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We discuss the use of recursive enumeration schemes to obtain low- and high-temperature series ex-

pansions for discrete statistical systems. Using linear combinations of generalized helical lattices, the
method is competitive with diagrammatic approaches and is easily generalizable. We illustrate the ap-
proach using Ising and Potts models. We present low-temperature series results in up to Sve dimensions

and high-temperature series in three dimensions. The method is general and can be applied to any
discrete model.
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Expansions about either infinite or vanishing coupling
have long been a major technique for the study of statisti-
cal systems and field theories. These series usually in-
volve a diagrammatic analysis which becomes rapidly
more complex as the order increases. Thus it would be
interesting to have a fully automated technique for the
generation of the relevant terms.

Here we discuss a purely mechanical method to gen-
erate the low- and high-temperature expansions for
discrete systems. The approach does not involve explicit
graphs, but rather relies on a recursive computer
enumeration of configurations. We illustrate the ap-
proach on Potts and Ising models, although it is consider-
ably more general.

The method is based on a recursive transfer-matrix
procedure of Binder [1] for the explicit solution of
discrete models on small lattices. Enting [2] discussed
how to combine such solutions on small lattices to obtain
low-temperature series. Guttmann and Enting have
pushed this finite-lattice method to obtain rather high-
order low-temperature series for the three-dimensional
Ising model [3]. Our approach is similar in spirit to this
work, although it differs in many technical details. In
Ref. [4] these ideas were further developed in the context
of finite-size scaling and the analytic structure of the par-
tition function. Reference [5] explored using these exact
counting procedures on helical lattices to extract the
low-temperature series. Helical lattices have been 8'..rther
generalized in Ref. [6], enabling one to calculate the low-
temperature series for the three-dimensional Ising model
to 50 excited bonds. In this paper we extend these results
to order 54. Reference [7] applied these methods to Potts
models in two and three dimensions.

Being based on a transfer matrix, one might expect
that the method only works well in low dimensions. We
show, however, that this is partially compensated by
several tricks which become more powerful in higher di-

mensions. Indeed, we present results for the Ising model
in up to five dimensions.

This paper is primarily intended to explain these
methods in more detail and explore extensions. In a re-
cent paper Vohwinkel [8] has adapted the diagrammatic
shadow method to obtain Ising and Potts expansions to
several more terms than we have been able to obtain.
Our method is, however, quite general and easy to imple-
ment. It is an open question whether some of the ideas of
Ref. [8] can be adapted into our scheme to get even
longer series.

RECURSIVE COUNTING

We begin with a discussion of the recursive approach
to solving small systems exactly. This section will also
serve to establish notational conventions. We illustrate
the basic method with the Ising model on a finite three-
dimensional simple-cubic lattice. On each site i is a spin
o; taking the values +1. The energy of the system is

Z= ye t'E.
IaI

(2)

Organizing the set of configurations by their energy, we
rewrite this as a sum over E. This introduces the density
of states function P (E) representing the number of states
of the system with the given energy E. Thus we have

6N
Z= g P(E)u (3)

E=Q

where N is the number of sites and u =e ~. If we con-

E= g (1—o;o, ),
I) J'I

where the sum is over all nearest-neighbor pairs of spins,
each pair being counted once. At inverse temperature P,
the partition function is the sum of the Boltzmann weight
over all configurations
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p'(E, I)= g p(E b, (I,I'),I') .— (4)

Here I' runs over all integers difFering from I at most in
the bits representing the newly covered spins, and b,(I,I')
is the change in energy from any newly changed bonds.
In Ref. [5] the spins were added one layer at a time, while
here we add them one at a time. Thus for the present cal-
culation the sum in the above equation is only over two
terms, representing the two possible values for the newly
covered spin. After the lattice is grown, a sum over the
top layers gives the resulting P (E) for the entire system,

P(E)= gp(E, I) .
I

(5)

THK LOW-TEMPERATURE SERIES

Note that as the temperature goes to zero so does the
variable u. Thus, Eq. (3) is itself the low-temperature ex-
pansion for Z. From it, we compute the corresponding
series for the average energy per site,

g EP(E)
(E)= 2

=2 u ln(Z) .
BQ

Comparing this expectation value before and after the
last spin is added, we obtain the increase in the average
energy per new site. Expanding this in powers of u gives

sider, fox example, an N lattice, there will be 2 states,
but the solution for the partition function can be ex-
pressed in terms of 8(N ) integers P(E).

For a given lattice we compute the coefficients P(E)
exactly using a transfer matrix to assemble the system
one site at a time. This recursive construction enables us
to build up a lattice with arbitrary length in one of the
three dimensions. For the series analysis it is important
to always continue the recursion sufficiently to avoid
finite-size errors in this "longitudinal" direction. At in-
termediate times the process requires an explicit
enumeration of any exposed two-dimensional slice. This
efFectively reduces the computational complexity to that
of a system of one less dimension. Thus the solution of
an N lattice requires, at most, the explicit enumeration

Nof only 2 states. This enables us to work with sizes
which would be impractical for an explicit enumeration
of all states.

The starting point of the method is a list of all states
and corresponding energies for a single transverse layer
of the lattice. All spins outside this layer are frozen to
the same value; that is, the boundary conditions in the
longitudinal direction are cold. Spins are then sequential-
ly freed to build up the lattice in this third direction. At
intermediate stages the computer stores the exact number
of states of any given energy and specified exposed top
layer. Storing the top layer as the bits of an integer I,
define p(E, I) to be this count. When a new spin or set of
spins is added, we obtain the new counts p'(E, I) as a sum
over the old counts

(E/N ) = g eju' .
J

We are interested in the coefficients e in the infinite-
volume limit.

At zero temperature (P= ~ ) the only states which sur-
vive have all spins parallel. As the temperature increases,
groups of spins can flip in this uniform background. A
single flipped spin has six excited bonds, and thus e6
represents the first nontrivial term in our expansion. In
our units, each excited bond has energy 2 and there are
six such bonds for a single flipped spin; thus we have

e6=12. Continuing to more complicated combinations
of flipped spins gives the usual diagrammatic method to
obtain the further coefficients.

Note that any enclosed group of flipped spins must al-
ways have an even number of excited bonds. Thus the
expansion only involves even powers of u. Our method
of construction is such that when a spin is added to the
helix, we account for the energy of both the forward and
backward bonds at once. This, combined with the cold
boundary conditions at both ends, ensures that we gen-
erate only even powers of u in our expansions.

HELICAL LATTICES

Computing Z exactly on a periodic lattice of size
N XN XN, the order to which the weak-coupling expan-
sion for (E/N ) will agree with the infinite-volume limit
is 4N —2. At this order a line of N flipped spins can wrap
around the lattice and show finite-size effects. Such a
configuration will have energy 4N rather than the 4N+2
it would have in infinite space. This is the smallest exci-
tation affected by boundary effects and hence, on a
periodic lattice of size N, the expansion is valid through
O(4N 2). —

The order to which the series is correct can be in-
creased by changing the boundary conditions to require
more spins to be flipped to wrap around the lattice.
Reference [5] showed how a version of helical boundaries
allowed an NXN transverse slice to be mimicked with
only [(N +1)/2] sites. Here we extend this idea to in-

clude the helicity into the direction in which the lattice is
grown.

We build our lattices one site at a time; so, it is natural
to imagine the sites lying in a line. We do not, however,
consider sequential sites as nearest neighbors. Instead,
we introduce three integer parameters [h„,h, h, ]
representing the distance along the line to the nearest
neighbor in the corresponding x, y, or z direction. Label-
ing sites in the sequence by their ordinal number i, the
nearest neighbors of site i are at i+h„, i+h, and i+h, .
For convenience, we assume

h &h &h, .

With this convention, as we grow our lattice, all sites
more than h, steps back in the chain are covered. Thus
the recursive methods of Refs. [1—3] only require us to
keep explicit track of the h, "exposed" spins at the end of
our chain. The computational work grows exponentially
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n=/n„/+/n /+/n, /
. (10)

n is the "efFective" periodic size of the lattice for our
series construction, and, as argued above, the series is
correct to 0(u " ). On an infinite cubic lattice the only
solution to Eq. (9) is the trivial case n, =0. On a finite lat-
tice, any other solution represents a finite-size correction.
Flipping a chain of spins along such a closed path gen-
erates a state with 4n excited bonds, and creates a poten-
tial error in the series at that order. As a simple example,
(h~, hz, h, )=(3,4, 5) with (n„,nz, n, )=(1,—2, 1) gives a
minimal loop of length 4. Such a lattice will give the
series equivalent to that on a 4 lattice, but with only

h, =5 sites in cross section. Similarly, (h„,h, h, )

=(19,21,24) has closed loops of length 10 corresponding
to (n„,n~, n, )=(3,—5, 2). Here 24 sites mimic a 10X10
cross-sectional lattice, thus saving a factor of 2 in com-
putational effort.

Note that Eq. (9) tells us that if we regard n and h as
vectors, they are orthogonal. Thus a simple way to visu-

alize our lattice is as an infinite one with all sites which
lie in any single plane orthogonal to h as identified with
each other. Figure 1 attempts to show this construction.
Considering the plane through the origin, all the sites ly-

ing in this plane themselves form a lattice. Closed loops
that contribute finite-size corrections consist of sets of
flipped spins connecting the sites of this lattice.

with this number; thus we wish to keep h, as smail as
possible.

A minimal closed loop on such a lattice consists of a
number of steps in each spatial direction such that

n„h„+n h +n, h, =0 .

Here n, represents the number of steps in the ith direc-
tion. The length n of such a loop is

TABLE I. A combination of 26 lattices which gives the
three-dimensional low-temperature expansion coefficients
through 54 excited bonds. The first column represents the
coefficient with which the lattice is to be weighted and the
second gives the vector h which defines the lattice.

Coefficient (h„,hy, h, )

bining of partition functions in the finite-lattice method
of Refs. [2,3].

Given a set of parameters (h„,h~, h, ), it is straightfor-
ward to enumerate the minimal closed paths. A different
set of parameters corresponds to a different set of such
paths. However, any erroneous contribution to the
coeScients e; from a particular such path is, by symme-

try, independent of any permutation or sign changes in
the numbers (n„,n~, n, ). This allows us to push the series
further, by combining the results on various size lattices
to cancel the contributions from particular closed loops.

For an explicit example, consider loops of length 9.
The (16,18,21) lattice has a minimal such loop with steps
n=(3, 2, —4), the (16,17,21) lattice has closed loops with
steps (1,4, —4) and (5, —1, —3), the (13,18,20) lattice has
closed loops with (2, 3, —4) and (4, —4, 1), and finally the
(14,17,19) system has the loops (3,2, —4) and (5, —3, —1).
If we combine the coeScients e; as obtained from these
lattices with weights (2, 1, —1, —1), respectively, then all
errors from the loops of length 9 cancel out. This gives
the series to the same order as a lattice with the smallest
loops having length 10, which otherwise would require at
least 24 sites.

This procedure extends to cancel further loops. It is
straightforward to write a program to enumerate the
closed loops on various lattices, and then solve the linear
equations to cancel the errors from such loops. In Table
I we present a list of 26 lattices and the relative weights

CANCELING LOOPS

We now discuss how forming linear combinations of
the energy series coefficients from a set of finite helical
lattices can give the infinite-volume series to a higher or-
der than any individual lattice in the set. The approach
here difFers in details but is similar in essence to the com-

FIG. 1. Visualizing the helical lattice. All lattice points lying
in the plane orthogonal to the vector h are to be identified.
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for combining them to cancel all loops of length less than
14. Note that in this way we have reduced what would
naively require a 14 lattice to a set of calculations involv-
ing a cross section of at most 24 spins.

After canceling the single loops as above, a potential
problem arises from more complicated diagrams which
wrap around the lattice simultaneously in two or more
ways. This would correspond to flipping a set of spins
which connects three of the identified sites in Fig. 1. In
selecting our lattices for Table I we did not consider any
system which had such a loop contributing to any order
for which we were extracting the series coefficient.

It is easy to calculate the order at which these more
complex loops contribute. In our lattice-finding program
we first find the three closest identified sites which do not
lie on a single straight line. (Double loops connecting
points in a line are automatically canceled at the same
time as the simple loops. ) Denote the minimum distances
between these three images as d 1, 12, and d3. In most
cases, the minimal way of flipping a set of spins to wrap
around these three loops produces an energy of
(d —1)(d 1+12+d3—2)—2, where d is the dimension of
the system. We rejected using any lattices for which this
number is at or below the order to which we were ex-
tracting the series.

In rare special cases this formula needs a correction.
The energy can be lower if one of the fundamental loops
has no steps in one direction. Then the two loop diagram
can run into its periodic image, reducing the relevant or-
der. For example, with the h=(11, 15, 18) lattice, the
fundamental loops have n=(0, 6, —5), (3, —1, —1) and
(3, 5, —6). The minimal energy for a set of flipped spins
which connects these three images is 52 bonds, rather
than the predicted 54 from the above formula. Needless
to say, this lattice caused us considerable consternation.

The utility of these cancellations depends strongly on
dimension. For two dimensions with at most h sites on
the top row, the best solution is always a single lattice
with h„=h —1. In this case the shortest extraneous loop
has n=(h„, —h +1) with length 2h —1. Note that as h

becomes large, the transfer matrix effectively grows the
lattice along a diagonal.

For higher dimensions, on the other hand, there are a
rapidly growing number of interesting lattices to cancel
loops between, and this method becomes particularly
powerful. Table II includes a list of 15 lattices which give
the four-dimensional series through order 50 excited
bonds. Although the largest lattice here has 28 sites in
the top row, the tricks of the next section are also more
efFective in four dimensions, so this is not a particularly
diScult case.

Note that although we have been discussing these lat-
tices in the context of the Ising model, the results are
more general. In particular, the combinations in Table I
are valid for any nearest-neighbor model on a simple-
cubic lattice.

These methods can also be applied to other than
simple-cubic lattices. For example, to treat a body-
centered-cubic lattice, each site has eight neighbors, so
we need four components for h. We can merely use a
four-dimensional lattice-finding program modified to re-

TABLE II. A combination of 15 lattices which gives the
four-dimensional low-temperature expansion coefficients
through 50 excited bonds. The first column represents the
coeScient with which the lattice is to be weighted and the
second gives the vector h which defines the lattice.

Coefficient

3
—27

14
27
16
18
2

—13
—4
—6

—16
—16

28
—21

(h„,hy, h, )

(15,24,25,28)
(15,21,25,28)
{13,20,25,28)
(15,20,26,27)
(11,20,26,27)
(19,20,25,27)
(11,15,25,27)
(16,17,23,27)
(14,17,19,27)
(11,20,25,26)
(15,18,25,26)
{15,21,23,26)
(7,20,24,25)
(14,15,23,25)
(17,18,22,25)

quire the real closed loops of length 3 be present and not
be canceled.

MISCELLANEOUS TRICKS

During the recursive buildup of the lattice, each new
count is the sum of just two terms, representing the two
possibilities for the covered spin. Thus the arithmetic in-
volved is rather trivial. On the other hand, we must store
counts for all energies up to the maximum order desired
as well as for all relevant values of the top h, spins of our
helical lattice. In addition, the intermediate counts can
become rather large numbers. Thus the primary compu-
tational problem is storage. To substantially reduce these
demands, we calculated the series coefficients several
times, each time modulo a small different integer. De-
pending on the integers chosen, this enabled us at inter-
mediate stages to store the counts in either one byte or
one short integer each. As all operations are simple addi-
tions or multiplications, this procedure correctly gives
the final coefficients modulo the given integers. After
multiple passes using mutually prime values for these
modulos, we use the Chinese remainder theorem ta
reconstruct the final series. This theorem states that if
you know a number modulo a set of relatively prime in-
tegers, then the number is uniquely determined up to the
product of those integers.

As we are repeating the series calculations for several
different modulos and for several different lattices and
only combining the results at the end, this problem is par-
ticularly suitable for trivial parallelization. Indeed, ex-
cept for the most memory intensive cases, we have exper-
imented quite successfully with sending different lattice-
rnodulo combinations to a farm of workstations. For this
we have been using the Condor distributed batch system
I:91.
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Note that as we add spina, the energy of the system can
only increase. This means that we never need counts in-

volving more excited bonds than the order to which we
are evaluating the series. Furthermore, while the recur-
sive procedure is predicated on keeping all top rows for
the lattice, this is not actually necessary if we only want
the series to some given order. In particular, we need not
store any counts for top rows which already contain more
excited bonds than the order we are working to. To han-
dle this, we use a simple subroutine that, given a possible
top row, finds the next top row in numerical sequence
with a number of excited bonds less than or equal to the
working order.

As an explicit example with the Ising model, consider
the h=(17, 23,24) lattice and allowing only up to 54 ex-
cited bonds. In this case we need keep only 2778 176 of
the possible 2 =16777216 possible top rows. In four
dimensions, because there are additional bonds which can
be excited, the corresponding reductions are even larger.

In addition to not keeping all top rows, we need not
store counts with less energy than the minimum possible
for a given top row. That is, while for the top row with
all spins up we need to keep counts for all possible excita-
tion energies up to the order under consideration, if the
top row has a single flipped spin we need only keep
counts of at least three excited bond pairs, and so on. Fi-
nally, for the Ising case on a simple-cubic lattice with our
boundary conditions there can only be an even number of
excited bonds. In this way, the above (17,23,24) lattice
requires keeping track of 11259428 individual p0(E, I),
or less than one count per possible top row.

During the recursion, each new count is the sum of one
or two of the old ones, corresponding to whether the
covered spin is Hipped or not, and whether for a fiipped
spin we do not already have more energy than being con-
sidered for the count in question. A simple way to imple-
ment this is to have two index arrays, with the elements
of each representing the location of the old counts to be
used. Having an entry in the index array out of bounds
provides a simple way to flag those cases where only a
single term goes into the sum. Once the geometry is es-
tablished by the construction of these arrays, the pro-
gram simply loops over the counts, making the new
values the sum of two old ones pointed to by these in-
dices. In this way all the complications of setting up the
geometry need only be done once per lattice.

One can save additional memory by not storing the full
indices, but using the fact that if one orders the counts
first by top row numerically, and then by bonds, the
respective indices always change by relatively small num-
bers in going from one count to the next. Thus we need
only store the changes rather than the indices themselves.
In the main loop the new indices are obtained by a simple
addition to the previous ones. The index changes for our
studies could all be stored in a single byte.

A final trick that we have so far only used minimally is
to invert a partially grown lattice on itself. The idea is
that given the counts for all possible top layers, we can
then obtain the counts for a lattice roughly twice as long
with all possible specified layers in the middle. Calling
this count pz(E, I), we have

pd(E, I)= g p(Ei, I)p(Ez, I„)5(E,Ei+Ez d (I)),
E,E

where I„has the bits of I in reversed order (because the
lattice has been flipped upside down) and d(I) represents
the excited bonds inside the middle layer. The latter is
removed to prevent double counting. This technique can
provide information on correlation functions in this mid-
dle layer. As all states are known explicitly, any such
correlation function can be obtained exactly with no
significant additional drains on computer time or
memory. As a simple example, this provides an alterna-
tive method for obtaining the magnetization series to that
discussed in the next section.

OTHER OBSERVABLES

So far we have been discussing the direct low-
temperature expansion for the partition function or,
equivalently, the average energy or the specific heat. The
method easily extends to other observables by generaliz-
ing the counts. For example, consider applying a mag-
netic field by generalizing the partition function to

Z = g exp PE II g—o;—
l

(12)

Derivatives with respect to the applied field give us a
procedure to compute the magnetization

1M=(o;) = —— lnZ
N dH

and the magnetic susceptibility

(13)

(14)

Pk(E)= gS "P(E,S) .
S

(15)

With this definition, PD(E) is simply the original count
P (E). The zero-field magnetization is easily found from

For general H one can expand observables simultane-
ously in u and. A, =e 2 . In Ref. [6] this possibility was
discussed in terms of generalizing the counts P(E) to the
two indexed count P(E,S), representing the number of
states of a given bond energy and number of flipped spins
S. The recursion relations for these counts are complete-
ly analogous to those for P (E). The double series for the
magnetization was presented up to order 42 excited
bonds in Ref. [6].

One difficulty with this approach is the increased
memory required for storing counts for all magnetiza-
tions as well as energies. If one is only interested in the
magnetic properties in the zero-field limit, one can store
considerably less. In particular, consider moments of the
magnetization, from which quantities such as the suscep-
tibility are easily extracted. It is convenient to define new
quantities
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g P, (E)e
M=1 —2

E

NZ

N(1+e '~z=
2 g g [1+o,o, tanh(P)],

t' J1

(23)

Finally, from Pz we can obtain the magnetic susceptibili-
ty

g [Pq(E)—P)(E) ]e

y=4

The advantage of working with these moments is that
they themselves satisfy simple recursion relations. To
derive them, consider the generalization of Eq. (4),

where the product is over all lattice links and N& is the
number of links in the system. For the strong-coupling
series we consider small P and expand the above sum in
powers of tanh(P). Each term involves a set of selected
bonds which each give a power of tanh(P). Having
selected a set of bonds, we can then perform the sum over
the spins. If any site has an odd number of selected
bonds emanating from it, the sum will vanish. Otherwise
the sum over any given spin gives a factor of 2. Thus we
conclude

p'(E, S,I)= g p(E 6(I,I'—),S b,,(I')—,I') . (18) pp 1

Z 2N 1+e
2 Q N(k )[t anh(P) ]" . (24)

pz(E, I)= gS"p(E,S,I) .
S

(19)

Taking moments of Eq. (18}now gives the recursion rela-
tions for the pz,

po(E, I)= g po(E b„I'), — (20)

p', (E,I ) = g p, (E b„I')+b,, (I)po—(E b„I'), —(21)

Here p(E, S,I) is the number of states of energy E, with S
Hipped spins, and with lattice top row specified by I, and
p' is the same quantity on the new lattice obtained after
adding the new spin. We denote by b, ,(I') the change in
the number of flipped spins; that is, b,, = 1 if the new spin
is flipped (the relevant bit of I'= 1) and b,, =0 otherwise.

Now define the moments,

Here N(k) represents the number of possible ways to
select k bonds in such a manner that each site is the end
of an even number of selected bonds. We adapt our
counting methods to evaluate these numbers N (k }.

As before we maintain information on the top layer of
our lattice while adding new sites one at a time. Here,
however, rather than the values of the spins themselves
on the top layer, we keep information on the selected
bonds ending there. In particular, because we want to al-
low future bonds to extend above the top row, we relax
the constraint that an even number of bonds end on the
top sites. Thus we keep a count N(k, I) where I now
stores in its set bits those sites with an odd number of
bonds coming into them from previous sites. We refer to
sites with an odd number of incoming bonds as having
"loose ends" or "dangling bonds. " On adding a new site,
we have the basic recursion relation

Pp(E, I)= QPq(E E,I')+26,,(I)P)—(E A,I')— N'(k, I ) = g N(k 6(I,I'),I')—, (25)

+6, (I)po(E b„I') . — (22)

The first of these relations is just our original recursion,
and the others enable us to calculate the magnetization
and susceptibility with the addition of only two new
counts.

It is straightforward to derive the analogous counting
schemes for n-point susceptibilities and their various spa-
tial moments, like the second moment of the 2-point sus-
ceptibility pz=(x a„~o). In the later cases, however,
there are some conceptual diSculties connected to the
ambiguity of the definition of the coordinate on the heli-
cal lattice. Some more work needs to be devoted to this
problem.

STRONG COUPLING

We now turn to the application of the counting
methods to the strong-coupling series. In this section we
describe the procedure for the three-dimensional Ising
model, although again it is easily generalized. As before
we consider spins S, on the lattice sites i and taking the
values +1. The partition function of Eq. (2) can be trivi-
ally rewritten

where b,(I,I') represents the number of selected bonds at-
tached to the new spin and I' is related to I via changes
in those bits representing sites attached to the new one.

In three dimensions, for any given (k, I) there will be
four terms in the above sum over I'. This represents a
factor of 2 for whether the new x bond is selected times a
factor of 2 for whether the new y bond is chosen. Wheth-
er the corresponding z bond is chosen or not is deter-
mined by the corresponding bit of I which determines if
an even or odd number of bonds is selected.

An immediate factor of 2 in memory is saved because
each bond has two ends. This means that if no bonds
enter from outside below the lattice, the top layer must
have an even number of loose ends. Any top layers with
an odd number of loose ends need never be kept. In prac-
tice, instead of looping over all given integers I represent-
ing the dangling bonds from an allowed configuration, we
need only loop over the right h, —1 bits of I and can
determine the allowed leftmost bit by parity considera-
tions.

We work with generalized helical lattices as before.
For simplicity in initialization, we set all counts to zero
except for I=O, representing no dangling bonds. This
may seem a bit peculiar because we do not allow loops to
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enter and travel through the bottom layer. It is, howev-
er, simple to implement and boundary conditions in the
longitudinal direction are irrelevant if we grow the lattice
long enough.

On a single helical lattice, the strong-coupling series
will be correct to the order of the first chain of bonds
which wraps around one of the artificial closed loops dis-
cussed earlier. The double loop criterion is somewhat
different now,' here it is only the total length of a loop
which wraps around two directions that matters. Reject-
ing lattices with such double loops, we can perform the
same cancellation between lattices as in the low-
temperature series.

The strong-coupling series can be extended
significantly by using the fact that all valid loops of links
on an infinite lattice will have an even number of selected
bonds in any of the coordinate directions. We use this
fact by calculating the counts several times, but including
extra minus signs when adding bonds in various direc-
tions. For example, if we first find the series giving every
x bond a weight of —1, we can then add the result
without this extra sign and any artificial diagram involv-
ing an odd number of x bonds will cancel out. Thus we
need not worry about any finite-size effects involving an
odd number of steps in the x direction. Repeating the
procedure eight times for all combinations of minus signs
for the three possible directions, we can ignore any ex-
traneous closed loops with an odd length along any di-
mension. Similarly, any double loops with an odd num-
ber of steps in any direction can also be ignored. Without
this trick the order to which the strong-coupling series
can be found is rather uninteresting. With these tricks,
we have found the series through 22 selected bonds from
the combination of lattices given in Table III. As the lat-
tice size goes to infinity, we write the free energy in the
form

TABLE III. A combination of 16 lattices which gives the
three-dimensional strong-coupling series through order 22. The
first column represents the coefBcient with which the lattice is
to be weighted and the second gives the vector h which defines
the lattices.

ln(Z) ~ &c 1+e '~

Ns &s
+g fk[tanh(P)]

(26)

where Nz and NL denote the number of sites and links,
respectively. To extract the coefficients fk, it is some-
what easier to work with the analog of an expectation,

g kN(k)

g N(k)
~N g kfi, . (27)

As for the low-temperature series, we extract the contri-
bution per spin by comparing the counts before and after
adding the last spin. Since they are just combinations of
integer counts, the products kfk themselves are always
integers, while the fk are not in general. We tabulated
these numbers through order 22 in Table IV. These num-
bers are not new; for example they represent the same or-
der as obtained in Ref. [3].

POTTS MODELS

As we mentioned earlier, the application of the count-
ing techniques to the low-temperature series expansions
is very easily generalizable to any discrete system with
nearest-neighbor interaction. To illustrate this, consider
the q-state Potts model, defined by the interaction of the
form

E=g (1—5 }, (28)
&I;j&

where o; is a site-defined field that takes q possible
values. The sum is taken over all nearest-neighbor pairs
of spins with 5 being the Kronecker symbol.

Writing the partition function in the form

dN
Z= g P(E)u

E=O
(29}

with d being the spatial dimension and u =e ~, one can
follow essentially the same steps we outlined in the dis-
cussion of the Ising model. Namely, the application of
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0
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4
6
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0
0
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132
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19800

288 528
4468 380

72 236 124
1 206 062 448

20 649 134532
360 734 896 500

TABLE IV. The coeScients for the strong-coupling series
for the three-dimensional Ising model through order 22. The fk
are defined in the text.
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recursive counting using helical lattices and modular ar-
ithmetic comes through with no change at all. The
differences are of a technical nature only, not conceptual.

%orking with h spins on a helix, the maximum number
of configurations of the top layer is q". Since a single bit
is no longer sufBcient to keep the state of the individual
spin, it would be more complicated to code the state of
the top layer in a single word. Instead, we use several
words to represent each top layer configuration. For ex-
ample, for the q =3 calculations we used two words per
configuration while for q =8 three words were required.
It is also clear that now the analog of Eq. (4) has q terms,
corresponding to the q different possible values of the
added spin.

We have computed the low-temperature expansions for
the energy, magnetization, and susceptibility for the q =3
model in d =2 and 3 and the q =8 model in d =2. The
resulting series have been extensively discussed and ana-
lyzed in [7] and we do not repeat them here.

CONCLUDING REMARKS

Using these methods with the simple Ising model, we
obtained the series shown in Table V for the average en-

ergy per bond in three through five dimensions. The
four-dimensional series are several terms shorter than
have been presented in [10],but we include them to em-

phasize that our methods continue to work reasonably
well in higher dimensions. As mentioned earlier, Ref. [8]
has recently obtained several more terms for the three-
dimensional model. In Table VI we give the series
through order 54 excited bonds for the magnetization
and the magnetic susceptibility of the three-dimensional
model. These were obtained, as discussed above, from
the moments of the state counts.

The method presented here should easily generalize to
other discrete systems. The helical lattices used, as well
as the combinations to cancel out finite-size errors, are in-

dependent of the specific model. It is straightforward to
introduce additional couplings, although this will in-

crease memory needs. Some interesting possibilities for
further exploration are gauge and coupled gauge-spin
models in various dimensions. Changing boundary con-
ditions should enable the study of interface properties. In
Ref. [11] similar recursive methods were suggested as a
means to study many fermion systems. A particularly
challenging problem is the extension of these ideas to
theories with continuous spina. Some work along these
lines for gauge theories appears in Ref. [12].

TABLE V. The low-temperature expansion coefficients for the average energy per unit volume for
the three-, four-, and five-dimensional Ising model on a simple-cubic lattice.
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e; (4D)
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0
0
0
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0
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0
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66 960
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—104 198096
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—918744 400

e; (5D)

0
0
0
0
0

20
0
0
0
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—220

0
0

2 340
—5 600

3 320
640

32 980
—122 220

145 540
—31 420
454 860

—2483 360
4 560440

—2 922 240
6 717 220
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TABLE VI. The low-temperature expansion coefBcients for the average magnetization and magnetic
susceptibility for the three-dimensional Ising model on a simple-cubic lattice.

M;
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—1 650 000 819068

0
0
0
1

0
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—4056
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—54 392
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2 601 674

—8 836 812
31 925 046
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—209 328 634 116
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