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We reveal a deep theoretical relationship between equilibrium statistical physics of smectic-A liquid
crystals and nonequilibrium statistical physics of the Kardar-Parisi-Zhang dynamical model [M. Kardar,
G. Parisi, and Y. C. Zh-ang, Phys. Rev. Lett. 56, 889 (1986)] for interfaces growing in the presence of a
flux of incoming particles. This relationship provides an exact approach to study Landau-Peierls phe-
nomena and anomalous elasticity of two-dimensional smectic-A liquid crystals. Also, it yields prediction
of an unusual elastic critical point in three-dimensional smectic-A liquid crystals with broken inversion
symmetry (head-to-tail packing of layers). We discuss the elasticity and fluctuations of these unusual
smectic-A phases.

PACS number(s): 05.40.+j, 61.30.—v, 64.70.Md

I. II4 rRODUCixON

$oft-condensed-matter systems such as liquid crystals
exhibit a variety of striking effects induced by thermal
fluctuations. A classical example is the well-known
Landau-Peierls divergence of smectic-A displacement
fluctuations which destroys true long-range translational
order in these phases. For the smectic layer displacement
u, Landau and Peierls found, for three dimensi-onal (3D}
smectic- A liquid crystals,

(u )-log(L),
where L is the size of the smectic sample [1].

Recently, some 60 years after Landau and Peierls, we
proposed a theoretical approach that enables an essential-
ly exact treatment of similar fluctuation phenomena in
two dimension-al (2D} smectics [2]. The complexity of the
2D case, in comparison to the situation in 3D, arises
from the breakdown of the linear (Hookean) elasticity in
smectic-A liquid crystals. This phenomenon exists al-
ready in 3D smectic-A liquid crystals [3], but in a much
weaker form. Grinstein and Pelcovits [3) demonstrated
that nonlinear efFects of thermal fluctuations cause, at
long length scales, a nontrivial logarithmic renormaliza-
tion of 3D smectic elastic constants inducing, in particu-
lar, a breakdown of the classical elasticity theory: Linear
Hooke's law, (strain)-(stress), usually considered to be
valid for weak external stresses, is replaced by an anoma-
lous, nonlinear strain response to arbitrarily weak
stresses. Such a breakdown of linear elasticity theory ex-
ists also in 2D smectics. However, it is much more severe
than in 3D, since these systems are well below the critical
dimension d, =3. Below d, harmonic-fluctuation theory,
used by Landau and Peierls in 3D, breaks down, at long
length scales, due to anharmonic fluctuations. Thus a
nonperturbative approach of Ref. [2], described here in
more detail, is necessary to obtain reliable information

about 2D smectics. This approach is of interest not only
for smectic-A liquid crystals. Similar anharmonic phe-
nomena exist in other liquid crystals, as well as in spin
glasses, exotic magnets, membranes, and nematic poly-
mers [4]. These phenomena are present in seemingly re-
mote physical problems such as Rayleigh-Benard roll in-
stability [5], (analog of 2D smectic liquid crystals [6])and
pion condensation in neutron stars (analog of 3D smectic
liquid crystals [7]}.

On the other side, a similar breakdown of the classical,
harmonic fluctuation theory is the main theme of anoth-
er, rather different area, namely, the statistical physics of
growing interfaces [8]. This field is actively being
developed, in particular, due to a direct interest in the
dynamical scaling properties of interfaces, e.g., of solid
clusters growing in the presence of external fluxes of de-
positing particles [9]. Also, a strong reason for a broad
interest in this field is its relationship to a number of oth-
er physical problems [8,10].

Here we describe a deep relationship between none-
quilibrium statistical physics of growing interfaces and
equilibrium statistical physics of smectic-A liquid crys-
tals [2]. We relate the Kardar-Parisi-Zhang (KPZ) model
[9] for the dynamics of (d —1)-dimensional growing in-
terface to nonlinear elasticity theory of d-dimensional
smectic-A liquid crystals. For 2D smectic liquid crystals
[6], this relationship enables us to obtain the exact scaling
behavior of the nonlinear elasticity theory, and to study
Landau-Peierls phenomena in these systems. For a sam-
ple of a 2D smectic liquid crystal in the (x,z) plane (with
layers perpendicular to the z axis), with sizes L„and L„
we find smectic displacement fluctuations strongly
diverging as power laws of the system sizes,

(u'&-L„,
for L &&constL, , whereas

( 2) L2/3
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for L &)L, . The divergence is thus much stronger
than the logarithmic Landau-Peierls divergence of 3D
smectic-A liquid crystals. A striking consequence of our
results is that the classical, linear Hooke's law, (strain)
—(stress), breaks down and is replaced by the nonlinear
law, (strain) —(stress), for arbitrarily weak external
stresses normal to layers, when one would normally ex-

pect the linear elasticity response to be valid. These re-
sults hold for the stricto sensu elastic model with no dislo-
cations, which are actually free in a 2D smectic liquid
crystal and convert it, at any finite temperature T into a
nematic phase at length scales longer than the sizes of
cybotactic groups g„and g, (g„,g, ~ Dc as T~O) [6].
Our theory enables us to obtain the exact form of the an-
isotropic scaling at the zero T transition from the 2D
smectic to the nematic phase, of the form g, -f3~ . All

these results are of interest not only for 2D smectic liquid
crystals, but also for their analogs such as Rayleigh-
Benard systems [5], or stripe domain phases in thin fer-
romagnetic films in which smecticlike anisotropic scaling
has also been observed recently [11].

An important byproduct of our theory is the elastic
model for smectic-A liquid crystals with broken spatial-
inuersion symmetry [12,13], such as ferroelectric smectic-
A liquid crystals with an average dipolar moment normal
to the layers, resembling a lamellar phase of surfactant
monolayers stacked according to "head-to-tail" rule [12].
Numerous molecular architectures capable of forming
such phases were proposed in the past [13]. Their experi-
mental 3D realization is, however, of a quite recent date
[14]. Our elastic model of these phases contains a new,
rotationally invariant term of the form eH, coupling the
strain e and the layer curvature H. This term is forbid-
den in ordinary, inversion-symmetry smectic-A liquid
crystals since it changes sign under spatial inversion. We
find that the KPZ model in 2+1 dimensions maps into
an unusual elastic critical point of 3D smectic-A liquid
crystals with broken inversion symmetry. At this point,
displacement fiuctuations strongly diverge as power laws

of the system sizes L, and L, : for L, &&L„
(uz)(/2 L a D 04' for L, ))L, , (u )
P=0.25, in contrast to a much weaker Landau-Peierls
logarithmic divergence in inversion symmetric smectic
liquid crystals [1,15].

This paper is organized as follows. In Sec. II we dis-

cuss a nonlinear elastic model of smectic-A liquid crys-
tals with broken inversion symmetry. In Sec. III we de-

scribe the relationship between smectic liquid crystals
and the KPZ model. In Sec. IV we discuss 2D smectic
liquid crystals. In Sec. V, the unusual elastic critical
point in 3D smectic-A liquid crystals with broken inver-

sion symmetry is discussed. Section VI outlines results of
renormalization-group analysis of smectic-A liquid crys-
tals with broken inversion symmetry. In Sec. VII, we dis-

cuss recent studies inspired by our results presented here
and, in a brief form, in Ref. [2]. In particular, we discuss
consequences of our results for the hydrodynamics of 2D
smectic liquid crystals studied by Langer, Liu, and Toner,
as well as the work of Kashuba and Pokrovsky, applying
our results to stripe domain structures in thin ferromag-
netic films. In Sec. VII we also discuss some unusual

We start by reviewing nonlinear elastic models of
smectic-A liquid crystals. The model described in the
following is, however, a more general one and applies
also to smectic-A liquid crystals with broken inversion
symmetry and screened long-range dipolar interactions
[12—14]. Any configuration of smectic layers can be de-

scribed by giving their heights h„(x), where x is (d —1)-
dimensional "substrate" coordinate parallel to layers
[Fig. 1(a)]. The nth layer fluctuates around the average
height z =nl, where l is the equilibrium layer thickness.
Thus the layer displacement u„(x)=h„(x)—nl is, on

average, zero. In a continuum limit, one can replace
h„(x) by a continuous field h(x, z)=z+u (x,z), which

thus describes a fluctuation of a smectic layer having the
average height z, Fig. 1(a).

The elastic energy of this stack of layers can be
represented via a sum of layers' energies,

E = g E„=f E )(,
n

where E„ is the sum of compressional, E„„,and a cur-
vature contribution, E„,„,„. The compressional contribu-
tion E„„ is generally of the form

E„„=—f dSe

where the integral is over the area of the nth layer,

gtnectic A

(b)
Cro~'n) ]:n&«f~«

FIG. 1. (a) Smectic layer described by its height function. (b}

Growing interface described by its height function. Compare
snapshots of the growing interface, taken at equal time intervals

[dashed lines in (b}]with the stack of smectic layers in (a).

liquid-crystal phases that may occur in 3D smectic liquid
crystals with broken inversion symmetry. In Appendix A
we discuss a number of important details, such as the
long-length-scale renormalization of smectic elastic con-
stants and the derivation of the aforementioned anoma-
lous stress-strain relationships. In Appendix 8 we dis-
cuss renormalization-group analysis of the elastic model
of the smectic-A liquid crystals with broken inversion
symmetry.

II. NONLINEAR ELASTICITY OF SMECTIC- A

LIQUID CRYSTALS WITH BROKEN INVERSION
SYMMETRY
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specified by its height h (x,z), „I, dS =d 'x(1
+(V,h) )', and

e =r},h(1+(V„h) ) '~ —1

is the Lagrangian strain [the displacement
u(x, z)=h(x, z)—z changes layer thickness, measured
normal to the layer, by 5l =el]. Smectic layers are fluid,
and the layer curvature energy E„,„ is, as for fiuid
membranes [16]

H2+ 2H

with H, the layer curvature,

H=V, (V,h/[1+(V, h) ]' )

while the constant Ho is the so-called spontaneous curva
ture. Its presence breaks the inversion symmetry
(h, x)~(—h, —x). A nonzero Ho can arise only if nema-
togens do not have a center of inversion ("head-and-tail"
molecules) and if most of the tails are on one while most
of the heads are on the other layer side. Such a layer
alone would tend to bend towards one, say the tail side.
Now, let us stack the layers so that the head side of a lay-
er is adjacent to the tail side of its neighbor ("head-to-
tail" rule [10]). By summing layers' energies,

ESm g n g n, corn+ n, curv &

we obtain the full nonlinear, rotationally invariant smec-
tic elastic Hamiltonian

fluctuations in 2D smectic-A liquid crystals. From the
point of view of bulk phonons, the ordinary (ys =0) and
asymmetric smectic-A liquid crystals (ys %0) are identi
cal in 2D. This special property of two-dimensional
smectic-A liquid crystals plays an important role in the
following.

III. KPZ MODEL AND ITS RELATIONSHIP TO
SMECTIC- A LIQUID CRYSTALS

Now, let us turn to a seemingly rather different class of
physical problems, the dynamics of growing interfaces
[8]. For a growing interface, the interesting quantity is
its profile described by height function h (x, t) of (d —1)
substrate coordinates x and one time coordinate t, Fig.
1(b). In this section we will relate the nonlinear smectic
Hamiltonian (1) to the KPZ model [9] for the evolution
of the profile h (x, t) of a (d —1)-dimensional growing in-
terface. The full nonlinear, rotationally invariant dynam-
ical model for the interface of an isotropic (amorphous)
cluster, growing in an isotropic flux of depositing parti-
cles, has the form

Bh =(1+(V„h) }' (k+vH)+[1+(V„h) ]' g(x, t),
(2a)

where A, is the (bare) mean velocity of the interface. In
the following, we chose a time unit such that A, = l. v, in
Eq. (2a), is a surface tension, H is the interface curvature
(as defined in Sec. II), and ri is a white spatially uncorre-
lated noise, with the distribution

E = z d 1x l+ 2 1/2

P (ri)- exp — Jdt d 'xg (x, t)
1

4D
(2b)

X e+ H+ H
2

'
2 r'-

z '-'x l+
~sm 2 +Sm

X e + H 'VsmeH

Here Bs =B/l, Ks =K/I, and ysm=KHO/l. The two
forms of Hs in Eq. (1) are related by a partial integra-
tion, i.e., they difFer by a surface term not afFecting bulk
fluctuations. The eH term in (1), with ys -Ho, is odd
under spatial inversion h (x,z)~—h ( —x, —z) under
which e~e, H~ H. ys =0 in —ordinary, symmetric
smectic-A liquid crystals either because the heads (tails)
are equally distributed between layer sides (so Ho =0), or,
if this is not the case, asymmetric layers are arranged
head-to-head, tail-to-tail, so that spontaneous curvature
contributions of neighboring layers cancel.

In 2D (and only in 2D) the ys term in the smectic
Hamiltonian (1) becomes a derivative contributing only
to the boundary energy. Note that the spontaneous cur-
vature of each layer contributes the energy—J d (1x+( }„hr) )'~ H= fds(B8/r}s), with s, the arc
length [ds =dx(1+(r}„h) )'~ ], 8 the local layer tilt an-
gle 0=tan '(r}„h), and H=r}8/r)s. This is purely a
boundary term. Thus, the inversion symmetry breaking
term in the smectic Hamiltonian (1), does not affect bulk

The full nonlinear growth model (2) is, in the literature,
usually given in a truncated form (see Appendix A}.

The most interesting aspect of the KPZ model in 1+1
and 2+ 1 dimensions is that it generally (for any values of
its parameters) yields rough interfaces with correlations
of the displacements u (x, t) =h (x, t) —t, of the form

K(x, t)= & (u (x, t) —u (0,0))'&' '= Ixl (f(ltl/Ixl ),

where P(s)~s~ for s~cc, while P —const for s~0.
Thus, K(x,0)- lxl, and K(O, t)- Itl~ The va.lues of the
exponents a and p are exactly known in 1+1 dimensions:
a= —,

' and p= —,
' [9]. In other dimensions, numerical esti-

mates are available [8]. Nonetheless, there exists an exact
relationship between a and p,

2 cx

see Ref. [9] and Appendix B.
To relate the KPZ model (2) to the smectic model (1),

we will perform two steps: (1) The first step is simply a
renaming of variables: we will identify the time coordi-
nate t of the KPZ model with the smectic spatial coordi-
nate z,

t=z .
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This is motivated by a geometric similarity between the
smectic and the interfacial problem [compare Figs. 1(a)
and 1(b)]. (2) Next, we map the dynamical problem in
Eqs. (2a) and (2b) in d —1 spatial dimensions (x) into an
equilibrium statistical-mechanics problem for the field
h (x,z) in d spatial dimensions (x,z). This can be accom-
plished by applying the classical dynamics path-integral
formalism [17],yielding the probability weight P(h) of a
field configuration h. The field h (x,z) can be interpreted
now as the smectic layer height function. Thus, we iden-
tify the sequence of snapshots of the KPZ interfaces tak-
en at equal time intervals with a stack of smectic layers
[compare Figs. 1(a) and 1(b)]. P(h) is simply obtained
from P(g) in (2b), by changing variable rich. The KPZ
equation (2a}, with A, = 1, can be rewritten as

IV. ANOMALOUS ELASTICITY OF TWO-
DIMENSIONAL SMECTIC- A LIQUID CRYSTALS

Theorem B of Sec. III can be combined with the exact
results for the KPZ model in 1+1 dimensions mentioned
in Sec. III, to arrive at the following conclusions about
2D smectic liquid crystals:

(i) Correlations of smectic displacements, u (x,z)
=h (x,z) —z, are, at long length scales, given by
([u(x,z) —u(0, 0)]')' '=K(x, z), with

K (x,z) = Ix I y( Iz /I x
I ),

where P(s)~s~ for s ~ ~, while P(s) —const for s ~0.
Thus

rt(h) = [1+(V„h) ]' (e —vH),
and

K(x,0)- IxI (6b)

where e and H are smectic local strain and layer curva-
ture as defined in Sec. II. Thus, P(h)=P(g)J(h), with
J(h)=IDrt/DhI. For the moment, for simplicity, let us
ignore the Jacobian J (for its detailed discussion see Ap-
pendix A). Then, after inserting the above expression for
7i(h) into Eq. (2b), one obtains P(h) in the form of a
Boltzmann factor, P(h) -exp[ H, tt(h)],—with the
effective Hamiltonian

H, (hs)= Idz d" 'x(1+(V„h) )' [e vH]—1
(4)

Note that H, (hs) is equivalent to the smective Hamil-
tonian (1) for a special choice of Bs, Ks, and ys,
ensuring that the expression in square brackets in the
second line of Eq. (1) is, as in Eq. (4), a full square,

Bs &Sm
sm 2 4D

e —
y eH+ H = [e vH]—

[Here, and in the following, we denote by Bs, Ks, and

ys the reduced (i.e., divided by the temperature} elastic
constants. ] Thus, Bs = 1/2D, Ks =v /2D, and

ys~=v/2D [So, v=(K.s /Bs )'/ . ] Thus we arrive at
the following.

Theorem A. For the special value of ys,

ys =y, =+«s Bs }'"

the equilibrium behavior of the smectic elastic model (1)
is directly related to the dynamical behavior of the KPZ
model (2) in any d, provided one identifies the KPZ time
coordinate t with the smectic z coordinate (the direction
of the translational ordering).

Recall now that, for d =2, the ys term in (1) contrib-
utes only to the boundary energy. Thus, in 2D, Eq. (4)
reduces to the ordinary smectic Hamiltonian, Eq. (1),
with ys =0, Bs =1/2D, and Es =v /2D. So, we ar-
rive at the following.

Theorem B. The equilibrium behavior of the standard
2D smectic elastic model is one-to-one related to the
dynamical behavior of the KPZ model in one spatial and
one time dimension.

K(o,z)-Iz i'. (6c)

This anomalous elastic behavior is discussed in Appendix
A.

(iii) The above results hold for 2D smectics with pure-

ly phonon-type excitations. In a real 2D smectic-A
liquid crystal, behavior at the longest length scales is,
however, affected by dislocations. They are free in 2D
smectics at any finite temperature T [6], and convert a
2D smectic-A liquid crystal, at large length scales, into a
nematic liquid crystal. The smectic order and the above
scaling behavior still persist inside anisotropic domains
(cybotactic groups) with sizes g, and g„along the z and x
directions. These sizes strongly diverge as T~0, i.e., one
has a zero-temperature phase transition from nematic to
smectie- A liquid crystals. Indeed, g„g', =go = 1/no,
where no -exp( —const/T} is the density of free disloca-
tions. Harmonic elasticity theory, with g, —g, then

yields g„-go/ and g, -g~/, as found by Toner and Nel-

son [6]. The above anharmonic effects produce a
different scaling for large enough cybotactic groups. Ac-
cording to Eq. (6a), g, -P ~=/„/, and thus g„-gz
and g, -gz~ . Thus, our theory enables us to predict the
exact form of the anisotropie sealing of smectic domain
sizes,

g3/2

Here, a= —,', and P= —,
' exactly [9]. Equations (6b) and

(6c) hold at length scales longer than certain Ginzburg
length scales, (G„and gG„respectively (see Appendix B).
At shorter scales one has harmonic-theory behavior with
a= —'andP=-, ' [6].

(ii) Smectic elastic constants undergo a nontrivial re-
normalization at long length scales (small wave vectors q)
of the form Ks (q)-Iq„I ', for q, =O, and

Ks —Iq, I

', for q„=O, while Bs (q)- Iq„ I'/, for

q, =O, and Bs —Iq, I' ', for q„=O (see Appendix A).
This renormalization causes a breakdown of linear elasti-
city theory: the strain responds nonlinearly to weak
external stresses S along the z direction,

( ) g2/3
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at the zero-temperature transition from smectic A to
nematic liquid crystals. We remark that at low enough
T, g„and g, may easily exceed the system size. Then the
entire sample is in the smectic state with the anomalous
scaling behavior described in the items (i) and (ii) above.
On the other side, if the sample is bigger than the sizes of
cybotactic groups, one can still experimentally observe
the anomalous behavior we predict: (a) by studying the
scaling of the sizes g„and g, of smectic domains to
confirm our form of the anisotropic scaling g, -g~; (b)

by studying fluctuations at scales shorter than smectic
domain sizes whose correlations are fully governed by a
dislocation-free smectic elastic model disordered purely
by phonons, i.e., smectic displacements u(x, z). For ex-

ample, one can study the q dependence of phonon hydro-
dynamic frequencies, as recently proposed by Langer,
Liu, and Toner [see Sec. VII].

V. AN UNUSUAL CRITICAL POINT IN 3D
SMECTIC- A LIQUID CRYSTALS WITH

BROKEN INVERSION

We now turn to 3D smectic-A liquid crystals with bro-
ken inversion symmetry [12—14] by first discussing their
behavior for the special value of the symmetry-breaking
couphng ys =y =+(Ks Bs ) Eq. (5). For this
value of ys, 3D smectics are equivalent to the KPZ
model in 2+1 dimensions, as explained in Sec. III
(Theorem A). In Sec. VI we will show that this special
value of ys actually corresponds to a novel elastic criti-
cal point in Smectic-A liquid crystals.

In this section we discuss properties of 3D smectic-A
liquid crystals with ys exactly equal to y, . By using the
relationship to the KPZ model (Sec. III) we find the fol-
lowing.

(i) The displacement correlations have the form of Eq.
(3},with P=a/(2 —a) (in any d, see Appendix B and Ref.
[9]). For d =3, a=0.40 and P=0.25 [18].

(ii) For ys =y„elastic constants of 3D smectic-A
liquid crystals undergo a nontrivial renormalization at
small wave vectors, of the form Ks (q)- ~q„~' for q, =0,
and Ks (q)-~q, ~

' ' for q„=0, whereas
Bsm(q)- [Ks~(q)] [see Eqs. (A4} and (AS) of Appendix
A, with d =3]. So, both Ks and Bs vanish at long
length scales (q~0).

(iii) This softening of elastic constants causes a break-
down of the Hooke's law: a weak stress S normal to lay-
ers produces a strain ( e ) -S,with

ris =2(1—a)/(d —1+a},
as discussed in Appendix A. This, with a=0.4 in d =3
[18],gives gs =0.5, i.e.,

(e ) g 1/2

(iv} The softening of elastic constants produces violent
displacement fluctuations diverging for ysm =y, as power
laws of the system sizes: ( u ) '~ -L„ for L, &&L„,and
(u ) -L, for L„»L,. This divergence is much

2 W1/2 P

stronger than the we11-known I.andau-Peierls logarithmic
divergence in ordinary smectic-A liquid crystals having

ys =0 [1,15]. For ys =y„strong displacement fluc-
tuations destroy long-range translational order and pro-
duce exponentially decaying translational correlations.
This is in marked contrast to the situations for ys =0
with a power-law decay of translational correlations [15].
The state at ys =y, would appear like a nematic liquid
crystal. Nonetheless, thermal undulations dephasing
translational correlations do not destroy the integrity of
smectic layers which only assume a rough appearance
similar to that of successive snapshots of the KPZ model
interfaces [8]. By Eq. (3},correlations of director fluctua-
tlons ( V„u (x,z)V„u (0,0) ) decay, for ys =y„as
~x~

' ' for z =0, and as ~z~ for x=0, in
contrast to 3D nematics where these correlations decay
as /x/

' and /z/

VI. RENORMALIZATION-GROUP ANALYSIS

The relationship to the KPZ model provides an under-
standing of 3D smectic liquid crystals for the particular
value of ysm

=y, =k(KsmBsm )', Eq. (5}. For a general

ys, we analyzed the smectic Hamiltonian, Eq. (1), by a
one-loop renormalization-group (RG) transformation de-
tailed in Appendix B. The resulting RG flow and phase
diagrams are depicted in Fig. 2, in the plane (w, v), with
w =C(d)A (Bs /Ks )', and v =C(d)A ~ys ~/
K2s . [Here A is the momentum cutofF C(d), a numerical
constant, see Appendix B.] So, the line v =w corre-
sponds to the line

~ ys ~

=
~ y, ~

=(Ks Bs )', whereas
the line v =0 corresponds to ordinary smectic-A liquid
crystals without broken inversion symmetry (ys =0).
For d =3, Fig. 2(a) [and for any d%2, Fig. 2(b)], the RG
flow pattern has a separatrix v =w occurring for
Irs I=I), l=«s Bs )'" F« lys l&ly, l,
iterate to the symmetric, ordinary smectic line with
ys~=0. So, in the region ~ys~~ & ~y, [ [the region v & w

in Fig. 2(a)], one has, at the longest length scales, ordi-
nary Landau-Peierls behavior [1,15] plus logarithmic
corrections of Grinstein and Pelcovits [3]. Along the
separatrix ~ys ~

= ~y, ~, i.e., the line v =w in Fig. 2(a), our
RG actually reduces to that of KPZ [9], and one has the
behavior discussed in Sec. V. In Fig. 2(a), we indicated,
on the separatrix, the nonperturbative KPZ fixed point.
Although this fixed point is beyond the reach of a one-
loop calculation, its presence is assured by the exact argu-
ments of Sec. III. The region ~ys ~

& ~y, ~, i.e., v & w in
Fig. 2(a), is a runaway region: the one-loop RG flows
drive ~ys ~

to ~. So, the KPZ separatrix
~ys~~=~y, ~=(Ks~Bs~)' is, in fact, a critical line be-
tween a Landau-Peierls phase ( [ ps (

&
) y, ( ) and an "un-

stable" region ( )ys (
& )y, [ }. A mean-field investigation

of Eq. (1) in the region (ys (
& (y, [ indicates the onset of

an undulated phase, with (u (x,z))%0, in the form of a
superposition of modulations with wave vectors normal
to the z axis (see Sec. VII).

A deeper insight into the exact results of Sec. III is
gained by comparing them to the results of the one-loop
perturbative RG (Appendix B). For d &3, RG gives a
stable perturbative anharmonic fixed point ( A ), belonging
to the ordinary smectic line ys =0 [the line v =0 in Fig.
2(b)]. This fixed point attracts RG trajectories in the re-
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gion ~ysn~ & ~y, ~, i.e., u & w in Fig. 2(b). In this region,
fixed point 3 yields displacement correlations as in Eq.
(3) with a=3(3—d)/(8 —d), and P=3(3—d)/(7+8), to
one-loop order. Scaling along the critical KPZ line [the
separatrix ~ys~~

= ~y, ~, i.e., the line v =w in Fig. 2(b)] is
regulated by a different, nonperturbative fixed point
(KPZ), yielding displacement correlations again as in Eq.
(3), but with diferent values of u and p, which here coin-
cide with those of the KPZ model. For d )2, the KPZ
fixed point is unstable with respect to A, see Fig. 2(b).
However, as 1~2, this instability vanishes and a line of
critical points containing both A and the KPZ fixed point
is formed for d =2, see Fig. 2(c). The appearance of this
line is caused by the fact that, in 2D, the inversion
symmetry-breaking ys term of Eq. (1) becomes a bound-

ary term not affecting the bulk fiuctuations, as discussed
in Sec. II. So, all the points of the fixed line yield the
same scaling behavior with a= —,

' and p= —,', as obtained
from the above one-loop formulas for d =2. In 2D, these
one-loop results actually agree with the exact results for
a and p of Sec. IV. Thus, both for 2D smectics and the

(I)
3&d&2.

FIG. 2. Schematic renormalization-group flow diagrams for
smectic-A liquid crystals with broken inversion symmetry in the
plane (w, U). Here w =C(d)A (Bs /Kz )', and
v = C(d)A ~ys ~ /Ks . The ordinary smectics-A liquid crys-
tals (without broken inversion symmetry, i.e., ys =0) corre-
spond to the horizontal axis U =0. The KPZ separatrix,

lys I =ly, I
=(&s Its )' ' is the diagonal line, v =w. We indi-

cate, on this separatrix, the nonperturbative KPZ fixed point.
Its presence is assured by the exact arguments of Sec. III. (a)
RG flows in d =3. (b) RG flows for 3 )d )2. Note the appear-
ance of a stable fixed point A with ys =0. (c) RG flows for
d =2. Note the presence of a line of fixed points.

KPZ model, the one-loop theory becomes exact in the
continuum (see also Ref. [9]).

VII. DISCUSSION AND REI.ATKD STUDIES

Our prediction of the breakdown of the linear elastic
behavior in 2D smectic liquid crystals (Sec. IV and Ref.
[2]) attracted the attention of other researchers. Thus,
Langer, Liu, and Toner discussed the consequences of
this breakdown on the hydrodynamics of 2D smectic
liquid crystals formed in films adsorbed on Quid surfaces
(as in a Langmuir film) [19]. By using the renormalized
(momentum-dependent) smectic elastic constants (Sec.
IV), they calculated the hydrodynamic frequencies and
obtained the dynamic structure factor. They find the
dispersion relation co(q) of "phonons" (i.e., periodically
modulated displacements) of the smectic structure, of the
form

ni(q)-(+&3 —i)q' ~ [cos(8)] ~ [sin(8)]'

where q =
~q~, and m/2 —8 is the angle between q (the

direction of propagation) and the normal to smectic lay-
ers (z axis in Sec. IV). This form of co(q) is (in the ab-
sence of dislocations) valid in the long-wavelength limit

q ~0, whereas for wavelengths shorter than a Ginzburg
length scale gG (more precisely, gG, defined in Appendix
B) another form of co(q), obtained from linear, Hookean
elasticity, becomes valid [19]. For an experimental obser-
vation (via a dynamic light scattering) of the linear elasti-
city breakdown, one needs: (i) a small enough (G, so that
a light-scattering probe can be applied at all; (ii} the dislo-
cation length scale gD, Sec. IV, has to be much larger
than (G. The latter condition is satisfied, at least, at low

enough temperatures since gD/gG diverges as T~ ac (see

Appendix B). However, gG also typically diverges in this
limit, and may exceed the optical range of wavelengths.

These considerations can be used to select the best ex-
perimental system for observing, via dynamic light
scattering, the breakdown of the Hookean elasticity
theory. Langer, Liu, and Toner thus suggest dense sys-
tems of so-called "hairy rod polymers" (rigid rods with
fiexible side chains). These polymers form stable films on
water with the rods lying in the plane, and may develop a
smectic ordering with the direction of translational order
perpendicular to the rods. In a dense hairy-rod system,
where the hairs of neighboring polymers strongly over-
lap, the gG can be made small, some 30 smectic layers (as
estimated in Ref. [19])which should be readily accessible
experimentally by light scattering.

On the other hand, for a dilute hairy-rod system, hav-
ing only a weak steric repulsion between polymers, the
Ginzburg length gG is typically large, beyond the optical
range, and the light scattering cannot be used to reveal
the Hookean elasticity breakdown. For these systems one
can still use uniform (zero-momentum} external probes,
such as weak uniform (in-plane) external stresses normal
to smectic layers, to which, in the non-Hookean regime,
the strain responds nonlinearly, (strain)-(stress) ~, Sec.
IV. Instead of external stresses, it is, perhaps, better to
use uniform external electric fields or How alignment
which, through the coupling to the molecular anisotropy,
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may produce effects similar to that of external stresses.
Anisotropic, srnecticlike scaling has been observed also

in thin ferromagnetic films exhibiting stripe domain
structures [11]. Recently, Kashuba and Pokrovsky [20]
used our results to discuss translational correlations in
these 2D smectic analogs. For the correlation function of
the order parameter M(x, z)-Re exp[iqou (x,z)], Eq. (6)
implies the form

2

(M(x, z)M(0, 0) ) —exp — (K(x,z))

K(x,z) here is as in Eq. (6) with a= —,
' and P= —,'. These

correlations can be checked experimentally by polarized
electron microscopy or by a study of the electron micros-
copy photographs. It should be stressed, however, that
the actual situation in these physical systems is more
complex than in stricto sensu smectic-A liquid crystals.
First of all, spatial anisotropy is present and cuts off true
smectic behavior at long length scales [20]. Its effect is
similar to that of an external uniform stress applied to a
smectic liquid crystal. Secondly, domain walls might be
strongly pinned by quenched defects producing a glassy
state of the domain liquid (see the work of Golubovic and
Kulic in Ref. [4]).

We turn now to 3D smectic-A liquid crystals with bro-
ken inversion symmetry [12—14] such as ferroelectric
smectic-A liquid crystals with an average dipolar mo-
ment normal to layers. These phases have been proposed
in the literature a long time ago by Pikin and Indenbom
and by Blinc and Zeks [12], and various experimental
realizations have been suggested in the past [13]. Howev-
er, their first experimental realization, by Tournilhac, Bli-
nov, Simon, and Yablonsky, is quite recent [14]. An in-
teresting prediction of our work is the existence of an
unusual elastic critical point in these phases, Sec. V. It
has scaling behavior of the KPZ model in 2+1 dimen-
sions, with the KPZ time coordinate identified with the
smectic z coordinate (normal to layers). We believe that
this critical point is at the border between the phase with
ordinary smectic behavior (asymptotically flat layers with
Landau-Peierls behavior) and another phase in which
layers develop a modulation ("rippled" phase). The
existence of such a phase for large enough ys can be
inferred from a mean-field analysis. For
~ysm~ & ~y, ~=(Ks Bsm)', the energy (1) is minimized
by the usual smectic ground state with flat, equidistant
layers. Indeed, for ~ys ~

& ~y, ~=(Ks Bs }' the quad-
ratic form in e and H entering (1) is PD, so (1) reaches its
absolute minimum, zero, only for e =0 and H =0. On
the other side, for

~ ys ~
&

~ y, ~, i.e., in the runaway region
of Fig. 2(a), this ordinary smectic state is not necessarily
the ground state. However, amazingly enough, the ordi-
nary smectic state is, for any ys, a locally stable state.
This comes fram the fact that, upon expanding
h (x,z) =z +u(x, z), the ys of (1) contributes only a term
cubic in u (see Appendix A). Thus, the harmonic (quad-
ratic) approximation to (1) is actually insensitiue to the
value of ys and has the ordinary Landau-Peierls form
depending anly on Ks and Bs . This ensures local sta-
bility of the ordinary, flat smectic state for any value of

ys . Nonetheless, for ~ys ~
& ~y, ~

nothing ensures that
this ordinary smectic state is the actual ground state. To
study this problem, we examined energies of possible
modulated ground states of the form

N

(h(x, z))=(1+e)z+Re g A exp(iqjx), (7)

Thus, by tuning, for example, the spontaneous curvature
Ho (e.g., by changing the salt concentration of the sol-
vent} one can, perhaps, approach our elastic critical
paint. Is this going ta happen before the spontaneous

representing a "rippled" phase of undulated layers. Un-
dulation here is a superposition of N plane waves with
wave vectors q perpendicular to the z axis. Parameters
e, q, and Aj are to be obtained from the mean-field con-
dition that the state (7) minimizes the energy (1). Note
that a simple one-dimensional undulation (N =1) always
has an energy bigger than that of the ordinary, flat smec-
tic state which is zero. [For such undulation the contribu-
tion of the ys term of (1) vanishes, for the same reason
this contribution vanishes in 2D smectic-A liquid crys-
tals, see Sec. II. The remaining Ks and Bs contribu-
tions are always positive. ] Thus we considered a more
complex case with three modulations (N =3) with wave
vectors q, of the same magnitude, forming 120' angles
with respect to each other (triangular undulation) [21].
We found that, with

~ ys ~
increasing above

~ y, ~, this
state eventually energetically wins over the ordinary flat
smectic state. This happens through a phase transition
occurring at

~ ys ~

=c
~ y, ~, with c =&3 & 1. So, within

the mean-field theory, this undulated state would occupy
only a portion of the runaway region,
~ys ~

& ~y, ~=(Ks Bs }' in Fig. 2(a). The runaway
character of RG flows in this region most likely indicates
that thermal fluctuations (neglected in mean-field theory)
extend the region of the undulated state to the entire
runaway region.

A detailed theoretical understanding of the behavior in
the runaway region is beyond the scope of this paper. It
is complex even at the mean-field level. We have not ex-
plored a variety of other possible ground states. We re-
mark, however, that for a very large layer spontaneous
curvature Ho, i.e., very large ys (see Sec. II), phases
with topology different from the smectic, i.e., lamellar
one, are favored. For example, the curved, globular ("mi-
cellar" ) phase of membranes is then certainly more
favored than the lamellar one. Then, the important ques-
tion is, would the system, with increasing Ho, undergo a
change of topology before getting to our novel smectic
elastic point at ~ys ~=~y, ~=(Ks Bs )' ? Let us con-
sider, for example, a lamellar phase stabilized by
Helfrich's entropic repulsion yielding Bs =ksT /Kl
[22]. This, with Ks =K/l and ys =KHo/1 (see Sec.
II}, implies that our KPZ-type critical point occurs for
I H, I

=H„with
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curvature triggers a transition from lamellar phase to a
phase with different topology, say a highly curved globu-
lar phase? We examined this question within a simple
"phenomenological" approach to phase equilibria in fluid
membrane systems [23]. It turns out that the transition
from the lamellar to globular phase occurs for the spon-
taneous curvature lHol =H', with

1/6

K (9)

for zero saddle splay bending rigidity [23]. Note that H'
is, for rigid membranes with K »ke T much larger than
H, in Eq. (8). Thus, in practice, our novel elastic critical
point at l Ho l

=H, may lie well inside the region
lHo l

&H' in which the membrane system still has the to-
pology of a lamellar phase and can be described by the
smectic elastic model (1). So, rigid layers are good candi-
dates to search for our novel elastic critical point and ex-
amine the nature of "rippled", undulated phases pro-
posed here.

Finally, we stress that our model (1) for smectic-A
liquid crystals with broken inversion symmetry ("fer-
roelectric" smectic- A liquid crystals) presumes that
long-range dipolar forces are screened, as is the case if
these phases are formed in an electrolytic solvent. Un-
screened dipolar interactions have also been considered
recently [24]. As in a more familiar case of the Heisen-
berg model, these long-range interactions would cut off
long-distance fluctuations and stabilize lang-range
translational order both in the Landau-Peierls phase and
at our novel KPZ-type elastic critical point. Their effects
are similar to those of the external stress (see Appendix
A).
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Ksmqx+Bsmqz
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even in the presence of the inversion symmetry breaking
term. The renormalized propagator Gtt can be thus ob-
tained by replacing Bsm «Bs~(q), and Ks~ «Ksm(q),

G, (q)=& lu(q)l'&= 1

Ks (q)q +Bs (q)q

The form of the q-dependent smectic elastic constants is
extracted by requiring G& to yield the scaling of the dis-
placement correlations as given by Eq. (3). This require-
ment, and the scaling relation P=a/(2 —a) (see Appen-
dix 8 and Ref. [9]},then yield, for lql «0,

Note that the harmonic contribution of the ys term van-

ishes, i.e., contributes only to the boundary energy, as can
be verified by a partial integration. Thus the inversion
symmetry breaking ys term in Eq. (1) contributes, to the
lowest order in u, the cubic term (V„u) V„u. In other
words, the quadratic, harmonic approximation to (A2) is
insensitive to the value of ys .

Let us now discuss the renormalization of the smectic
elastic constants Bs and Ks (Secs. IV and V}. As not-
ed above, the ys term contributes only an anharmonic
contribution, and the harmonic propagator is of the stan-
dard smectic form
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d —3+a
Sm qx

B -q"
Sm qx

(A4)

APPENDIX A

In this appendix we discuss the truncated forms of the
KPZ model and the smectic elastic model that usually
appear in the literature. Then, we discuss the renormal-
ization of smectic elastic constants at long length scales
(Secs. IV and V). We discuss here also the anomalous
stress-strain relationship, i.e., the breakdown of Hooke's
law induced by the renormalization of smectic elastic
constants. Finally, we discuss the functional Jacobian in-
volved in relating the KPZ model to smectic liquid crys-
tals (Sec. III).

The rotationally invariant KPZ model Eq. (2) is usually
represented in the truncated form

for q, &&constq„' ' ', whereas

(d —3+a)/(1 —a)
s

(d —3+3a)/(2 —a)
Sm qz

(A5)

for q, )&constq„' '

Let us now discuss the breakdown of Hooke's law in-

duced by the above long-distance renormalization of
smectic elastic constants. A compressional stress S ap-
plied to a smectic-A liquid crystal along the z direction
contributes to the smectic elastic Hamiltonian the term
SBu /Bz. Within harmonic Hookean elasticity theory, a
weak external compressional stress S produces the strain

B,u =vv„u +—(V„u } +g(x,z} .
e = —S/Bsm ~ (A6)

Only the terms up to the second order in
u(x, z)=h (x,z) —z are kept since higher-order terms are
irrelevant [9]. The rotationally invariant smectic model
Eq. (1) can be (with the same justification) truncated up

where Bs is the bare smectic compressibility constant.
Another effect of the stress is a suppression of long-
distance fluctuations, which arises due to stress-induced
breaking of the rotational invariance. Indeed, in the
presence of S, the harmonic propagator assumes the form
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1
2 4Sq. +&smqx+&smq.

(A7)

At long length scales (q~0}, the stress term Sq„dom-
inates over the soft, Ks q term and kills the strong fluc-

tuations of the isotropic model. The renormalized,
anharmonic counterpart of (A7) has the form

On the other side, at the longest length scales, i.e., small-
est momenta q„«q'(S), the stress term Sq„ in (A8)
completely suppresses the violent long-length-scale fluc-

tuations causing a nontrivial renormalization of the elas-
tic constants of the isotropic model. Thus Bs (q) and

Ks (q) in (A8) do not have any (essential) q dependence
for q„&q *(S),i.e., by (A4)

1
4

Sq +Ks (q}q +Bs (q)q
(A8) Bs (q„)=Bs (q„=q'(S))-(q'(S))d '+' . (All)

S=Ks (q'(S))(q'(S))', (A9)

the Ks term in (A8) dominates over the stress term.
Physically, this means that, for q„»q'(S), fluctuations
are not afFected by the presence of the stress S, i.e., they
behave as in a system with S =0. Thus, the q-dependent
smectic elastic constants in the full propagator (A8) are,
for q„&q'(S), given by Eq. (A4), which applies to the
S =0 case. This fact and Eq. (A9) imply that, for a weak
stress,

The bare smectic elastic constants are replaced by renor-
malized constants Ks (q) and Bs (q), the form of which

is discussed in the following. On the other hand, the
stress term Sq„ is not renormalized by anharmonic
effects: the smectic-A liquid crystal with externally ap-
plied stress S is analogous to the Heisenberg ferromagnet
in the presence of an external magnetic field that breaks
rotational symmetry. Then, by applying standard sym-

metry arguments analogous to those used in proving the
Goldstone theorem for the Heisenberg ferromagnet, one
finds that the symmetry-breaking contribution Sq„ to the
full propagator is not renormalized (like the magnetic-
field contribution to the transverse correlation function of
the Heisenberg ferromagnet}. What is the form of
Ksm(q) and Bs (q) in (A8)? To answer this, note that
for q„»q '(S), with q '(S}defined by

This and Eq. (A10) then imply

(q =0) S~d —3+3~~/~d —&+&~
sm q (A12)

with

2(1—a}
d —1+a (A13)

Equation (A13) with a= —,
' in d =2, gives mls

=
—,', as men-

tioned in Sec. IV. In d =3, a =0.4, so by (A13), gs =0.5,
as mentioned in Sec. V in the discussion of the KPZ-type
elastic critical point in smectic-A liquid crystals with bro-
ken inversion symmetry.

Finally, let us discuss the Jacobian factor
J(h)= ~D2?/Dh~ involved in relating the KPZ model to
smectic-A liquid crystals via, as discussed in Sec. III,

So, the presence of external stress S stabilizes, at long
length scales, the efFective smectic compressibility con-
stant to a finite value, given for a weak S by (A12). The
strain e induced by S can be then calculated by the renor-
malized version of Hooke's law (A6), i.e., by

S
Bs (q =0)

This and Eq. (A12) imply

e-S '9

(q«)(q'«)2(q«)d —]+a P (h) =J (h ) exp( H,tt), — (A14)

Thus

«(S} S 1/(d —I+a) (A 10)

I

with H, tt given by Eq. (4). Actually, by applying the clas-
sical dynamics path-integral formalism [17],P(h) can be
calculated also as

P(h)- g5(B,h(x, z) —v(x, z;h, g)) exp ,' f dz —f—fd 'x,d 'x25 '(x, —x2)
Z, X 2!

(A15)

for a general first order in the time z random evolution
equation of the form

B,h=v(x, z;h, g) . (A16)

Here U is velocity at x, being a functional of the field h

and the noise g configuration at the time z. Equation
(A15) can be transformed into the form in (A14) [and,
thus, J(h) calculated], by using the Fourier transform
representation of the 5 functions in the product entering
(A15},and then taking the average over the noise g. Let
us first consider the truncated KPZ and smectic models,
Eqs. (Al) and (A2). Both models preserve so-called

I

"infinitesimal rotational invariance, " known as the
"Galilean" invariance in the KPZ context [9]. Moreover,
both the truncated models contain all relevant interac-
tions, i.e., those yielding, at long length scales, divergen-
cies responsible for the anomalous fluctuation behaviors
both of the KPZ model and of the smectic model. By ap-
plying (A15) to the truncated KPZ model (Al), we obtain
as the efFective Hamiltonian H,z the truncated smectic
model (A2), while the Jacobian factor J(h) turns out to
be an h-independent constant.

To discuss the form of J(h } for the case of the full non-
linear KPZ model (which has the full rotational invari-
ance), Eq. (1), let us first clarify an important issue of the



2576 LEONARDO GOLUBOVIC AND ZHEN-GANG WANG

equilibrium statistical mechanics of smectic- A liquid
crystals. The partition function corresponding to the
full, nonlinear rotationally invariant smectic elastic mod-
el should be properly written as

Z= fDh M(h)exp( H—s ) . (A17)

res
M ( h ) —exp ——C(A)

1

2 Bs

Hs here is as in Eq. (1) and preserves the full rotational
invariance [in contrast to the truncated smectic model
(A2), which preserves "infinitesimal rotational, " i.e.,
"Galilean" invariance]. Note that (A17) contains, in ad-
dition to the usual Boltzmann factor, an additional factor
M (h) in its measure. Namely, in the Lagrangian elastici-
ty picture used in this paper, with layer heights h(x, z)
being the field variables (see Sec. II), use of the naive in-
tegration measure fDh would actually break the full ro-

tational invariance. It would produce, e.g. , some depen-
dence of the calculated free energy on the direction of
smectic translational ordering through terms that actual-
ly diuerge in the continuum limit (A~oo, with A the
upper momentum cutoff). The trouble of the naive mea-
sure comes, physically, from short scale flu-ctuations: the
ordinary short-distance cutoff ~q„~ &A, —oo &q, & oo,
which is natural if h (x,z) is the field variable, manifestly
breaks rotational invariance. For this reason, the actual
measure used in (A17) is fDh M(h), with

' 1/2

metry. These equations lead to the conclusions summa-
rized in Sec. VI. To derive them one can start from the
truncated smectic model (A 1} (see Appendix A) which
contains all relevant nonlinearities. The RG equations
were obtained by eliminating fluctuations in the momen-
tum shell Ae '&

~q ~
& A (with A the momentum cutoff),

—~ &q, & ~, and by performing the rescaling

x=e'x', z =e' /t'z', u =e "u' (81)

(82)

With this, we find the following RG equations, to one-
loop order,

dBs
=Bs [d —3+3a—w], (83)

dr~ sm 5 —d 4d (d —2)=Ks d —3+a+ w — gwd+1

This anisotropic rescaling ensures scaling of displacement
correlations as in Eq. (3). The exponents a and P in (81)
can be related by a symmetry argument: the form of trun-
cated nonlinear strain e =B,u —

—,'(V„u) is dictated by
the infinitesimal rotational invariance (see Appendix A).
The rescaling (Bl) must preserve this form of e. Then,
as, by (Bl), B,u =e" ~~'8, u', and (V„u)
=e "2 2'( V„u '), one must impose a —a/P =2a —2,
1.e.,

(V„h)
X fdzd' 'x-

1+(V„h)
(A18)

where A is the upper momentum cutoff for q„(z coordi-
nate is presumed to be continuous), and

d'Ysm 2(d 2)
d 3+2a w

d —1

(84)

(85)

C(A)= f z , (q„)'.
dd 1q

(2m )
(A19)

Smectic elastic constants used above are reduced ones
(i.e., divided by temperature). Here, w and g are dimen-
sionless parameters defined by

With this measure the full rotational invariance of the
smectic partition function (A17) is restored since the
presence of M(h) actually removes ("substracts") contri-
butions of short-scale fluctuations breaking the full rota-
tional invariance arising if the naive measure is used.

Now, let us return to the calculation of the Jacobian
J(h) for the full nonlinear KPZ model (2). By calculating
P(h) by means of (A15) we obtain J(h) in the form of
M(h), as in Eq. (A18) with the factor (Es /Bs )'~ re-

placed by v, the "surface tension" constant entering the
KPZ model, Eq. (2). [As before, we set A, = 1 in (2).] The
condition v=(Es /Bs )' we already met in Sec. III
while discussing the equivalence of the KPZ model to
smectic-A liquid crystals with a special choice of elastic
constants (see the lines preceding Theorem A, Sec. III).
Thus, the Jacobian J(h) is nothing else but the smectic
functional M(h) in (A18), for smectic-A liquid crystals at
the elastic critical point characterized by the KPZ scaling
behavior.

AppKNDIx 8

Here we outline renormalization-group (RG} equations
for smectic-A liquid crystals with broken inversion sym-

B 1/2

w =C(d)A" rc'" '
Sm

2
VSm

Bsm&sm

(86)

(87)

dg 4d (d —2) d +3
dj' d2

(89)

RG flows implied by (88) and (89) are sketched in Fig. 3
in d =3 [Fig. (a)], 3 &d & 2 [Fig. (b)], and d =2 [Fig. (c)].
RG flows depicted in the (w, u) plane (see Fig. 2, Sec. VI)
were obtained from those in the (w, g) plane (Fig. 3) by
noting that u =w v g .

The most important features of these RG flows are the
following.

with C(d)=S& i/8(2n) ', where S& denotes the area
of a unit d-dimensional sphere. By (83) to (87) one finds
the following two RG equations for m and g:

dw 8 —d 6d (d —2)
dl d+1 d —1
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(1) By (B9), the line

d+3
2' (B10)

is invariant under RG flow. This line is a horizontal
separatrix in the (w, g) plane (see Fig. 3), corresponding
to the diagonal separatrix in the (w, u) (see Fig. 2). For
g =g'(d), our Eq. (B8}for w reduces to the central RG
equation of Kardar, Parisi, and Zhang [Eq. (5b) of Ref.
[9]] for a single dimensionless parameter X=A,(D/v )'~

present in their model. (To see this, note that our
w =[Sz,/4(2n. ) 'P, , due to the relationship between
the KPZ and smectic models, Sec. III, implying
Bs~= 1/2D, and Xs =v /2D Not. e that d entering the
KPZ equation equals our d —l. A.lso, recall that here we
set iL=1, see Sec. III.) For d =3, by (B10), this KPZ
separatrix occurs for

g =g'(d =3)=1,
or, by (B7), for

2+1 dimensions. This behavior is believed to be regulat-
ed by a nonperturbative KPZ fixed point indicated in
Figs. 2 and 3 (though it is beyond the reach of the one-
loop RG which only indicates that the parameter w is
marginally relevant along the KPZ separatrix).

(2) The line g =0 is, by (B9), invariant under RG fiows,
as it should since it represents ordinary smectic-3 liquid
crystals invariant under inversion, i.e., with ys =0.
Along this line, for d =3, our RG equation (B8) reduces
to the RG equation of Grinstein and Pelcovits [3] yield-
ing logarithmic corrections to the effective elastic con-
stants that arise due to a marginally irrelevant parameter
w. On the other hand, for d & 3, Eqs. (B8) and (B9) yield
a stable perturbative anharmonic fixed point ( A } with

g =0 and

(3—d)(d +1)
8 —d

For this fixed point, by (B3) (with dBs /dl =0) one ob-
tains

lys l=ly, I=V'&s &s

Thus, our RG analysis agrees with the nonperturbative
results of Sec. III, which indicate that, for the above criti-
cal value of ys, 30 smectics exhibit an anisotropic scal-
ing behavior directly related to that of the KPZ model in

3(3—d)a= 8—
and, by (B2),

3(3—d)
7+8

(B1 1)

(B12)

These one-loop formulas are strictly correct only to lead-
ing order in @=3 —d, i.e., in the form

+0(e'), p= +0(E') .

(3) For 1 =2, by (B9),

(~)
3) d. &Z

0
I

whereas the RG equation for w, Eq. (B8), as well as Eqs.
(B3) to (B5) become independent of g -ys . Thus, in 2D,
the RG flows become insensitive to the value of ys .
This is in agreement with the fact that the ys term of
the smectic energy becomes a boundary term not
affecting bulk fiuctuations (see Sec. II). In effect, in 2D,
one obtains in Figs. 3(c) and 2(c) a line of fixed points all
yielding the same scaling with, by (Bl 1) and (B12), a= —,

'

and P= —,
' to one-loop order. These values of the ex-

ponents turn out to be exact. This is related to the fact
that, in 1+1 dimensions, the one-loop theory of the KPZ
model becomes exact at long length scales [9].

We remark that Eqs. (B8) and (B9) are strictly valid
only to first order in a=3—d. To this order, all one-loop
integrals should be calculated in d =3 exactly, and the
proper form of the RG equations is

FIG. 3. Schematic renormalization-group flow diagrams for
smectic-A liquid crystals with broken inversion symmetry in the
plane (w, g). Here w has the same meaning as in Fig. 2, while

g Xsmf +smBsm. Figures (a) d =3, (b) 3)d &2, and (c) d =2,
are directly related to Figs. (2a), (2b), and (2c), via u =w &g. A

indicates a perturbative anharmonic fixed point with y=0,
while KPZ indicates the nonperturbative fixed point, the pres-
ence of which is assured by the arguments of Sec. III.

=W [E 4W+ 4l8g]

dg =
—,'wg[g —1] .

Thus g*= 1, i.e., the KPZ separatrix is, to this order in e,
given by !ys ! =QKs Bs, in agreement with Eq. (5) of
Sec III. We re. mark this because Eq. (B10)might suggest
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g 3/2
Sm

gG, =const
&s

(B13)

for the Ginzburg length scale parallel to layers. The
Ginzburg length scale normal to smectic layers, gG„ is re-

that this agreement holds only in d =3.
Finally, we discuss Ginzburg length scales for the

anomalous fluctuation behavior described in this paper.
There are two of them, gG, parallel to layers, and gG,
normal to smectic layers. Qnly at scales longer than
these can one observe the anomalous behavior, whereas
at shorter scales one has nonanomalous behavior well de-
scribed by harmonic fluctuation theory. Ginzburg length
scales can be estimated by calculating one-loop anhar-
monic corrections to bare elastic constants, as already
done in deriving RG equations (B3) to (B5). A substan-
tial change of bare elastic constants, due to long-length-
scale fluctuations, occurs if the system's size along the x
direction exceeds the length go„ for which the dimension-
less w in (B6), with A=gG„', becomes of order 1. So,
@„Bsf/Ks~ = 1, for d & 3. For d =2, this gives

lated to go„via the harmonic theory scaling
[z —(Bs /Ks )' x ] yielding

&s

s

1/2
2(G. . (B14)

In order to observe the anomalous fluctuation behavior,
one needs a sample with sizes satisfying L, ) (G, and

L, &LG, . We recall that smectic elastic constants in
(B13) and (B14) are reduced (divided by the temperature
T). If ordinary (nonreduced) elastic constants have finite
T~0 limits, then, by (B13)and (B14),

1 1
(G.—T CG.

— (B15)

at low temperatures. In practice, however, smectic elas-
tic constants are frequently entropic in origin, and, at low
T, change as power laws of T. This would change only
the power laws in Eq. (B15). On the other side, the dislo-
cation length scales g„and g, behave as -exp(const/T)
at low T (see Sec. IV). Thus, at least at low T one has a
broad range of length scales where the smectic anoma-
lous elastic behavior of Sec. IV can be observed.
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