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From dynamics to statistical mechanics in the Henon-Heiles model: Dynamics
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The equations of motion of the Henon-Heiles model have been numerically integrated for 100 different

starting conditions on the critical energy surface E= 6. The truncation error in the data was monitored

using the separation in phase space of two numerical histories with the same initial conditions, based on

different time steps, h =2 ' and h'=2 ' . From the data for which the truncation error is less than

1% it is found that the 100 histories fall into three categories, (a) regular (or quasiperiodic), (b) irregular

(or chaotic), and (c) regular-irregular. The three-dimensional phase space portraits prove to be the most
useful tool in distinguishing between regular and irregular behavior. In category (c) the orbit switches

reversibly from (to) regular to (from) irregular behavior. The data suggest that all 100 orbits, followed

for long enough times, will show regular-irregular behavior and moreover the phase points in these or-
bits will spend, on average, equal amounts of time in the quasiperiodic and chaotic regimes.

PACS number(s): 05.45.+b

I. INTRODUCTION

The relationship between the irreversible approach to
equilibrium or relaxation in macroscopic systems and the
reversible dynamical properties of the microscopic con-
stituents has been a long standing problem in nonequili-
brium statistical mechanics [1-3]. Typically the interac-
tion between the microscopic particles is described by a
Hamiltonian%f, with N degrees of freedom, say. The re-
sulting equations of motion generate trajectories in the
2N dimensional phase or I space. The problem is then to
explain macroscopic relaxation in terms of the behavior
of these trajectories. In attempting to identify an ap-
proach to equilibrium in an isolated Hamiltonian model
with energy E, the strategy has been to look for one of
two characteristic relaxation properties in the behavior of
the trajectory; these are (a) ergodicity, the exploration of
most of the energy surface &=Eby a typical trajectory,
and (b) equipartition of energy, the distribution in time of
E over all the modes of the system. To date the only
models amenable to algebraic analysis are those with in-
tegrable or near integrable Hamiltonians. Unfortunately
the integr ability condition means that the system
possesses constants of the motion (in addition to energy)
or isolating integrals which rule out ergodicity and
equipartition. (The isolating integrals define new nonin-
teracting modes. ) Similar remarks may be made in the
near integrability case by an appeal to the Kol'mogorov-
Arnold-Moser [4]. The failure of the algebraic approach
emphasizes the importance of numerical studies in the in-
vestigation of relaxation in Hamiltonian systems. How-
ever, numerical analyses are not without their problems.
First of all the capacity of present day computers re-
stricts the analysis to at best a few thousand particles —a

far cry from Avogadro's number in macroscopic systems;
however, one might hope that a study of small systems
could provide some insight into the thermodynamic limit
problem. Second, on a more practical level, the trajec-
tories of particular interest are chaotic and so the ques-
tion of numerical errors and finite size effects must be
carefully addressed before the relationship between the
numerical results and the long time dynamical behavior
of the model can be established.

We have previously reported a numerical investigation
of the approach to equilibrium in a 17 particle chain with
linear and cubic nearest neighbor forces [5-8], the so
called 15+2 model. There are two kinds of difflculties in
looking for evidence of relaxation in this model. First,
because of the chaotic nature of the trajectories, trunca-
tion and roundoff errors rapidly contaminate the numeri-
cal integration data for the dynamical histories; as a re-
sult we are restricted to analyzing short histories.
Second, the chain contains a small number of particles, so
that fluctuations in physical quantities, such as the mode
energies, are large. These fluctuations make it difficult to
determine if a relaxation to equilibrium has taken place
and the short histories make it difBcult to identify an
equilibrium state. To get around both of these problems
we adopted the statistical mechanics concept of an en-
semble and calculated the trajectories for 101 different
starting conditions but a common total energy. These
data constitute a numerical ensemble. The set of initial
points occupies a small region of the energy surface in I
space; in the course of time the trajectories explore a
larger area of the energy surface. We can view this calcu-
lation as a numerical realization of Gibbs s ink drop ex-
periment [9]. The extent of mixing of the trajectories is
monitored by calculating the time dependent coarse
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grained distribution functions and the corresponding
Boltzmann H functions for a number of quantities of
physical interest. As the ensemble evolves in time, each
H function reaches a minimum and maintains this value,
aside from small fiuctuations. We take this as evidence
for a relaxation to equilibrium. In the equilibrium state
the coarse grained distributions for subsystems (collec-
tions of modes with the same frequency) of the constant
energy ensemble proved to have the canonical ensemble
forms familiar in equilibrium statistical mechanics
(ESM). To our knowledge this was the first report in the
literature of ESM distributions describing dynamical tra-
jectories of small systems of particles. This finding
confirms Gibbs's original proposition: "The laws of sta-
tistical mechanics apply to conservative systems of any
number of degrees of freedom and are exact" [10]. In
contrast to the case described below the 100 trajectories
in this ensemble formed a homogeneous group, in as
much as, for any physical property, the coarse grained
distribution along a trajectory was common to all trajec-
tories.

The Henon-Heiles model [11]is a Hamiltonian system
of order 2. It is an excellent candidate for the exploration
of the relationship between dynamical and statistical
mechanics for the following reasons: (a) the model is only
near integrable at low energies and at larger (but still
bound system) energies it is nonintegrable [12]; (b) the
phase space trajectories of many initial starting points ex-
plore the energy surface [4,11,13], i.e., appear to be er-

godic; and (c) the Henon-Heiles Hamiltonian describes
the simplest nontrivial model of a solid —it represents the
center of mass reduction of a three particle periodic chain
with linear and quadratic forces [13]. In this and a subse-

quent paper we describe the results of an investigation of
relaxation in the Henon-Heiles model using the numeri-
cal ensemble approach described above. We find, as in
the 15+2 case, that the Henon-Heiles model relaxes to
equilibrium. However, unlike the 15+2 chain, the set of
100 histories in our ensemble is not homogeneous. Each
trajectory falls into one of three categories, (a) regular or
quasiperiodic, (b) irregular or chaotic, and (c) regular-
irregular. Coarse grained distribution functions for (a)
and (b) trajectories give Boltzmann H functions which
show relaxation to equilibrium —the relaxation time and
the equilibrium distributions of the regular orbits prove
to be quite different from those of the irregular orbits.
The distributions in the latter case coincide with corre-
sponding surface ensemble results, again in agreement
with Gibbs s proposition quoted in the preceding para-
graph.

In this paper we describe the numerical methods used
to generate and categorize the 100 elements of our ensem-
ble. In a subsequent paper we shall report evidence for
relaxation and the consequent equilibrium distributions
in this ensemble.

Section II contains a description of the Henon-Heiles
Hamiltonian and some general properties of the model
orbits. The numerical integration and the identification
of truncation errors are discussed in Sec. III. The prop-
erties of the three categories of orbits (a), (b), and (c), see

above, are dealt with in Secs. IV, V, and VI: the three di-

v~ = x 2' (2)

Vy
= g X +P (3)

A solution to these equations of motion is described by
four functions of time, viz. , x(t), y(t), u„(t),and u (t)
These four quantities can be thought of as the com-
ponents of a vector r(t) in the four dimensional I space
spanned by x,y, u„,u . Thus a solution r(t) generates a
trajectory or path, the so called dynamical path, in I
space. The trajectories are reversible in the sense that if
r( t) is a solution, then so is r = (x (

—t ),y ( t ), —
—u„( t), —u (

—t)). W—hile r(t) and r (t) describe the
same path in configuration space (traversed in opposite
directions), they describe different paths in I space.
Since the two dimensional potential field V is symmetric
about x =0, the r(t) have a form of inversion symmetry
in the sense that if r(t) is a solution to (2) and (3), then so
is r'(t)=( x(t),—y(t), —u„(t),u (t)); see the Appendix.

Henon and Heiles [11] numerically integrated these
equations for a range of energies 0 & E ~ 1/6 and plotted
their data in the form of two dimensional Poincare sur-
faces of section (y versus u~ with x =0 and u„&0).They
interpreted their results as evidence for (a) regular quasi-
periodic motion for all initial conditions in the range
E ~1/12 and (b) a mixture of regular quasiperiodic
motion for some initial conditions and irregular non-
periodic motion for others in the range —,', &E ~

—,'. The
fraction of orbits showing irregular behavior varies from
zero at E =

—,', to very close to one at the critical energy
E=—,'. The irregular motion, which shows up as an ap-

parently random splatter of points in the Poincare sur-
face of section, is chaotic [4], i.e., neighboring trajectories
separate in time at an average exponential rate. Further-
more it has been suggested that, at the critical energy
E=—,', the motion of the system is very nearly ergodic

[4,11,13], at least in the approximate sense that at
su%ciently long times most single trajectories would visit
almost all regions of the surface of sections with equal
frequency. However, there has been no quantitative rnea-
sure of ergodicity reported for the Henon-Heiles model.

In carrying out numerical experiments designed to
measure the chaotic properties of a single chaotic trajec-
tory over very long times we are faced with the immedi-
ate di%culties posed by the exponential growth of nurner-
ical errors [7]. A prevailing attitude in the literature has

mensional phase portrait proves to be particularly useful

in the categorization process. Section VII contains a dis-

cussion and summary of our results.

II. MODEL

The Henon-Heiles Hamiltonian is [11]

A= —,'(u„+u +x +y )+x y
—

—,'y3,

where v =x and vz
——y; this second order Hamiltonian

describes the motion of a particle in a two dimensional
potential field V=(x +y )/2+x y —y /3. The motion
of the particle becomes unbounded if the system energy E
exceeds —,'. The equations of motion for the Hamiltonian
in (1) are
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been to discount such errors by appealing to the Anasov-
Bowen beta shadow theorem [14,15]. The essence of this
theorem is that, while a numerical trajectory will diverge
rapidly (exponentially) from the exact trajectory, there
exists a different exact trajectory with a slightly different
initial point that stays near the numerical trajectory for
long times. However, this theorem has only been proved
for uniformly hyperbolic systems [14,15] and some other
mappings [16,17] and so we have decided to adopt a more
conservative approach. Rather than follow a single tra-
jectory over a long time we have chosen to follow the
motion of a set of trajectories over times sufficiently short
that the separation between the numerical trajectory and
the exact trajectory is always less than l%%uo. As a conse-
quence, the emphasis in our numerical experiments is not
to test for ergodicity in the Boltzmann sense [1] but to
test for mixing in the Gibbs sense [9]. A feature of our
numerical results is that, since the motion of each of the
trajectories is reversible, the mixing behavior we shall re-

port in a subsequent paper is also reversible.

III. DYNAMICAL PROPERTIES

and

x5I =1/&3, xq) =0 (5)

+j+51 +51—j & +j+51 +51—j (6)

for j=1,2, . . . , 49. This set of 100 starting points lies on
the semicircle x +v„=—,', x ~0 in the x,v„plane. Be-
cause of the "inversion symmetry" mentioned above, we
get no additional, nontrivial, dynamical path information
using starting points on the other half circle, x & 0.

Several test programs were written to integrate the
equations of motion (2) and (3) for the starting point
j=l, using different algorithms (Feynman's half step
method, Beeman's fourth order predictor-corrector algo-
rithm, the standard fourth order Runge-Kutta algorithm,
and a fifth order Runge-Kutta algorithm), different step
sizes (2 ", n =10,11,12, 13,14), and different numerical
precision (double and quadruple). The fifth order
Runge-Kutta algorithm [18] proved to be the most accu-
rate within the ranges considered. Although this algo-
rithm does not conserve (pseudo)energy explicitly, as do
the symplectic codes of Feynman and Beeman [19],it was
found to conserve energy better than these algorithms
over the time intervals concerned (up to 2 "seconds").
The Runge-Kutta algorithm also has good convergence
properties; in the absence of roundoff errors, the numeri-
cal trajectory converges to the true or exact trajectory
(through the same starting point) as the step size de-
creases to zero [18]. The equations of motion (2) and (3)

We have numerically integrated the equations of
motion (2) and (3) for 100 initial conditions, each with the
same total energy but different position and velocity coor-
dinates. The starting conditions were chosen to be E=

—,',
x(0)=xJ, v„(0),v„(0)=xJ,y(0)=0, and v (0)=0, where

x =[2(j—1)/99]l/+3, x =([—,
' —x ))'~ (4)

for j=1,2, . . . , 50,
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FIG. 1. Cxraph of ln[L(h, h')/Lo] versus time for the trajec-
tory labeled j=56 and the time steps h =2 ' and h'=h/2.
The dotted line indicates the value in[0.01].

were integrated for each of the 100 initial conditions
(4)—(6) with two step sizes h =2 ' (local truncation er-
ror = 10 ) and h =2 ' (local truncation error
=10 ) for 2 s using the fifth order Runge-Kutta algo-
rithm and quadruple precision arithmetic (local roundoff
error =10 ). The x, y, v„,and v~ values from the nu-

merical integration with step size h =2 ' were stored at
2 intervals over a period of 2 s and the x, y, U, and
U values from the numerical integration with step size
h'=2 ' were stored at 1-s intervals over the same
period. These data constitute a constant energy statisti-
cal ensemble for each of the step sizes h=2 ' and
h'=2 '. The calculation required about 100 h CPU
time on a Fujitsu VP100.

Thus, for each of the 100 starting conditions we stored
two dynamical histories, (sets of points in I space),
one I r(h, t ) I

—= [x (h, t ),y ( h, t ), v„(h, t ),v„(h,t ) ] obtained
from the integration using the time step h =2 ' and the
other [r(h', t )] for the smaller time step h'=2 '4. These
two histories are approximations to the exact dynamical
path r(t) passing through a common starting point;
r(0) =r(h, 0)=r(h', 0). Because of truncation error, the
approximate paths will increasingly diverge with time
from the exact path and from each other. The distance
between corresponding approximate points r(h, t ),r(h', t)
in I' space is denoted by L(h, h', t)= ~r(h, t) r(h', t)—~I.

Since the integrations have a common starting point,
L(h, h', 0)=0. The maximum possible separation of two
points on the energy surface %=E is the order of
Lo=2t/2E; this gives us an approximate upper bound
Lo for L Thus wh. en L &Lo/100, the h data differ from
the more accurate h' data by less than l%%uo. We adopt
IL/LoI as the measure of truncation error in the h

dynamical histories.
Figure 1 contains a plot of ln[L/Lo] versus t for the

case j=56. The early part of this curve shows that the
two approximations to this orbit r(h, t), r(h', t) are
separating exponentially. At t =244, the truncation error
reaches l%%uo and beyond t =265 the error oscillates about
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TABLE I. The 100 starting conditions listed in order of in-
creasing 1% crossover time in the left three columns and in or-
der of decreasing 1n[L{t)/Le) values in the right three columns.
The symbols R=regular, I—:irregular, and i=—possibly irregular
are used to describe the nature of the orbit in each of the four
125-s phase portrait windows calculated for the corresponding j
value. The numbers in brackets denote multiplicative powers of
10.
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FIG. 2. Graph of 1n[L{h,h')/Le] versus time for the trajec-
tory labeled j=28 and the time steps h =2 " and h'=h/2.
The dotted line indicates the value 1n[0.01].

100%. In contrast the h data conserve the total energy to
better than one part in 10 over the full period of 512 s
(Fig. 1). The average positive slope of lnL in the early
part of the integration can be identified with the max-
imum Lyapunov exponent a of the system [20]. From
Fig. 1, we find a=0.21. Thus, in summary, Fig. 1 shows
that (a) our numerical integration data for j=56 is accu-
rate to 1% or better only over the first 244 s and (b) the
trajectory in this time interval is chaotic or irregular. In
contrast, the truncation error graph for the j=28 trajec-
tory shows no dramatic increase with time (Fig. 2). In
the time interval (0,512) the truncation error remains
below 10 ' . The truncation error graphs for the
remaining 98 histories fall between the extremes of j=S6
and 28. In half the cases, including j=56, the error
curve crosses the l%%uo line before t =512. The j values
and the corresponding crossover times are listed with in-

creasing crossover times on the three left hand columns
in Table I. For the remaining trajectories we have listed
the j's in order of increasing value of ~ln[L/Lo]~ at
t =512; see the three right hand columns in Table I. The
truncation error graphs for the 100 histories provide us

with information on the range of small truncation error;
however, they fail to show any clear-cut evidence for the
different categories of behavior we report below.
Different diagnostic tools are required, namely, three di-
mensional phase space portraits, two dimensional sur-
faces of section, and power spectra. We find that the 100
histories can be divided into three categories, (a) regular,
(b) irregular, and (c) regular-irregular. We shall describe
each category in turn.

IV. REGULAR ORBITS

The four functions x(t), y(t), v„(t),and v (t) describe a
dynamical path in I space. We have found it useful to
plot the path in the three space described by the three
functions x(t), y(t), and v (t); we shall call these three
dimensional phase space portraits. Examples of these
portraits are shown in Fig. 3. Here we have broken the

j=28 data into four equal time segments (0,125),
(125,250), (250,375), and {375,500) and plotted the phase
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—0.306 S64 0[2]
—0.312 1994[2]
—0.326 421 6[2]—0.33S 780 S[2]
—0.349 250 0[2]
—0.373 400 0[2]



FROM DYNAMICS TO STATISTICAL MECHANICS IN THE. . .

0 5 t 5 125

0
ro

125 5 t 5 250

Ol

Normalization = 548

v- 0.9—0
M
C
0 X~0.6—

~ ""-".-" Y

~ —03-
0

.0 AA

0.00 0.79 1.57 2.36 3.1 4
Frequency

Ogt&125

~—1.2
Normalization = 52?

~0,9—0
M
C
0 X~0.6—

Y

~ —03-
0

AA. ,

0.00 0.79 1.57 2.36 3.1 4
Frequency

125$t&250

0
0

250 5 t 5 375

0'~
375 5 t $ 500

—1.2
E Normalization = 542

v-0.9-0
M

U X
~L-0.6-

L
~ """""

Q
~-03-
0

0
0.00 0.79 1.57 2.36 3.1 4

Frequency
250&t5375

~—1.2
Normalization = 539

v- 0.9—0
N
C
O X

I—~ 0.6—
~ """""

S
~ ~0.3-

0 00 0 79 157 236 314
Frequency

3755t&500

FIG. 3. Three dimensional phase portraits of the trajectory

j=28 in the four time windows (0,125), (125,250), (250,375), and

(375,500). The data were obtained from a numerical integration
of (2) and (3) using a time step h =2

FIG. 5. Power spectra of x and y for the trajectory j=28 in
the four time windows (0,125), (125,250), (250,375), and

(375,500). The data were obtained from a numerical integration
of (2) and (3) using a time step h =2

portrait in each segment. The x(t), y(t), and u (t) path
fills similar torus shaped regions in each case. Poincare
surfaces of section (y versus u with x =0 and u„&0) and
power spectra (x and y) [20] for the same j=28 trajectory
and the same four time segments are shown in Figs. 4 and
5. The Inajor peaks in the power spectra occur at the
harmonic frequency oIo= l. The lack of any evidence for
exponentially diverging orbits (Fig. 2), the confinement of
the orbit to one region in phase space (Figs. 3 and 4), and
the lack of any grassiness in the power spectra (Fig. 5) in-
dicate that this is a quasiperiodic or regular (nonchaotic)

orbit. In addition the similarity of behavior in each of
the four time segments suggests that at least on this time
scale we are not seeing transient behavior. When we ex-
amine the analogous truncation error plots, the three di-
mensional phase space portraits, the Poincare surface of
section, and the power spectra of the remaining 99 trajec-
tories we find that a total of 40 of the 100 trajectories
show these regular properties. The regular trajectories
are labeled RRRR in Table I. On the semicircle in the
u„,x plane the regular trajectories occur in the two
ranges (3 &j& 29) and (71 &j& 100).
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were obtained from a numerical integration of
(2) and (3) using a time step h =2
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V. IRREGULAR ORBITS

Phase space portraits, Poincare sur. acf e of sections, and
ower spectra or e j-f th '=56 orbit are shown in Figs. 6,P

and 8, respective y. ecau1 . Because of the loss of accuracy
remarks=244 (see Fig. 1) we shall confine our remar s

to t e wo
'
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The power spectra (Fig. 8) contain a hint of grassiness.
Thus this orbit shows all the characteristics one associ-
ates with chaos, namely, a positive Lyapunov exponent,
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82
81
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79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52

Label

RRRRRRII
RRRRRRRR
RRRRRRRR
RRRRRRRR
IRRRRRRR
RRRRRRRR
RRRRRRII
RRRRRRRR
RRRRRRII
RRRRRRRI
RRRRRRRR
RRRRRRRR
RRRRRRRR
RRRRRRRR
RRRRRRII
IIRRRRRR
RRRRRRRR
IIRRRRRR
IIIRRRRR
IRRRRRRI
RRRRRRRR
IIIRRRRR
RRRRRIII
IIIRRRII
iIIRRRRR
RRRRRRII
RRRRRRRR
RRRRRRRR
iIIRIIIi
RRRRIIIi
iIRIRRII
iIRIIIIi
RRRIIIii
iIIIIIIi
iIIRIIIi
iIRRIIIi
iIIIIIIi
iIRIIIRR
inIIIIi
iIIIIIIi
iIIIRIIi
iIIIIIIi
iIIIIIIi
iIIIIIIi
iiIIIIii
iiIIIIii
iiIIIIIi
iIIIIIIi
iIIIIIIi

Run

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
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29
30
31
32
33
34
35
36
37
38
39

41
42
43

45
46
47
48
49
50
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since we are dealing with a reversible dynamical system,
there exists a time reversed orbit which we would label
IIRR in this 500-s time interval.

The other 26 orbits in this category each exhibit a
switch from regular to irregular behavior or the reverse;
see Table I. The regular-irregular j values occur
throughout the whole range (1,100), with no discernable
pattern to their incidence.

Our choice of 125-s time windows was dictated by the
need to have suScient data in each window to be able to
characterize the behavior. In the case of a switch over of
behavior between two windows it was often clear that the
switch occurred within one of the windows. An example
of this can be seen in Fig. 10. In the window (250,375)
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FIG. 12. Power spectra of x and y for the trajectory j=1 in

the four time windows {0,125), (125,250), (250,375), and

(375,500). The data were obtained from a numerical integration
of (2) and (3) using a time step h =2

one can see a hint of the to and fro pattern of the previ-
ous window, suggesting that the switch takes place after
250 s. By looking at phase space portraits of di6'erent
choices of windows one could pin down the switch over
time more closely than we have done.

VII. DISCUSSION AND SUMMARY

The equations of motion (2) and (3) are time reversible.
In the case of our set of 100 orbits, this means that, for
example, the time reversed orbit j=96 becomes the orbit

j=6, at t =0. Thus the numerical data for j=96 (with

u„~—u„and u ~—u ) and j=6 can be combined to
give a history stretching over 1000 s. In particular, since
the pattern for j=96 is RRRI and the pattern for j=6 is
RRRR, the 1000-s pattern is IRRRRRRR. Ninety eight
of the histories can be combined in this way. The result-

ing patterns are shown in Table II. As before the lower-
case entries indicate the truncation errors are sufBciently
large that the I identification is doubtful. From this table
we see the following.

(a) For small j values the trajectories are largely regu-
lar with small regions of irregularity; as j increases to-
wards 50 this pattern changes until the irregular behavior
dominates.

(b) Of these 49 longer histories, 13 are regular, 12 are
irregular, and 24 are regular-irregular. The percentages
are 27%, 24%, and 49%, respectively. This compares
with the corresponding percentages obtained by treating
the 100 orbits as separate entities, namely 40/o, 32%,
and 28%%uo.

These results suggest that most or all orbits contain re-
gions of regular behavior intermixed with regions of ir-
regular behavior. As further evidence for this specula-
tion we show in Figs. 13 and 14 the truncation error
curve and the phase space portraits for the j=28 initial
conditions (the orbit with the smallest truncation error in
Table I), integrated over a period of 1000 s. These graphs
show clearly that this orbit switches to chaotic motion at
about 750 s. Combining these 1000-s data with the 500-s
data of the inversion case, j=74, we get the 15 000-s pat-
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tern, RRRRRRRRRRRI. A similar test at the other ex-
treme, j=56, is clearly not an option because of trunca-
tion errors.

%'e can use the results in Table II to make an estimate
of the average over orbits of the percentage of time spent
in regular motion. Each entry in the right hand column
of Table II represents the behavior in a 125-s time inter-
val. There are 208 regular, 138 irregular, and 46 doubtful
irregular for a total of 392 entries. From these numbers
we speculate that on average the percentage split between
time spent in regu1ar and irregular motion is close to
50'%f.'50%%uo. This is in contradiction to the findings of ear-

lier authors, where the regular behavior is deduced to be
a very small fraction of the total [11,13,21]. However,
these authors base their conclusions on the Poincare sur-
face of sections results derived from numerical integra-
tions over periods in excess of 2000 model seconds [22].
The discussion on truncation errors given above suggests
that their data represent not an accurate dynamical histo-
ry of a single orbit on the energy shell kf =Ebut rather a
sequence of shorter accurate histories of different orbits
on the same shell [23]. In this interpretation one would
then expect that the confined intersections (in the surface
of section) of the regular orbits would not show up as
such among the scatter of the irregular orbit intersections
and so the presence of significant amounts of regular
behavior would not be detected.

In attempting to categorize the 125-s time intervals as
R or I, we found in some cases that the Poincare surface
of section results were ambiguous, whereas the three di-
mensional phase portraits gave a much clearer indication
of the classification of the orbit section. This is not
surprising when one considers the difFerent natures of the
two diagnostic tools. We can use the full number of data
points calculated in the time interval (125X16 in our
data base) to plot the phase portrait. In contrast only
18-20 points appear in the corresponding surface of sec-
tion. The advantage of the phase portraits comes from
this mass of additional information.

The phase space portraits, Poincare surface of section
and power spectra results for the 40 regular and 32 irreg-
ular histories described in Secs. III and IV suggest that in
each case we have a group of orbits behaving in a homo-
geneous fashion, that is to say, in each group the difFerent
orbits exhibit similar behavior. These two groups thus
provide us with the opportunity to carry out numerical
"ink drop" experiments. We shall report the results of
this analysis in a subsequent paper.

In summary, we have integrated the equations of
motions of the Henon-Heiles model for 100 different
starting conditions on the critical energy surface E=—,'.
The truncation error in the data was monitored using the
separation in phase space of two numerical histories with
the same initial conditions and based on different time
steps h =2 ' and h'=2 ' . Using the data for which
the truncation error is less than 1% we find that the 100
histories fall into three categories, (a) regular (or quasi-
periodic), (b) irregular (or chaotic), and (c) regular-
irregular. The three dimensional phase space portraits
prove to be the most useful tool in distinguishing between
regular and irregular behavior. In category (c) the orbit
switches reversibly from (to) regular to (from) irregular
behavior. We speculate that all 100 orbits, followed for
long enough times, will show (c) behavior and moreover
the phase points in these orbits will spend on average
equal amounts of time in the quasiperiodic regimes as the
chaotic regime.

500 & t & ?50 ?50 5 t & 1000 ACKNQ%'LED GMENTS

FIG. 14. Three dimensional phase portraits of the trajectory
j=2S in the four time windows (0.250), {250,500), {500,750), and
(750,1000). The data were obtained from a numerical integra-
tion of (2) and (3) using a time step h =2
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APPENDIX

We now prove the "inversion*' property quoted in Sec.
II. Consider two points in I space r=(x, y, u„,u~) and
r'=( —x,y, —u„,u~) at a time t r.' is related to r via the
transformation matrix M, r'=Mr, where

—1 0 0 0
0 1 0 0
0 0 —1 0
0 0 0 1

A short time later, t +5t, r evolves to

r'=(x+v„5t,y+v 5t, v„—(x+2xy)5t, uy

—(y+x y—)5t )

through the equations of motion (2) and (3). Similarly

r' —+r"= ( —x u—„5t,y + v~5 t, —v„
+(x+2xy )5t, uy (y—+x2 y2—)5t),

i.e., r"=Mr'.
Thus if r, r' are two points on a dynamical path de-

scribed by (2) and (3), then r', r" also lie on a dynamical
path.
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