
PHYSICAL REVIEW E VOLUME 49, NUMBER 3 MARGH 1994

Transport and sound waves in plasmas with light and heavy ions
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We calculate the collisional damping of ion acoustic waves for a mixture of light and heavy ions. The
results are strikingly different from those using the single-species average-ion model. The correct result

includes a new Joule term as well as thermal diffusion and viscous damping terms. In a CH plasma, the
thermal diffusion term is enhanced by a factor of 60 and the viscous damping by a factor of 5. The
overall damping rate is dominated by the Joule term and is increased by at least 58-fold.

PACS number(s): 52.35.Fp, 51.10.+y
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where y; =3.91,p, =0.96, n; is the number density, I; is

the mass, and T~ is the temperature (in ergs). The ion-ion
collision time for 90' angular scattering is given by

3+m, T,
'"

4&tre n,.(Z; ) lnA, .
(3)

where e is the magnitude of the electron charge and lnA;
is the Coulomb logarithm.

Let us now consider a fully ionized plasma composed
of approximately equal numbers of light and heavy ions
(identified by l and h, respectively). It is clear from the
above equations that if Zh »Zl, the transport wil1 be
dominated by the light species. However, since it is con-
venient to use a single-ion-species formalism rather than
treat the transport of each species separately, it is com-

Ion transport coeScients are important in various as-
pects of plasma physics. Some of the most commonly
used transport formulas have been derived by Braginskii
[1]. They are obtained by assuming a fully ionized
single-ion-species plasma. Typical laboratory plasmas,
however, may involve more than one species of ions. For
example, in magnetic fusion devices high-Z impurities
can be present within the D-T fuel. In inertial-
con6nement fusion plastic materials are commonly used
as ablators, which then give rise to carbon and hydrogen
ions. To calculate the transport of ions in such plasmas,
within the framework of single-fiuid theory, it is usual to
employ an average-ion model in conjunction with the
Braginskii formulas. The aim of this Brief Report is to
show that such a simple procedure can considerably un-

derestimate the levels of thermal diffusion, viscosity, and
Joule heating for a mixture of light and heavy ions. Im-
plications for the damping of ion-acoustic waves will be
shown.

We start by recalling the formulas for the ion thermal
conductivity and viscosity coefBcients in an unmagnet-
ized single-ion-species plasma. They are, respectively (in

cgs units) [1],
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where d/dt =t)/Bt+ui 7, fo is the isotropic Maxwelli-
an distribution, f, is the anisotropic part of the distribu-
tion (responsible for the transport), E is the electric field,
and C", and C'," are the anisotropic parts of the collision
operators acting on f, . Equation (4) has been derived
with the standard assumptions of strong collisionality
(which imply that

~ f, ~ ((fo) and a negligible contribu-
tion from electron momentum exchange. Indeed, in the
absence of 1-h collisions Eq. (4) predicts the classical
single-ion-species therinal conductivity of Eq. (1). In our
case, however, C',"/C", -nt, Zt, /nlZt »1 means that 1-h

collisions dominate over I-l collisions. Furthermore, the
collision operator C'," may be considerably simpli6ed in

the limit mh »ml to become [2]
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where Y&l, =(4nZtZt, e 1nAti, )lmt and ui, is the mean

velocity of the h species (necessary to ensure momentum
conservation). Substituting this simplified collision
operator back into Eq. (4) and expanding the right-hand
side of that equation yields
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mon to use Eqs. (1)—(3) with some appropriate
average (denoted here by ( ) ) for m, and Z;. A
popular approach is to use (m; ) =(ntmt+nl, mt, )/n, ,

(Z, ) =(n, Z, +n„Zt, )In;, and (Z; ) =(nlZ, +nt, Zt, )/n, ,
Where Pl; =Pll +7th.

To investigate the accuracy of this averaging pro-
cedure we need to recalculate the transport coeScients.
The linearized Fokker-Planck equation, written in the
frame of the light-ion species with mean velocity ul (ob-

tained by expanding the distribution function as

f =fo+w. f, /w, where w=v —ul is the intrinsic veloci-

ty), is given by [2]
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We note that this equation is equivalent to the one used
for modeling electron transport in high-Z plasmas.

Substituting Eq. (5) into the heat flow formula,

277 ~ 5 Iql= mI du& W f&,
3 0'

and using the velocity inoment J dw w f', to sub-

stitute for (Vp& ZI—en&E+nlm&du&Idt), we obtain

qI =
Kig V Tt +Ppnl T&(ui —us ) and the momentum ex

change rate
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we find that
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where U& =Vu&+(Vu&) ——', IV.u& is the rate-of-strain
tensor of the 1 species (superscript T denotes the tran-
spose and I is the unit dyadic}. From the definition of the
anisotropic part of the pressure tensor
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Here the thermal conductivity is

(7)
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where pp= 256/45m = 1.81. Note that this value of pp ex-
tends to the high-Z limit the electron viscosity given by
Braginskii [i.e., pp(Z =1)=0.73].

As before we can compare Eq. (13) with the averaged
version of the standard formula [Eq. (2)] to obtain
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ap=3n/32, Pp=3/2, and yp=128/3n. The stress tensor
m&, which has been added to Eq. (7), will be subsequently
evaluated. By analogy with electron transport theory we
identify ap Pp and yp as the resistivity, thermoelectric,
and electron thermal difFusion coefficients, respectively
(in the high-Z limit). (Note the extra 1/~2 factor in our
definition of ril, . } These results are in close agreement
with the work of Hirshman [3], who derived the thermal
transport and momentum transfer coefficients numerical-
ly (via a Sonine polynomial expansion) for plasmas of ar-
bitrary composition.

By comparing Eq. (1) with Eq. (8) we note a significant
increase in the conductivity coefficient y. DifFerences
with regards to the mass and Z dependences are also ap-
parent. The ratio between the conductivities is given by

Kll yp (m; ) (Z; ) nI lnA,

(a;) y; 2m( ZI Zg ni, lnAII,
(10}

If we consider a fully ionized CH plasma, where

m&
=

m~ is the proton mass, ( m; ) =6.5m~ n, =n„,
(Z; ) =18.5, ZI =1, and Zl, =36, we obtain

@II, /(a; ) =60. The thermal conductivity contribution
from the h species is expected to be negligible since
qI, IqI (nI, In& )(mI-ImI, )' (ZI'IZI', ) «1. Comparisons
with the conductivity of a pure H plasma (~& ) and a pure
C plasma (al, ) shows that a.

i, .a.
Ii, .aI = 1:306:4500.

The same type of analysis can be used to calculate the
viscosity coefficient. The linearized Fokker-Planck equa-
tion describing the stress tensor contribution to the distri-
bution function (which is now expanded as
f=fp+w. fi/w+ww:fz/w ) is given by [2]

Using the example of a CH plasma we then find
that i}il, /( rl; ) =5. The viscosity contribution from
the Ii species is expected to be small since
~s I~i (ng I-nr )(ml, /mi )' '(Zl'IZI', ) «1.

To illustrate the importance of these results we calcu-
late the damping of collisional ion-acoustic waves in a
CH plasma. Writing u;=(5u;, 0,0) exp(ikx iso, t), etc.—,
the linearized single-species ion fluid equations, assuming
collisionless and isothermal electrons, become

co;5n, +n;—k5u; =0, (15)

co;m;n;5u; =kT; 5n; +k5T;n; +k 5m;„„+k5gn, Z, e,
(16)

3'; n;5T;+k—n;—T;5u; = k5q; . — (17)

The perturbed electric potential, assuming quasineutrali-
ty, and neglecting Landau damping, is given by
5$=5n; T, /en;.

Equations (15)—(17) yield a cubic dispersion relation,
with roots ~; corresponding to two counterpropagating
and decaying ion-acoustic waves, and a zero-frequency
entropy wave (e.g., Ref. [4]). By requiring strong col-
lisionality, i.e., co;~; &&1, we are able to simplify the
dispersion relation and obtain the following expressions
for the ion-acoustic mode:
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where v; =(T; Im; )'~ is the ion thermal velocity,
A,;=v; ~; is its mean free path, and c, is the sound speed.

To generalize these results to a plasma with light and
heavy ions we would strictly need separate Quid equations
for each species, and the resulting dispersion relation
would be a sixth-order polynomial in co. Instead, howev-



2482 BRIEF REPORTS

I.
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Averaging (20) we then obtain an expression for the rate
of entropy production in the wave:

er, we can use the fact that
~

Im(co}~ &&
~
Re(to)

~
to calcu-

late the damping directly from the rate of entropy pro-
duction. This approach, described in detail by Braginskii
[1], is simpler than solving the dispersion relation and
provides further physical insight into the damping pro-
cesses.

The dissipative processes (thermal conduction, viscosi-

ty, and Joule heating} are much weaker for the heavy par-
ticle than for the light, so we consider only the entropy of
the light particles. We start with the entropy balance
equation

BSI +V' Siul+
dt TI

1
[ ,'n—

( —Ul.—. qi V 1nTi+Qg, ], (20)
l

where S&=srn& is the specific entropy, and (to lowest or-
der in re) Qih= —Rih (uI —uh) represents the heating of
the light particles resulting from collisions with the heavy
particles. To calculate the damping of a small-amplitude
sound wave we define the average over the wavelength L
by, e.g. ,

dSI 4 2 nina=
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The amplitude damping rate is given by

T; dSi

dt

This expression gives the rate at which the energy of the
wave, E., is degraded to heat. The resulting damping rate
formula is

Pl I n(
+~o

I Ih

We represent the amplitude of the wave by

5nI /nt =5nh /nh =/sin(kx to—t), so that to lowest order
in rlh we have TI = Th —= T;, 5TI /T& =—', g sin(kx cot)—and

5u, =5uh =gc, cos(kx —tot). Using (7) to evaluate

5u&
—5uh to first order in rlh then yields
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where krh vl7!h and vI (Ti/m~) Here we can readi1/2

ly identify contributions due to thermal diffusion, viscosi-

ty, and Joule heating, by the coeScients yo, po, and ao,
respectively.

An interesting feature of Eq. (24) is that it predicts the
dominance of thermal diffusion over viscous effects for
(mi/(m;) )(5+3(Z,. )T, /T;) & —", (i e., T, /T; &4.2 for a
CH plasma, where (Z; ) =3.5 and (m, )/m& =6.5),
whereas in the conventional formula the viscous damping
is always dominant. More important, however, is the em-
ergence of a Joule darn. ping mechanism, which is not
present in the single-fluid model. It is easily shown for
the case of CH plasma that this mechanism is dominant
and at 1east three times larger than the therma1 diffusion
mechanism. In terms of overall damping rate, a compar-
ison between Eqs. (19) and (24}, for CH, shows that

This predicts an increase in the damping rate by at least a
factor of 58.

Another interesting feature of Eq. (24) is that the Joule
damping mechanism becomes independent of T, /T; for
plasmas in which both species of ions have the same
charge-to-mass ratio, so (Z;)/(m;) =ZI/mI In such a.
plasma the electric 6eld, which is the only mechanism by
which the electron pressure can affect the ions, cannot
drive a velocity difference in the two species, and so can-
not contribute to Joule heating. In this case, the viscous
damping can eventually dominate for sufficiently large
T, /T;.

In summary, the ion transport coefficients have been
calculated for a fully ionized unmagnetized plasma com-
posed of light and heavy ions. The results show that us-

ing standard single-ion formulas, with averaged ion
masses and ionizations, can lead to signi6cant underes-
timations of the thermal conductivity, viscosity, and
Joule dissipation. The implications for the co11isional
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damping of ion-acoustic waves are that Joule heating and
thermal difFusion can become the dominant damping
mechanisms, and that the overall damping rate increases.
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