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EfBcient large-scale simulations of a uniformly driven system
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We present results from an eKcient algorithm for simulating systems of locally connected elements
that are subject to uniformly increasing stresses and that discharge when these stresses reach some
threshold. Previously, large-scale simulations of such systems have been hindered by the very-time-
consuming search for those elements that are going to discharge next. We avoid this by using a
suitable data structure, reducing computer CPU times by several orders of magnitude in typical
cases. In particular, we present simulations for a simple version of the Burridge-KnopofF model
introduced by Olami, Feder, and Christensen [Phys. Rev. Lett. 6S, 1244 (1992)]. Due to the
substantially larger lattices and longer simulation times presently used we And that the conclusions
of these authors have to be modi6ed considerably.

PACS number(s): 02.70.Rw, 05.40.+j, 46.30.Pa, 91.30.—f

I. INTRODUCTION

Recently there has been much interest in spatially ex-
tended systems of coupled elements which can support a
limited amount of some "stress" and transfer at least part
of this stress to their neighbors when discharging. Such
models are often characterized by scale invariant distri-
butions of the resulting avalanches. Some applications
include sandpiles [1—7], forest fires [8—13], pinned domain
walls in magnets or pinned Qux tubes in type-II super-
conductors [14], earthquakes [15—22], invasion percola-
tion growth [23], and pinned charge-density waves [24].
In those cases where the discharges appear in avalanches
with a broad and scale invariant distribution of sizes,
these phenomena were subsumed as self-organized criti-
cality (SOC) [1].

Typically, such phenomena are modeled by means of a
discrete space-time lattice. In some cases also the vari-
able at each lattice point is discrete, in which case one
deals with a (deterministic or probabilistic) cellular au-
tomaton (CA). Otherwise, such systems are called cou-
pled map lattices [25].

The most straightforward simulation of such a model
consists of going through the lattice in a regular fash-
ion, updating each variable according to the local rule.
While such a strategy is appropriate in a CA where some
nontrivial action is going on at most sites, it is not ap-
propriate for SOC, since there most sites are stable and
stationary. Thus in a regular passing through the lattice
one spends most of the time in checking that no action
has to be taken, and such algorithms tend to be very slow
even if the vectorization and parallelization possible with
such algorithms are fully exploited.

A much better strategy for SOC (and for a number of
other systems [26, 27]) consists of keeping a list of "active
sites. " During each time step, the entire list is exam-
ined and a new list for the next generation is established.
Since the number of active sites is typically very small in
the critical state, this already makes a big improvement

[4]

In addition, a modest improvement is obtained by re-

placing the d coordinates of a site in a d-dimensional lat-
tice by a single index. In this way the number of variables
in the list of active sites is reduced and the addressing
of the array elements is simplified. Also, this simplifies
the implementation of the following trick, which causes
a dramatic improvement in some cases.

While the above algorithm is adequate in cases where
the stresses increase stochastically (as in the sandpile
model of [1]), it is not adequate for large-scale simula-

tions of models where the stresses increase uniformly and
continuously [11,17, 20]. In such models (which of course
are coupled map lattices and not CA, in contrast to state-
ments made, e.g. , in [20]) one has to search between any
two avalanches for that element which is closest to its
critical state, because it will be this element that will

discharge next. On a lattice of X sites, this takes a time
O(X). Since in some of these models the average size of
the avalanches triggered by these discharges is O(1), the
improvement will be by a factor O(N) if the search for
the weakest element can be eliminated.

It is exactly the latter which I propose in this paper.
In the following section I shall describe the specific model

[20] dealt with in the following. A fast algorithm for it
will be described in Sec. III, though it should be ob-
vious that the idea is more general. In Sec. IV I will

present results obtained by it. While I reproduce essen-

tially all results of [20] on the small lattices studied by
these authors (up to 50 x 50 sites), we will see that the
extrapolation to larger lattices is not as straightforward
as suggested in [20]. The paper finishes with a discussion
in Sec. V.

II. MODEL

The specific model I will simulate is that of [20] (see
also [21, 22]) with either "open" [20] or periodic bound-

ary conditions (BC's). In this model, a real variable I",
(called "stress" in the following) is attached to each point
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i of a quadratic lattice of size I x L. In the initial state,
the values of F are randomly distributed in [0, 1] with
uniform distribution. The evolution is defined by two
mechanisms which seem at first sight to be very similar
to those in the sandpile model of [1]:

(1) Every FI increases with the same speed, dFI/dt =
v.

(2) As soon as one of the Fi becomes equal to the
critical value F' = 1, it relaxes to F = 0, and a frac-
tion aF~ (a ( 1/4) is distributed to each of its four
neighbors (boundary sites will be discussed below). If
any of the neighbors j becomes thereby supercritical
(F.' = Fj + aFI & F'), it will also relax to F." = 0,
and again a &action aF' is given to each of its neigh-
bors. The sequence of discharges triggered in this way
will be called an avalanche.

If more than one site is supercritical at any time, the
discharges are assumed to happen simultaneously. Step
(2) is repeated [without applying step (1) between the
discharges] until all sites are subcritical. Thus, formally
we consider the limit v -+ 0.

Notice that relaxation is always to F' = 0. This is
in contrast to the sandpile model of [1]. It renders the
model non-Abelian [2], and the temporal order of the
discharges has to be strictly followed (this excludes a re-
cursive depth-first algorithm as discussed in [4)). Also,
since only a &action 4o, of F is distributed to the neigh-
bors, the model does not conserve the total stress p,.FI
(again in contrast to [1]); a fraction (1 —4a)F of the
stress is dissipated.

The last (and in some sense most important) difference
to the sandpile model is that the model is strictly deter-
ministic. It is easily seen that the model does not show
deterministic chaos either. Indeed, if all discharges hap-
pen at F; = F', then an infinitesimal change 6F; leads
just to an infinitesimal change bt = —a P', of the time at
which this site discharges. If, on the other hand, F; & F'
at the discharge, there is no time shift but a fraction of 6F';

is passed to the neighbors. In the first case, the evolution
is conservative in the sense of Liouville's theorem with all
Lyapunov exponents equal zero, while in the second case
it is dissipative (notice that the notions of "conservation"
and "dissipation" here do not refer to the conservation
of stress but of phase-space volume).

Let us finally discuss the boundary conditions. Since
stress is not conserved, it seems most natural to use peri-
odic BC's. This is again in sharp contrast to the sandpile
model. There, periodic BC's would lead to an infinite
avalanche after a finite amount of sand had been added,
and to a violation of ergodicity on finite lattices. This
problem would be absent in the limit of infinite lattices,
but this limit is reached very slowly [4]. But no such
problem is expected in models without stress conserva-
tion, and periodic BC's (when possible) usually involve
the smallest finite-size corrections.

In addition, I also simulated "open" BC's, follow-
ing [20]. In this case, an additional layer of sites with
E; = —oo is added at the boundary. This layer will never
discharge, but it absorbs the discharges of the neighbor-
ing sites, the rules for which thus remain formally un-
changed.

F; ~F,'=F' —S, F~ m F' = F~+c»(F, F'+1—).
(1)

The first pass can be eliminated by using a suitable
data structure from which the most stressed sites can be
found directly. The idea is that the interval [F' —1,F']
of possible stress values is divided into M bins of size
1/M, so that we only have to search in the highest bin.
If M N (where N = L2 is the number of lattice sites),
and if the distribution of F over the lattice is not too
singular, this will reduce CPU time by a factor O(N)

This can be done in principle in many ways. The most
naive implementation would use M arrays, one array for
each bin. This would be very inefFicient, as the sizes of
these arrays would fiuctuate significantly, leading to a
waste of storage. Instead, we use a structure that has
been found to be very efFIcient in finding nearest neigh-
bors in time sequence analysis [28, 29]. Here a set of M
linked lists is used (one list for each bin), with M point-
ers to the heads of these lists. Since the total length of
these lists is exactly N, we can write them into one large
array LIST of size N when using FORTRAN. The header
pointers are written then into an array BOX of size M.

Let us now describe the insertion of a site i, either
during the initialization phase or after F, has changed.
At the beginning, all elements. of Box are empty, while
LIST can contain arbitrary values. If F; falls into bin k,
the previous content of BOX(k) is written into LIST(i) and
the new value of BOX(k) is set to i.

After the initiation phase, all elements of BOX corre-
sponding to empty bins will be empty, while those cor-
responding to nonempty bins contain the site of the last
value of F in this bin. The sites corresponding to this
bin are simply found by following the links until an empty
element of LIST is encountered, which indicates that the
end of this particular list is reached. When a site i with
F, in bin k discharges or gets a contribution &om a dis-
charging neighbor, it has to be removed &om the kth
list and inserted in the list corresponding to the new F,'.
Removing it &om its old list is done by first checking
whether BOX(k) = i. If yes, then we simply replace it
by Box(k) = 0. If not, then we follow the list until
we reach a j such that LIsT(j) = i, and replace it by
LIST(j) =LIST(i).

There is one 6nal aspect which should be mentioned.
Since the allowed interval [F' —1,F'] is continuously

III. ALGORITHM

At the first time step in an avalanche, the list of "ac-
tive" sites contains all sites with F; = F', while at later
times it will contain all sites which have received some
stress from neighboring discharges (here we have already
replaced the vector site index i by a single integer i, as
discussed in the Introduction).

In order to implement step (1) of the evolution, one
first has to find the site(s) with the largest stress Fm
and then increment all sites by F' —Fm~ W.hen im-

plemented naively, this involves two passes through the
lattice. The second pass can be avoided by not increas-
ing F;, but instead decreasing F'. Of course, the rule for
discharge then has to be replaced by
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shifted during the simulation, it is unfeasible to divide
exactly this interval into M bins. Instead, we define the
bin index by k = 1 + (/MF;J mod M). In this way
a discharging site remains in the same bin if its stress
before the discharge is equal to F'. When searching the
next site in this bin, we then have to check whether its
stress is near F* (so that it will discharge) or near F' —1
(in which case it has just discharged).

Obviously, the algorithm becomes inefficient if the sys-
tem synchronizes strongly so that most of the sites are in
only a few bins. Eliminating an element from the corre-
sponding lists will then become very time consuming. In
the present model this happens for values of n close to
1/4 (n = 1/4 is the conservative limit). But for n & 0.23
and L & 50 I found the algorithm already much faster
than the naive one. For a & 0.1 the speed was essen-
tially independent of L and o. , with = 104 discharges per
second on a DEC 2100 UNIX computer workstation.

IV. RESULTS

The main result of [20] was that the model showed
scaling except for very small n (a, = 0.05). This was seen
mainly in a power law for the probability distribution
that an avalanche involves & s discharges, P(s) s2

The exponent ~ depended on o.. It was obtained with
two different types of nonperiodic boundary conditions.
It was surprising, as scaling was expected only in the
conservative limit n = 1/4, in analogy to what happens
in the sandpile model [6]. In the following we shall see
that this result has to be modified.

A. Periodic boundary conditions

When simulating small lattices with periodic BC s, I
found a rather surprising result: on small large lattices
and for relatively small o. , nearly all initial configura-
tions led quickly [after O(I ) avalanches] to a strictly
periodic state with period exactly equal to L . In this
state there are strong correlations such that none of the
discharges leads to an overcritical neighbor, and thus all
"avalanches" consist of single isolated events. It does

happen occasionally that several sites become degenerate
and thus discharge simultaneously (hence simply count-
ing the simultaneously discharging sites is not a good
measure for the size of avalanche), but these discharges
are not causally related. Causally induced chains of top-
plings arise very rarely, only for fairly large o. (see Fig.
1) and not at all in the periodic states mentioned above.

It is easy to see that a strictly periodic state with pe-
riod I and with only trivial avalanches (called the "or-
dered state" in the following) is a valid solution. During
one period of such a state, each site discharges exactly
once, loosing thereby one unit of stress, and receives 4o.
units from its four neighbors. Thus all F, decrease by the
same amount 1 —4o. during one period. Indeed, one eas-
ily verifies that a continuum of such states exists, since a
small change in the initial conditions will generally lead
to the same small change at large times. What is less
clear is why the set of these states has such a large basin
of attraction that nearly all initial configurations tend
towards it at least locally.

Figure 1 suggests that there is a sharp threshold o., =
0.18 below which no avalanches with more than one dis-
charge appear in the final state, so that the lattice orders
into one of the above periodic states. Actually, the situ-
ation is not so simple. Since the evolution is not chaotic,
every state finally becomes periodic (eventually with pe-
riod g I,2) for all n. More extensive simulations showed
that the approach towards disordered states is also rather
fast and roughly exponential. Thus after a rather short
time any configuration effectively becomes frozen in a
periodic state which may or may not be ordered. Even
for rather small o. (much smaller than 0.18) there is a
low but nonvanishing probability that some defects get
frozen in an otherwise ordered state, thus smearing out
the ordering phase transition. On the other hand, the
fast freezing happens also for large o., suggesting that
there is no sharp &eezing transition either.

Thus there is actually no sharp threshold, but in the
following we shall use o., 0.18 as an effective threshold
between approximately ordered and strongly disordered
asymptotic states.

The asymptotic state on a periodic lattice is not er-

godic since it is neither unique nor chaotic. Thus differ-
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ent initial conditions would lead to different final states.
In all simulations presented in this paper, I used uncor-
related initial conditions with F; uniformly distributed
in [0, 1]. I also made runs with F; C [O, a], a ( 1. The
results for these runs were indeed different, but not qual-
itatively.

Besides the ordering aspect seen in the periodicity with
period 1,2 ("temporal order") the final states are also or-
dered spatially. Indeed, for alt initial configurations the
final states are highly ordered (even if not in the above
temporal sense). The degree of temporal ordering can be
measured by the number of nontrivial avalanches (i.e.,
the deviation from the temporally periodic state). A
measure of spatial ordering is suggested by looking at the
distribution of stresses. In Fig. 2 is shown the probability
distribution (not normalized) of F' —F; for n = 0.1825
(which is close to the transition point) and for a = 0.22,
which is in the aperiodic regime. Surprisingly, this in-
dicates that the temporally disordered state (large a) is
spatially more ordered and vice versa. For o. -+ 1/4,
the distribution tends towards a sum of five delta peaks
at F = m/4, m = 0, 1, . . . , 4. The same is indicated by
the distribution of the stress difference between neighbors
(Fig. 3). The latter is essentially a measure of local or-
dering, while the distribution of I"—F; measures global

ordering.
Figures 2 and 3 indicate that for large o., i.e., close

to the limit of stress conservation, it is very difficult for
the system to find the periodic state, since it has a much
smaller basin of attraction. Thus the system remains
longer in the dissipative aperiodic state, which then leads
to a higher degree of spatial ordering.

This dichotomy of spatial order together with tempo-
ral disorder (and vice versa) has not been observed pre-
viously in critical phenomena. On the other hand, it
is rather common in cellular automata [34] and coupled
map lattices [25]. It demonstrates that the concept of
"ordering" is less trivial than often assumed.

The effective discretization of stress seen for large n
was observed in a slightly different model by Zhang [30].
It seems also related to the well known synchronization
in coupled relaxation oscillators [31—33].

B. Open boundary conditions

If we use nonperiodic BC s (as in [20)), the situation is
very different. I agree with the findings of [20] that one
finds large avalanches for nearly all values of a, and that
these avalanches are roughly described by scaling laws.
Indeed, in contrast to [20] I found such scaling also for
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FIG. 2. Distribution of I"—I'; on a lat-
tice vrith I = 1000 and periodic BC's. Panel
(a) is with a = 0.1825, panel (b) with a =
0.22.
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very small n (n ( 0.05) where these authors claim to see
none. But only for small lattices and for fairly large 0,

are all avalanches described by this scaling. In Fig. 4 I
show the integrated distribution of avalanche sizes,

P(s) = prob{number of discharges ) s),

for 0( = 0.05 and for three different lattice sizes. For

all three curves we see roughly a power law [35] P(s)s, 7 2.8, except for a very sharp and pronounced
peak at s = 1. Furthermore, the height of this peak in-

creases with L. More precisely, the total contribution
of the power law tail decreases roughly as I/L for large
L. In view of the results of Sec. IVA this peak is eas-

ily understood: in the interior of the lattice (where the
BC has little influence) the lattice orders into a periodic
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FIG. 4. Integrated distribution P(s) of
avalanche sizes for o. = 0.05 and L = 50, 100,
and 200. For each of the lattices, the first
2000 x L avalanches were discarded, and at
least 40000 x L next avalanches were used
for averaging.
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state with all avalanches having 8 = 1. It is only near
the boundary that this state cannot be reached. Since
the boundary sites do not get contributions from all four
neighbors (because some of these neighbors are absent),
they do not return to their critical stress at the same time
as the interior sites, preventing the periodic state. Thus
the main effect of the boundary is to create an inhomo-
geneity which prevents the ordering.

Although a thorough investigation of this phenomenon
is difficult due to extremely long transient times on large
lattices (for small lattices we verify that transient times
are rather short, as found in [20]), we have a number of in-
dications that this scenario is indeed correct. It suggests
that for 0, ( n, avalanches are mainly near the boundary.
Occasionally, an avalanche will penetrate deeper into the
lattice, but the disorder it produces will soon heal, and
the bulk of the lattice will stay ordered for most of the
time. In contrast, when n & 0,„the whole lattice is
prevented &om ordering and large avalanches will also
be triggered deep inside the lattice. This difference is of
course only seen on sufBciently large lattices. Hence it is
not even clearly seen in the present simulations (where L
was up to 400) and was impossible to detect in those of
[20] where I ( 50.

The first indication for the correctness of this scenario
comes from observing the mean avalanche size during the
transient period. Again we start with all F; randomly in

[0, 1]. As observed in [20), the mean avalanche size de-
creases first sharply, in order to approach the asymptotic
value slowly from below (Fig. 5). This is easily explained
by the fact that the attraction towards the periodic state
in the interior of the lattice is much faster than the es-
tablishment of the very delicate long-range correlations
that will give the scale invariant avalanches. Indeed, the
initial decrease of the avalanche size is exactly the same
as for periodic BC's.

That large avalanches appear first near the boundary
is also observed when watching the evolution on-screen
for small a. It explains the observation that P(s)
1il in Fig. 4 for s ) 2, and the extreme slowness of
the approach towards the final state. From Fig. 5(b)
we see that even 4 x 10 avalanches are not enough to
reach stationarity for L = 200, n = 0.1. It is these long
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FIG. 5. Average size of avalanches in the last time bin,
for bins of 2 x 10 avalanches [panel (a)] and for bins of size
2 x 10 [panel (b)]. All curves are for cv = 0.1. Notice the
very slow convergence.

transient times that made a precise analysis difficult and
that might be responsible for some of the deviations from
scaling in Fig. 4 and in some of the following plots.

As stated above, we expect that large avalanches are
no longer restricted to the surface for larger values of o..
This is indeed apparent in Fig. 6, where P(S) is shown
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FIG. 6. Similar to Fig. 4, but for a = 0.2.
Due to the shorter transients and the some-
what lower efBciency of the algorithm, statis-
tics is somewhat lower (ca. 10 avalanches
for each lattice), and data are also shown for
L =25.
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10000 '-
L = 200, g= 0.2

1000

100 FIG. 7. Similar to Fig. 2, but for open
boundary conditions. Lattice size is I = 200,
and conservation parameter is a = 0.2.

0.2 0.4

F' —F
0.5 0.8

for several values of L, as in Fig. 4, but for o, = 0.2.
We see a slight decrease of P(s = 2) with I, , but it is
much less strong than for a = 0.05. Similar results were
observed at a = 0.15, though this is already subcritical,
which shows that L = 200 is still too small to see the
asymptotic behavior.

Our lattice sizes are also too small for seeing the cor-
rect finite-size scaling of P(s). In [20, 21] a conventional
scaling ansatz for the difFerential distribution

(3)

was made. It was found that the scaling function P(z) is
monotonic and that D & 2 for all values of n. Now it is
easily seen that the last cannot be the correct asymptotic
behavior for n ( 1/4. There, each site can discharge only
a finite number of times during an avalanche. Hence P(s)
must be cut ofF at sm» & const x L and thus D & 2.
On the other hand, when looking at Fig. 6 we see that
the cutoff s~» does increase faster than L, indicating
that even our lattice sizes are not large enough to see
the true asymptotics. (For very small o. , s „decreases
with L, as seen in Fig. 4. I believe, however, that this is
a transient e8'ect whose detailed investigation is dificult

due to the very slow convergence. )
Our sizes are large enough to refute also another claim

of [21], namely that P(s) shows ordinary finite-size scal-
ing. According to the latter, it should be possible to
superimpose the four curves in Fig. 6 by a simple shift.
Trying this (e.g. , by making a copy on a transparency),
one sees that this does not work: with increasing L the
cutoff in Fig. 6 becomes sharper. This is indeed expected
from the fact that 8 „approaches its upper bound with
increasing I. I conjecture that the cutoff of P(s) be-
comes a step function for I ~ oo, so that dP/ds devel-

ops a b-function peak. Essentially the same behavior was
found in a forest fire model [13] and in simulations of the
Abelian sandpile model if sand was thrown only onto the
central site [36, 37] or if averages were taken only over
avalanches starting near the center of the lattice [37].

Finally, l show in Figs. 7 and 8 stress distributions
similar to those shown in figs. 2 and 3 for periodic BC's.
Only the case o. ) o., is shown. While the distribution
of the stress difference between neighbors (shown in Fig.
8) is hardly changed when comparing to Fig. 3, the dis-

tribution of I'"* —F' is very much different. Thus we

see that global ordering is completely destroyed by large
avalanches, while local ordering is still maintained.

L = 200, Q= 0.2

10000

100

10

FIG. 8. Similar to Fig. 3, but for open
boundary conditions and for the same param-
eters as in Fig. 7.
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V. DISCUSSION

We have seen that the periodic boundary conditions
and the much larger lattices studied in the present paper
considerably modify the conclusions of [20]. Thus the use
of an e%cient algorithm can be crucial in obtaining the
correct large-scale behavior of driven systems. Straight-
forward modifications of the present algorithm could be
applied to other models with steadily and uniformly in-
creasing stress [ll, 16, 17, 19,38].

In spite of the fact that stress is not conserved, I veri-
fied the existence of scale invariance for the specific model
of [20]. This is surprising since scaling is tied to con-
servation in sandpile models [6]. The crucial difference
between sandpile models and the present model seems
to be that the latter is noiseless. It is driven uniformly
(instead of stochastically), and in contrast to the model
of [17, 19] it is not chaotic either.

The latter implies that the model can order into a tem-
porally periodic state. It does this for low levels of stress
conservation, but temporal ordering is prevented at high
conservation. The transition between these states is not
sharp but is clearly visible. An unusual feature is that
the state with higher temporal order has lower spatial
order and vice versa.

Ordering is also prevented by using nonperiodic bound-
ary conditions. They are crucial for the scale invari-
ant avalanches observed in [20], as neither the periodic
nor the aperiodic states on a periodic lattice show any
avalanche scaling. Seen Rom that point of view, the

open boundary conditions used in [20] essentially play
the role of an inhomogeneity. I conjecture that similar
avalanche scaling should be observed with other sources
of spatial inhomogeneity. A model with inhomogeneity
provided by &ozen randomness in the thresholds E' was
studied in [16]. Indeed, these authors observed scaling
even in one dimension where the homogeneous model of
[20] would be trivial S.ince boundaries between tectonic
plates are not homogeneous, this could mean that simu-
lations with nonperiodic boundary conditions [20] of the
present model are indeed more relevant for real earth-
quakes than simulations with periodic boundary condi-
tions. But in view of the importance of inhomogeneities
for the scaling, it would seem necessary to model them
more carefully for the model to be realistic.¹teadded. After submission, a paper by Socolar et
al. appeared in Phys Re.v. E 47, 2366 (1993), where it
was also found that the model of [20] shows no scaling
for periodic BC's. These authors claim that al/ initial
configurations lead to trivial periodic states in this case,
which seems to result from studying too small lattices.

ACKNOWLEDGMENTS

I am very much indebted to Dr. K. Christensen for
a most helpful correspondence on the model of [20). To
him and to Holger Kantz I am indebted for critically
reading the manuscript. This work was supported by the
Deutsche Forschungsgemeinschaft, SFB 237.

[1] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. A 88,
364 (1988).

[2] D. Dhar, Phys. Rev. Lett. B4, 1613 (1990).
[3] L.P. Kadanoff et al. , Phys. Rev. A 39, 6524 (1989).
[4] P. Grassberger and S.S. Manna, J. Phys. (Paris) 51, 1077

(1990).
[5] S.S. Manna, Physics A 1'79, 249 (1991).
[6] S.S. Manna, L.B.Kiss, and J. Kertesz, J. Stat. Phys. 61,

923 (1990).
[7] K. Christensen, H.C. Fogedby, and H.J. Jensen, J. Stat.

Phys. 63, 653 (1991).
[8] P. Bak, K, Chen, and C. Tang, Phys. Lett. A 147, 297

(1990).
[9] P. Grassberger and H. Kautz, J. Stat. Phys. 68, 685

(1991).
[10) J. Finjord, in Spontaneous Space Time Structur-es and

Criticality, edited by T. Riste and D. Sherrington
(Kluwer, Dordrecht, 19S1).

[11) K. Chen, P. Bak, and M.H. Jensen, Phys. Lett. A 149,
207 (1990).

[12] B. Drossel and F. Schwabl, Phys. Rev. Lett. 69, 1629
(1992).

[13] P. Grassberger, J. Phys A(to be pu. blished).
[14) P. Bak and H. Flyvberg, Phys. Rev. A 45, 2192 (1992).
[15] R. Burridge and L. Knopoff, Bull. Seismol. Soc. Am. 57,

341 (1S67).
[16] H. Takayasu and M. Matsuzaki, Phys. Lett. A 131, 244

(1988).

[17) H. Nakanishi, Phys. Rev. A 41, 7086 (1990).
[18] J.M. Carlson and J.S. Langer, Phys. Rev. Lett. 62, 2632

(1989).
[1S] A. Crisanti, M.H. Jensen, and A. Vulpiani, Phys. Rev. A

4B, R7363 (1992).
(20] Z. Olami, H.J.S. Feder, and K. Christensen, Phys. Rev.

Lett. B8, 1244 (1992).
[21] K. Christensen and Z. Olami, Phys. Rev. A 4B, 1829

(1992); J. Geophys. Res. 9'7, 8729 (1992).
[22] K. Christensen, Z. Olami, and P. Bak, Phys. Rev. I ett.

68, 2417 (1992).
[23] D. Wilkinson and J.F. Willemsen, J. Phys. A 16, 3365

(1983).
[24) G. Grueuer, Rev. Mod. Phys. 60, 1129 (1988).
[25] K. Kaneko, Physica D 87, 60 (1989).
[26) P. Grassberger, J. Phys. A 22, 3673 (1989).
[27] P 'Grassber. ger, J. Phys. A 25, 5867 (1S92).
[28] P. Grassberger, Phys. Lett. 148, 63 (1990).
[29) P. Grassberger, T. Schreiber, and C. Schaffrath, Int. J.

Bifurc. Chaos 1, 521 {1991).
[30] Y'.-C. Zhaug, Phys. Rev. Lett. B3, 470 (1989).
[31] C.S. Peskin, Mathematical Aspects of Heart Physiology

{Courant Institute, New York, 1S75).
[32] R. Mirollo aud S. Strogatz, SIAM J. Appl. Math. 50,

1645 {1990).
[33] I. Steward, Nature 850, 557 (1991).
[34] S. Wolfram, Theory and Applications of Cellular Au

tomato (World Scientific, Singapore, 1986).



2AA A PETER GRASSBERGER 49

[35] Though this fit is much better than would be an expo-
nential ansatz, it is far from perfect. The best fit seems
to be obtained by a stretched exponential with exponent
= 0.2, together with a peak at 8 = 1. We do not have any
theoretical argument in favor of a stretched exponential.

[36] K. Wiesenfeld, J. Theiler, and B.McNamara, Phys. Rev.
Lett. 65, 949 (1990).

[37] P. Grassberger (unpublished).
[38] H.J. Jensen, Phys. Rev. Lett. 64, 3103 (1990).


