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High-temperature series expansions for Ising-like systems on fractals
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High-temperature series expansions up to 16th order for the Ising model susceptibility and for the

second moment of the correlation function are generated for fractal lattices of the Sierpinski carpet fami-

ly. The critical temperature and the critical exponents y and v are obtained from the series analysis

method of differential approximants. From our results, we test the validity of estimates previously ob-

tained in the literature and examine the effect of lacunarity on y and v. For carpets with the same frac-

tal dimension, we found that v decreases as lacunarity decreases.

PACS number{s): 05.50.+q, 64.60.Ak, 75.10.Hk

I. INTRODUCTION

The phase transitions of spin systems on nontrivial
self-similar fractal lattices have been mostly studied for
the Sierpinski carpet family [1] by real-space
renormalization-group (RG} [2—5] methods and numeri-
cal simulations [6,7]. In the RG techniques, the rescaling
factor cannot be smaller than the lattice self-similar fac-
tor, which implies the use of large cells for some fractals.
In these cases, calculations cannot be performed in prac-
tice unless drastic approximations are done, such as bond
moving, on the lattice structure. Analogously, when the
lattice self-similar factor increases, the numerical simula-
tions are possible only for the very first stages of the lat-
tice construction, giving less reliable results due to finite-
size effects. Consequently, these approaches do not allow
a complete study of universality classes of statistical sys-
tems on fractals.

Recently, methods for computing the number of
embeddings of graphs in self-similar structures were pro-
posed [8,9], allowing the use of the series-expansion tech-
nique for statistical systems on these geometries. In com-
parison to other techniques, the series-expansion method
provides the most reliable results whose accuracy can be
improved in a systematic way by increasing the order of
the series [10].

The graph counting method proposed by the authors

[9] can be used in a fairly general family of self-similar
deterministic fractals which are obtained by the iteration
of a fixed rule of construction. It enables one to obtain
the behavior of statistical systems on fractal lattices
which have the same fractal dimension but different la-
cunarities [1],allowing a complete study of those system
on non-Euclidean lattices. In this paper, we apply the
graph counting method shown in [9] to find the
coescients of the high-temperature series expansions for
the susceptibility and for the second moment of the
correlation function of the Ising model on Sierpinski car-
pets.

The setup of this article is the following. In Sec. II we
present the Sierpinski carpets and recall the attainment of
the high-temperature series expansions for the Ising mod-

el susceptibility and the second moment of the correla-
tion function. We also present our numerical calcula-
tions of the coencients of the series. In Sec. III we briefly
recall the series analysis method of difFerential approxi-
mants and present the results for the critical temperature

T, and critical exponents y and v. Section IV comprises
comparisons with other existing data, discussions, and
analysis.

II. NUMERICAL CALCULATIONS

I"(r,v) = (S;S;+,}= g q„"(r)u",
n=1

(la)

with q„"(r)obtained from the number of graphs with n

bonds having two end points in a distance r apart (made

up by n-step self-avoiding walks plus contributions from
shorter chains with polygons) starting at site i Note that.
in a fractal lattice, the sites are not all equivalent (see Fig.
1). Hence the correlation function defined in (la) depends

The Sierpinski carpets are characterized by two integer
numbers b and m. An initial unit square is divided into
b subsquares from which m are discarded forming m la-
cunas. Such initiator pattern replaces each of the
remaining b msubs—quares and the lattice is rescaled by
a factor b in order that the smallest subsquares be of unit
area. The fractal is obtained by repeating this operation
indefinitely. At each stage, Ising spins are located at the
corners of the elementary squares.

Here we consider carpets characterized by a symmetric
distribution of lacunas. For m =1, the lacuna is at the
center of the initiator; for m ) 1, either the lacunas are
joined at the center of the initiator or they are spread out
symmetrically, generating lattices with the same fractal
dimension [Df=ln(b —m)/lnb] but different lacunari-

ties [1] (see Fig. 1).
High-temperature series expansions of the Ising model

correlation function in zero field are obtained in a stan-
dard way by writing the single-bond Boltzmann factor
exp(PJ'S;SJ } as cosh(PJ}[1+uS;S.] and expanding all

products [11].The result is (p= 1/ks T and v =tanhpJ)
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with d„obtained from the total number of graphs with n

bonds having any initial site i and two end points at any
distance apart divided by the total number of sites. Simi-

larly, the second moment of the correlation function is

given by

V2(u)= X p. u"
n=1

(4)

with p„—the total number of chains and chains plus po-

lygon configurations per site in which each chain is
weighted by the square of its end-to-end distance. For-
mally, from Eq. (2)

p„=gq„(r)r=(R„)d„,

where (R„)is the mean square size of the nth-order dis-

tribution.
We also analyze the series

on the root site i.
We then consider the average correlation function

defined as

N

I (r, u)= —g I"(r,u),
N,.

(lb)

with N the total number of sites. Using (la), it can be
written as

I (r, u) = g q„(r)u",
n=1

(lc)

with q„(r)=(1/N)gN , q„"(r), the av-erage number of
graphs with n bonds having any initial site i and two end
points in a distance r apart. The moments of the correla-
tion function I"(r,u) may be formally defined by

pz(u)= g r~I'(r, u)= g g q„(r)r~u" .
rWO r40 n=l

(b)

FIG. 1. Initiators of Sierpinski carpets characterized by pa-
rameters b =7 and m =9: (a) high lacunarity and (1) low la-

cunarity.

S(u)= g (R„)u".
n=1

It is expected for Euclidean lattices that functions (3) and
(4) have the critical behavior F(u)-(I —ulu, ) for

U~U, , with critical exponent 6 equal to y and y+2v,
respectively [12]. The sequence of coefficients (R„)
defined in (6) is analogous to the mean square size of a
self-avoiding walk of n steps. The series (6) has an exact
critical parameter U, =1 and critical exponent 0=1+2v
[13].

In what follows we assume that the above critical
behavior for functions (3), (4), and (6) also holds for Ising
systems on regular or deterministic fractals for which the
unit generator is a composition of basic plaquettes of the
standard lattices as squares, cubes, triangles, etc. In or-
der to calculate the coefficients of series (3) and (4) we

have to proceed with the enumeration of all the connect-
ed graphs that contribute to each order of these series
and their respective weights (they are the same as in the
square lattice). As we are not dealing with translationally
invariant lattices, methods based on the enumeration of
only star graphs [11]cannot be used.

We have performed the series expansions of the func-
tions (3) and (4) up to 16th order for several Sierpinski
carpets using the exact graph counting method shown in

[9]. In the Appendix we give details of the method and

its application for the graph of Fig. 2 on the carpet with

Using (1), the fluctuation theorem for the reduced suscep-
tibility per spin then reads

i I ~)
4E

F %F b 0

y/PN= —g g (S;S; „)=1+Q I (r, u) =1+@(u)
1

T r&0

(3a)

il
il (c)

or

y/PN=1+ g d„u",
n=1

(3b)
FIG. 2. Schematic representation of four neighboring 1Q-

stage reproduction of the fractal lattice with contributions to {a)

G(1Q ), (b) Hl(lQ ), and (c) Hz(IQ ) ~
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TABLE I. CoeScients d„,1 (n ( 16, of the Ising magnetic susceptibility high-temperature expansion [Eq. (3)] for carpets charac-

terized by parameters (b, m). For m =9, the superscripts I and h stand for lattices with low and high lacunarity, respectively (see

text).

(b, m)

n

1

2
3
4
5

6
7
8
9

10
11
12
13
14
15
16

(5,1)

115/29
342/29
48 893/1392
22 461/232
369 097/1392
245 425/348
62 278 037/33 408
8 998 823/1856
69 824 299/5568
29 819689/928
304 253 013/3712
2 313615 641/11 136
4 382 998 903/8352
44 079 089 749/33 408
110518479 585/33 408
276 115 149487/33 408

(7 9)'

182/47
528/47
30 807/940
41 501/470
222 123/940
144083/235
371 173/235
187 884/47
377 712 163/37 600
234 703 981/9400
2 318676 343/37 600
1 420 352 147/9400
13 850 652 619/37 600
8 391 861 501/9400
81 037 693 701/37 600
194783 590 201/37 600

117/31
330/31
1871/62
97 519/1240
503 483/2480
627 907/1240
3 102 019/2480
7 514621/2480
3 608 677/496
42 840053/2480
100972047/2480
2 953 154/31
549 910771/2480
636 917751/1240
2 940660387/2480
135 382 151 133/49 600

(3,1)

42/11
120/11
1379/44
1825/22
76649/352
48 673/88
490 461/352
1 213 117/352
2 977 469/352
7 229 507/352
139514 117/2816
20 878 335/176
198946 397/704
85 700 857/128
4 448 917749/2816
5 227 596 829/1408

b =3 and m = 1. We also show in the Appendix an expli-
cit derivation of the first two terms of series (3b) and (4)
for the same carpet. Tables I and II show the coefficients
d„and p„for some carpets. Coefficients (R„)of series
(6}were obtained using (5).

solution gives an approximate representation of the func-
tion. By choosing the appropriate degree K, the approxi-
mants provide a representation of difFerent singular struc-
tures of the function.

We have worked with the nonhomogeneous first- and
second-order difFerential equations

III. SERIES ANALYSIS AND RESULTS Qu(v)F (u)+ Qi(u)D„F(v) =P(v), (7a)

Series (3) and (6} were analyzed using the method of
differential approximants of the first and second order
[14] to obtain the critical exponents e=y and 1+2v, re-
spectively. In brief, this method is based on fitting the
series coefficients of a function F(v) to the polynomial
coefficients of a Kth-order differential equation whose

Qo(u)F(v)+Qi(u)D„F(v)+Qz(u)D, F(v)=P(v}, (7b)

with D„=v(d/dv) and Qo(u), Q, (u), Q2(v), and P(v) po-
lynomials of order Mv, M„M2,and L respectively. The
singular behavior of the approximants F(v) can be deter-
mined by applying standard techniques from theory of

TABLE II. CoeScients p„,1 & n (16, of the high-temperature expansion of the second moment of the Ising correlation function
[Eq. (4)] for carpets characterized by parameters (b, m). For m =9, the superscripts l and h stand for lattices with low and high la-
cunarity, respectively (see text).

(b, m)

n

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

(5,1)

115/29
912/29
222 461/1392
236 833/348
1 205 051/464
12 841 312/1392
1 038 885 773/33 408
841 690 613/8352
5 287 410797/16 704
2 699096677/2784
97 146 334 717/33 408
11928 904 249/1392
207 771 943 123/8352
1 190667 332 103/16 704
6 745 843 778 961/33 408
1 182 392 573 428/2088

(7,9)'

182/47
1408/47
139607/940
29023/47
432 391/188
1 872 456/235
6 150221/235
3 879 922/47
9 477 325 619/37 600
880660951/1175
16 392 514403/7520
29 249 117829/4700
657 612 748 507/37 600
45 587 440029/940
624 791 833 613/4700
847 622 020 411/2350

(7,9)"

117/31
880/31
8463/62
85 128/155
4 901 027/2480
4 096 257/620
51 889 059/2480
19729 409/310
464 905 753/2480
667 026 461/1240
3 744402 847/2480
2 579 233 369/620
27 988 590 747/2480
3 744 625 871/124
198093 686 603/2480
1 295 946 634 486/6200

(3,1)

42/11
320/11
6243/44
6375/11
745 617/352
316637/44
8 159053/352
6 311913/88
75 642 837/352
110407917/176
5045 625445/2816
884 335 631/176
9 765095 843/704
26 588 477 521/704
286 102 960 197/2816
95 175 853 745/352
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differential equations to (7). In the case of the first-order
differential equation (7a) the critical point v, is obtained
from the root of polynomial Q, (v) and the approximants
F{M ~ I )

(v) represent functions of the form [14]

F(v)- A (v)+B(v)iv —v, i (v ~v, ), (8)

where A (v) and B (v) are analytic at v, and [14]
8= —Qo(v, )/v, Q'i (v, ).

In the case of the second-order differential equation
(7b), the critical point v, is obtained by the root(s) of po-
lynomial Qz(v). Simple zeros in Qz(v) indicate a solution
of the form (8) with [14] 8=1—Qi(v, )/v, Q2(v, ). Dou-
ble roots or closely spaced zeros in Qz(v) indicate that
the approximants F{M M ~ I ~(v) represent functions

with confluent singularities [14]

F(v)=B(v)~v —v, ~
'+C(v)~v —v, ~

'+A(v), (9a)

X [ I+ [C(v)/B (v)] ~
v —v, ~

(9b)

For the two-dimensional (2D) Ising model, thermo-
dynamic quantities such as the magnetic susceptibility
behave close to the critical point like (9b), but with the
correction-to-scaling exponent 6= 1. This corresponds
to an analytic correction and, in fact, such behavior is in-
cluded in the form (8). Such analytic correction to scal-
ing for planar Ising models may arise from nonlinear
thermal and ordering fields [15). On the other hand, for
the 3D Ising model it is believed that the thermodynamic
quantities present nonanalytic corrections to scaling
(b, /integer). Accordingly, one should also examine ex-
pressions for the model on fractals of the form (9). In
principle, such forms can result from second-order
differential approximants, as mentioned, with the re-
quisite double roots of Q2(v).

In the analysis of the second-order differential approxi-
mants, however, we find that the form (8) holds for al-
most all the approximants for our series. While this
finding is consistent with an integer correction to scaling
exponent 5 in (9b), it may also be due to a weak confluent
term as compared with the leading term, which is numer-
ically represented by an analytic term as well. The at-
tainment of an isolated root of Q2(v) may also represent
some "optimal" choice of critical point and effective ex-
ponent by the approximants. Further studies using spe-
cial techniques, e.g. , imposing double roots of Q2(v) or
constructing a new function from F(v) in which the lead-
ing singular term is canceled out [16] (the residual critical
exponent estimates from the analysis of differentia ap-
proximants for this new function should, in principle,
represent the correction-to-scaling exponent), would be
needed to detect nonanalytic confluent terms if they exist.

We present the estimates of v, and 8 in (8) from first-
and second-order approximants. The presence of the an-
alytic part A (v) is such that usual D log Pade approxi-
mants, which are best suited for functions with strong

where A (v), B (v ), and C(v) are analytic at v„8)8', and
b =8—O'%integer. Equation (9a) can be rewritten as

F(v)=A(v)+B(v) v —v, ~

TABLE III. Estimates of critical parameter U,

(v, =tanhJ/k&T, ) and exponent y obtained from K =1 and 2

approximants for the carpet with b =3 and m = 1 according to
the leading order X of the series expansion. Also shown is the
number of approximants that were calculated (1, ), defective

(ld ), and used in calculating the mean (1„)for each N.

12
13
14
15

10
12
12
12

K=1
3
8

8
3

Uc

approximants
0.4562+0.0014
0.4556+0.0007
0.4556+0.0007
0.4563+0.0037

2.28+0.06
2.25+0.09
2.24+0.05
2.23+0.04

12
13
14
15
16

8

11
14
15
18

3
2
5
7

14

K=2
5
7
9
7
3

approximants
0.4548+0.0045
0.4561+0.0003
0.4555+0.0006
0.4549+0.0017
0.4560+0.0023

2.22+0. 17
2.27+0.02
2.24+0.04
2.20+0. 16
2.28+0. 16

isolated power-law singularities [ A (z) =0 in (8)], do not
show satisfactory convergence properties, at least up to
the order of the series studied.

Using the leading N+1 (13~N~16) coefficients of
the 16th-order series expansions of functions (3) and (6),
we search for a set of approximants F(~ ~ L )

(v) in (7a)

and FtM M ~ I )(v) in (7b), where I- runs from 1 to 8;

Mo, Mi, and Mz ~2; and IMO
—M, I, IMi —M21, »d

~M2
—Mo =0 or 1 (diagonal and near diagonal approxi-

mants) [13].
The estimates of v, and t9 for each leading order N are

obtained by taking means of the estimates of critical pa-
rameters with an error bar that is twice the standard de-
viation. Defective approximants or those which lie well
outside the scatter of the remaining ones are discarded.

In order to appreciate the convergence properties of
the approximants, in Tables III and IV we show, respec-
tively, the estimates of the critical parameter v, and ex-

ponent y obtained from the Ising magnetic susceptibility
series (3) and exponent 2v+1 obtained from series (6) at
the critical parameter v, = 1 for the carpet with b =3 and
m = 1. We also show, for both first- and second-order ap-
proximants, the number I, of calculated approximants,
the number /d of defective approximants, and the number

l„ofapproximants used in calculating the mean for each
fixed value of N.

From the estimates for each N, the final estimate is ob-
tained by considering at least three superimposed values
within the error bars. This procedure captures the con-
vergence properties of the series and when applied to the
series of the square lattice provides final estimates that in-
clude the exact results.

Our final estimates are shown in Table V. The E =1
and 2 differential approximants (8) show similar conver-
gence. The exponent v of the second lattice shown in
Table V deserves a special comment. The E = 1 approxi-
mants give estimates around 1.0, which is the value of the
square lattice. The E =2 approximants give almost
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12
13
14
15
16

10
12
12
12
12

K =1 approximants
2 8
3 9
0 10
0 11
0 10

3.7+1.4
3.82+0.39
3.81+0.. 12
3.71+0.45
3.55+0.19

12
13
14
15
16

8

11
14
15
18

K =2 approximants
2 5

2 9
2 11
9 4

10 6

3.3+0.9
3.4+1.3

3.93+0.37
3.60+0.41
3.54+0. 14

100%%uo of the estimates less than 1.0, with two regions of
convergence, corresponding to high and low order L of
the polynomial P(v) in (7b); this is responsible for the
large error bar. As these two regions are less than one,
this is a strong support for v & v(D =2).

IV. ANALYSIS AND CONCLUSIONS

From Table V, our estimates confirm the expected re-
sult T, & T, (D =2) and the general trend previously ob-
tained y &y(D =2). On the other hand, the trend
v& v(D =2) obtained in previous works [5-7] that dealt
only with carpets with central lacunas is not confirmed
here.

Our method of graph counting allows the derivation of
the exact series expansions also for carpets with no cen-
tral lacunas and then it is possible to analyze closely the
effect of lacunarity on the universality classes. From

TABLE IV. Estimates of exponent 2v+1 obtained from
K =1 and 2 approximants for the carpet with b =3 and m =1
according to the leading order N of the series expansion. Also
shown is the number of approximants that were calculated (l, ),
defective (lz ), and used in calculating the mean (l„)for each N.

2v+ 1

Table V one can conclude that lacunarity strongly affects
the v exponent while its efFect on the y exponent is weak-
er. As a consequence, it is not possible to address any
dependence of the exponent v on Df. In fact, our results
also show that for lattices with the same Df, when la-

cunarity decreases the v exponent also decreases in con-
trast to previous works [2]. For a low-lacunarity carpet
our result also suggest that v has crossed over the two-
dimensional value v= 1.

We also display in Table V the average coordination
number (q) [10] of each fractal lattice. From our re-
sults, there is a monotonic dependence of the critical pa-
rameter v, on (q), but again there is no monotonic
dependence of the critical exponents on (q ). Earlier at-
tempts [7] to address such dependence of the critical ex-
ponents with an efFective dimension d' defined from the
average number of bonds per site (d'= (q )/2) did not
include low-lacunarity carpets such as (7,9)' of Table V.
Therefore, previous attempts [17] of interpreting the re-
sults for the critical exponents of the fractal lattices as
arising from regular lattices at a noninteger effective di-
mension d =d' or Df were inconclusive. On the other
hand, from our results, such a possib1e interpretation is
not tenable.

Although all the lattices analyzed here have fractal di-
mension near 2, it is possible to apply the same technique
to special Sierpinski carpets with Df near 1 in which the
lacunarity can be chosen to be arbitrarily small. Previous
claims [18] that the critical behavior of the Ising model
on such geometries become identical to those obtained
from the analytic continuation of results for regular lat-
tices with D =1+a could then be checked.

In Table VI we display, for comparison, the results ob-
tained so far in the literature from several techniques for
the carpet characterized by parameters (b, m) =(3,1),
Df =1.893, and d'=1.909. We also include the critical
exponents for Ising-like systems in regular lattices with
noninteger dimension d = l.9 obtained from an
expansion technique for d =2—s [17].

TABLE V. Final estimates from first- and second-order approximants of the critical parameter v,
(U, =tanhJ/k&T, ) and exponents y and v for Sierpinski carpets characterized by parameters (b, m),
average coordination number (q ), and ordered according to their fractal dimension Df For compa. r-
ison, the corresponding values for the 2D Ising model (Df =2) are included. Asterisk denotes exact re-
sults: U, =0.4142. . . , y=1.75, and v=1.

2*
1.975
1.896
1.896
1.893

b, m

(5,1)
(7,9)'

(7,'9)"

(3,1)

&q)

4
3.966
3.872
3.774
3.818

K =1 approximants
0.4142+0.0003
0.4201+0.0003
0.4521+0.0035
0.4687+0.0028
0.4560+0.0017

1.75+0.03
1.84+0.02
2.67+0.11
2.34+0.09
2.27+0.08

1.000+0.006
1.023+0.007
1.04+0.26
1.50+0.13
1.38+0.20

2*
1.975
1.896
1.896
1.893

(5,1)
(7,9)'
(7 9)It

(3,1)

4
3.966
3.872
3.774
3.818

K =2 approximants
0.4142+0.0002
0.4204+0.0005
0.4465+0.0069
0.4699+0.0053
0.4552+0.0015

1.753+0.016
1.86+0.03
2.38+0.32
2.49+0.31
2.24+0. 12

1.000+0.008
1.035+0.039
0.83+0.23
1.36+0.21
1.38+0.16
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TABLE VI. Results for the Sierpinski carpet {b,m) ={3,1) obtained from several techniques. For
comparison, the corresponding values for the Ising model on a regular lattice with e8'ective dimension
d = 1.9 obtained from a c,-expansion method are included.

Method

16th-order series
9th-order series
numerical
simulations
RG

c. expansion
d =1.9

'Present work.
Reference [8].

'Reference [6].
~Reference [7].

2.034+0.006'
2.07+0.02
2.03+0.02'
2.09+0.03

2.0631'
2.0619~

2.27+0.08'
1.99+0.06

1.980'
1.88+0.08

1.862+0.015"

'Reference [3].
'Reference [4].
Reference [5].

"Reference [17].

1.38+0.16'

1.090'
1.09+0.05

1.10%0.01"

0.0928'

0.034'

0.097+0.003"

The series method used here gives results closer to the
true values than previous estimates and may help to ana-
lyze the effect of the approximate methods used so far in
the study of phase transitions on nontrivial fractals. In
particular, the critical temperatures were obtained with
high accuracy. In general, one can conclude that the
critical temperatures in the RG schemes [3,5] compare
well with our results, but the accuracy of the critical ex-
ponents, varies according to the self-similar factor of the
lattice. On the other hand, Monte Carlo (MC) results
[6,7] underestimate y and v, probably due to finite-size
effects.

The finite-size effects in the MC simulations on fractals
are stronger than in the Euclidean lattices because the
full connectivity of the fractal lattices (or the correlation
among the size distribution of the lacunas within the lat-
tice} is not captured in the first stages of lattice construc-
tion, but only in an averaged way. Note that the proxim-
ity between the MC results and those for a homogeneous
lattice with 1=1.9 (see Table VI) also suggests this inter-
pretation.

In our approach, we count exactly the density of each
type of graph that contributes to (3) or (4) in the limit of
infinite fractal lattice. Then the order propagation
through the lattice is calculated including the existence of
lacunas of all length scales, capturing the true critical
behavior.

Previous high-temperature series results up to 9th or-
der for the Ising magnetic susceptibility on carpets with
central lacunas [8] overestimated T, and underestimated

y. In fact, there is a change in the asymptotic series
behavior near order 10 for all the analyzed fractals,
which is also suggested by the appearance of a great num-
ber of D log Pade approximants with spurious poles.
This shows that series expansions for fractals may exhibit
a slow convergence and also that methods of series
analysis other than D log Pade should be used to describe
a more general critical behavior such as Eqs. (8}or (9).

The analysis of our series by first- and second-order
differential approximants for the thermodynamic quanti-
ties of the Ising model on fractals with 1&Df &2 sug-
gests the presence of analytic corrections to the leading

singular behavior, analogously to the 2D systems. On the
other hand, the existence of nonanalytic conAuent singu-
lar terms is not ruled out, which may have not been cap-
tured numerically by this method. Other methods and
longer series are needed to clear out this point.

The main result that arises from our calculations is
that two critical leading exponents, namely, v and y,
were obtained from series approach for Ising-like systems
on nontrivial fractals. From them, other critical ex-
ponents follow, assuming the scaling relations for frac-
tals. Applying the same method of graph counting one
can also generate the high-temperature series expansion
for the specific heat.

The technique used here is general and can be applied
to a fairly large class of deterministic self-similar fractals.
Systems on geometries with dimensions Df arbitrarily
close to any integer dimension D (including upper and
lower critical dimensions) can be analyzed in a systematic
way. Important open questions in the field of phase tran-
sitions such as the limiting behavior of critical exponents
as Df ~D can now be addressed.

APPENDIX

G(l) =(b —m)G(l —1)+H(1 —1), (A1)

with

H(1 —1)=H, (1 —1)+H2(l —1), (A2)

where H, (/ —1) and Hz(l —1} represent the number of
embeddings that cross, respectively, one and more than
one intersection between the reproductions of the (I —1)

Consider a particular Sierpinski carpet characterized
by parameters b and m. Figure 1 gives examples of such
fractals at the first stage of construction. The fractal at
the 1th stage of construction is formed by b —m repro-
ductions of the previous (I —1) stage with spatial distri-
bution identical to the b —m subsquares left at the first
stage.

The number of embeddings G (I) of a particular graph
in the lattice at stage 1 is given by
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and

Hi(l —1)=bHi(l —2)+(b —1)Ci (A3)

H2(/ 1)=H2(10)=C2 (A4)

where C& and Cz depend only on the embedding proper-
ties of the graph at stage 10 and the geometric properties
of the initiator of the fractal. The first term on the right-
hand side of Eq. (A3) comes from [9] the b reproductions
of scale (l —2) that are close to each lateral border of the
scale (I —1).

Iterating (A3} up to scale lo and adding the result to
(A4):

stage at the 1th lattice stage.
Now, for this particular graph, consider the minimal

stage lo that embeds it and proceed as follows.
(a) Compute exactly the total number of possible

embeddings of the graph at stage lo. This gives G (1o ).
(b) Consider two neighboring 10 stage reproductions

and compute the total number of possible embeddings
that cross the intersection between them. This number
times the number of such pairs in the next scale gives
H, (lo).

(c) Consider three or four neighboring lo stage repro-
ductions (see Fig. 2) and compute the total number of
possible embeddings that cross two or more intersections
between them. By considering all possible sets of such lo
scale reproductions in the next scale, obtain H2(lp).

It is possible to show that [9]

AL 4L 4L

FIG. 3. Contributions to G (lo) =2 of the particular example
at minimum stage 10=1 of the fractal lattice with b =3 and

m =1.

H(1 —1)=12X3' ' —10 . (A8)

Then (Al) reads

G (1)=8G (1 —1)+12 X 3' ' —10 . (A9)

initiator of the carpet). This gives H, (lo )=20.
The constant C, in (A3) represents particular embed-

dings that cross two neighbor general (/ —1) stage repro-
ductions which can be computed by considering only
neighbor lo stage reproductions (see Ref. [9]). Figure 5

shows the four possible embeddings in the case of our ex-
ample. By considering the four similar intersections (hor-
izontal or vertical) of the (l —1) stage at the lth stage, we
obtain C& =16.

Finally, the H2(lo )=6 embeddings are shown in Fig. 6.
(For this particular fractal there are sets of only three
neighbor (I —1) stage reproductions in the 1th stage).

Iterating (A3) [using H, (lo}=20and C, =16] and add-

ing (A4) [Hz(lo) =6], we get for this particular graph in

the particular fractal with b =3 and m =1

H(l —1)=C3b' '+C4, Iterating (A9) up to lo and using G (lo }=2,we finally get
(A5)

where C3 and C4 depend on H, (lo), C„andCz.
Substituting (A5) in (Al) and iterating up to lo, we ob-

tain

G(l)= A (b rn)'+Bb—'+C, (A6)

with constants A, B, and C obtained from geometric
properties of the initiator and embedding properties of
the graph at the stage lo [C„H,(lp) Hg(lp) G(lo)].

In particular, Eq. (A6) is also valid for the number of
sites N(1) at each stage l (with constants A ', B', and C').

The density of a particular graph in the infinite fractal
lattice is then

G(/) 3481 1231+ lo
35 5 7

(A 10)

JL JE J1
r

Now we show explicitly the calculation of the number
of embeddings in the carpet with b =3 and m = 1 at stage
1 of two special graphs: the number of sites (graphs of
length 0) N(l) and the number of bonds (graphs of length
1, horizontal and vertical) L (I). First, note that H (I —1)
in (Al) is zero for both graphs. On the other hand, sites

G(l) A

N(l) A' ' (A7)

From (A7) it is possible to obtain the exact evaluation of
the nth order of the series by considering all the contribu-
tions of graphs with n bonds.

To illustrate, we give the results for the particular
graph shown in Fig. 2 on the carpet with b =3 and
m =1. The graph is a self-avoiding chain with five bonds
and contributes with weight 16 for the 5th order of series
(3) and (4). In this case, lo =1 and G(l~) =2 (see Fig. 3).
In Fig. 4 we show the possible five embeddings that cross
one intersection between two neighbor lo scale reproduc-
tions. There are four intersections of this sort in the next
scale of the lattice (corresponding to four horizontal or
vertical bonds between the remaining subsquares of the

JL JL 4E

FIG. 4. The five distinct ways of embedding the graph cross-
ing two neighbor lo-stage reproductions.
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(a)

FIG. 7. Graphs that contribute to the second order of the
series given by Eqs. {3b)and (4): {a)graph 1 and {b}graph 2.

and

L(l)=8L(1 —1)—8X3' ' (A12)

Iterating (A 1 1) and (A12) up to Io = 1 and using
N (1)=16 and L (1)=24, we obtain

II il

and

N(l) = ~8'+ —'3'+ —'
35 5 7

L (I)=—"8'+—'3'
5 5

(A13)

(A14)

FIG. 5. The four distinct embeddings that contributes to
constant C, in Eq. (A3) for this particular graph.

N(l) =8N(l —1)—8(3' '+1) (A 1 1)

and bonds that belong to the common border of two adja-
cent reproductions of stage (I —1) at stage I are counted
twice in (A 1). There are 3' '+ 1 sites and 3' ' bonds at
each lateral border of the carpet (b =3) at stage (I —1).
Also, there are eight borders shared by two adjacent
(I —1) stage reproductions in the stage I (corresponding
to eight horizontal and vertical bonds between the
remaining subsquares of the initiator of the carpet).
Then, including a correction term in (Al) for N(l) and
L (I), we get (b =3, m =1, and b m=8)—

From (A7), and using (A13) and (A14), we get the
coefficients of the first order d, in (3b) and p, in (5) for
the carpet with b =3 and m =1. The weight for each
bond is 2 and the end-to-end distance r = 1. Thus

2L (I) 42

N (I) 11
(A15)

as shown in Tables I and II.
The coefficients d2 and p2 for the carpet with b =3 and

m =1 can also be easily calculated. The graphs that con-
tribute to the second order of series (3b) and (4) are
shown in Fig. 7 and numbered as 1 and 2, respectively.
In Table VII we show the constants that appear in

(A 1)—(A6) for both graphs.
For graph 2, the data in Table VII lead directly to the

number of embeddings in stage I:

(A16)

~ ~

However, for graph 1 (as well as for any other graph with
bonds in a unique direction}, the embeddings at the bor-
ders of two adjacent reproductions of stage (I —1}in the
stage I are counted twice in (Al) (there are 3' ' —1

embeddings of this sort at each border}. The same occurs
for the embeddings located along the borders of each two
adjacent reproductions of stage (I —2) in stage (I —1)
represented by the first term on the right-hand side of Eq.
(A3) [there are 2 (or b —1) embeddings of this sort; see
Ref. [9]].

By considering the four similar borders (horizontal or
vertical) of the (I —1) stage at the 1th stage, Eqs. (Al) and

(A3) for graph 1 (including the correction terms) are
rewritten as (b =3, m = 1, and b —1 =8)

G (I)=8G (I —1)+H(l —1)—4(3' ' —1) (A17)

TABLE VII. Constants appearing in Eqs. (A1)—(A6) for
graphs 1 and 2 that contributes to the second order of the series

(see text).

FIG. 6. IHustration of the H, (lo)=6 embeddings of the
graph.

Graph 6 (lo ) Hl (lo )

16
0

c, H2(lo)
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(a) (b)

L

and

4X-'X4+8X-'X2
P2

35

320
11

(A21)

FIG. 8. Graphs that contribute to the third order of the
series given by Eqs. (3b) and (4): (a) graph 1, (b) graph 2, (c)
graph 3, and (d) graph 4.

and

as shown in Tables I and II.
The graphs that contribute to the third order of the

series are shown in Fig. 8 and numbered as 1-4. Their
embeddings in stage I of carpet (b, m) = (3, 1) are obtained
with the same techniques used to get Eqs. (A10), (A16),
and (A19).

H, (l —1)=3H)(1—2)+2C) —4X2 . (A18)

Using the data in Table VII, we get, for the number of
embeddings of graph 1 in stage I,

(A19)

g (1)
( I )

—38 8I 4 3l )6
3

g(2)(I) 3881 43l 2
3

(A22a}

(A22b}

Graphs 1 and 2 (see Fig. 7) have, respectively, weights
4 and 8 and end-to-end distances r =2 and F2. Using
(A7) and (A13), from (A16) and (A19) we get

4X —+8 X — 120
11

(A20)

g(3) (I)—38 81 43! 2
3S 5

(A22c}

g(4)(I) —98l
8

(A22d)

The respective weights are 4, 16, 8, and 8. The reader
can easily check coefficients d 3 and p3 in Tables I and II.
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