared with the theoretical results in Figs. 2 and
3. The squares are the actions for mean well transitions
and the circles are for mean first passages. The line con-
necting the squares in Fig. 3 is to guide the eye and to
help show the qualitative features of the simulation data.

This method is a useful technique since it allows mea-
surement of the action from simulation data without the
need of having knowledge of any prefactors.

where M is a Gaussianly distributed random number of
zero mean and mean square value unity. This random
number can again be generated by the Box-Muller algo-
rithm and is given by

V. CONCLUSIONS

The theoretical results are only correct to order of in-

verse powers of cup and so for ~p = 10.0 these could result
in corrections of order 10%. The errors resulting from the
simulations can occur from the following.

(i) Using a limited number of ensembles of simulation
runs to predict the ensemble average of typical well tran-
sition and first-passage times.

(ii) The fact that finite D was used, although these
errors are limited using the analysis used in [15].

(iii) Using a finite but small simulation step length. A
full discussion of how this sects measurements is given
in [15].

(iv) Using a basic finite-step size expansion for the
stochastic equations.

However, considering all possible errors the theoreti-
cal approach and the computer simulations agree well in
the qualitative description of QMN. Both show that the
type of transition between wells in a bistable potential is
dependent on the bandwidth of the noise I'. Both the-
ory and simulations predict that the value of S'/I' has
a finite value of —0.67 at I' = 0 and that this quantity
peaks at I' 0.05.

This is in agreement with digital simulations in Ref.
5 where a peak is found in the frequency of escapes at
I' —0.1 (the factor of 2 difFerence between our result and
theirs arises from a different definition of I').

For large values of I' the oscillatory behavior of the mo-
tion is suppressed and the system behaves as if it is under
the inHuence of white noise. As I' is reduced, however,
the particle begins to oscillate and this type of motion
causes a well transition, which results in differences be-
tween the action for mean first-passage actions and the
action for a mean well transition. Also there is a decrease
in size of these two (if D can be considered I' indepen-
dent). The suppression of oscillations with increasing I',
but not the existence of a critical value, was noticed by
Schimansky-Geier and Ziilicke [5].

This means the bandwidth of the noise can be used
a switching device by the system to decrease the action
and hence escape times between wells. If a well transi-
tion needs to be inhibited, then the bandwidth may be
broadened; if it needs boosting, then the bandwidth may
be narrowed. This interesting property and the diH'erent

method of motion as compared to white and exponential
noise means that many natural systems may have more
control over their behavior than at first expected. .
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