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Supercoiling transitions of closed DNA
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Conformations of closed DNA molecules are considered within a simple elastic model. The
interplay of elastic energies of bending and twisting can lead to supercoiling induced by variations
of the linking difference. These shape transformations are studied in the limit of a large length to
thickness ratio of the molecule. Stationary shapes and energy diagrams are obtained by solving
shape equations for closed rings. Four different families of stationary shapes can be distinguished:

(i) planar circles, (ii) nonplanar rings, (iii) self-interacting rings, and (iv) interwound configurations.
They all occur as shapes of minimal energy in the phase diagram of supercoiling. The transitions
between the different regions in this phase diagram can be either continuous or discontinuous. The
sequence of shape transitions turns out to be sensitive to the precise values of the elastic parameters.
The buckling instability of the circle changes within the range of physically accessible values from
continuous to discontinuous behavior.

PACS number(s): 87.10.+e, 02.40.—k

I. INTRODUCTION

DNA molecules often occur as closed rings which can
be observed in the electron microscope [1]. The ring
closure fixes the topology of the two strands character-
ized by their linking number 8 [2,3]. Under the action
of topoisomerases, which are enzymes that can change
the linking number, topoisomers of different topology are
generated. This phenomenon can be studied by gel elec-
trophoresis where molecules with difFerent linking num-

ber are separated [4]. The reason for this separation is
different tertial structures of the topoisomers. Under an
increase of the linking number, a flat configuration of the
molecule will in general be transformed into a supercoiled
state which is stabilized by an interplay of elastic ener-
gies and the topological constraint [2,5—10]. The mechan-
ical properties of DNA can be approximated by those of
an elastic rod [5—12]. In order to be compatible with a
given linking number, the molecule either can form a su-

percoiled shape with increased bending energy, or it can
twist, which leads to an increase of the torsional elastic
energy. Therefore, the shape of a closed molecule de-
pends on the relative strength of the elastic parameters
for bending and torsional deformations. This competi-
tion of elastic parameters leads to a buckling instability
of the circle which has been studied by difFerent authors
[6,8,9]. Furthermore, stable shapes of closed DNA have
been calculated using shape equations [6,7,9] and finite
element computer simulations [10].

In this paper, a simple elastic model for closed DNA
is studied systematically. The basic simplifying assump-
tions are (i) that the molecule behaves like a homoge-
neous elastic rod with bending and torsional rigidities
and (ii) that the ratio of the length So to the thickness
a of the rod is large. The latter assumption becomes im-
portant for self-interacting shapes where self-avoidance
acts as an additional constraint. The complete phase di-
agram for this model is derived using energy diagrams

which are obtained by solving the Euler-Lagrange equa-
tions of the energy functional. Within the phase dia-
gram of the model, difFerent types of stable shapes can
be distinguished: (i) planar circles, (ii) nonplanar rings,
(iii) self-interacting rings, and (iv) interwound configu-
rations. The phase diagram exhibits a rich structure of
shape transitions between different types of shapes which
are either continuous or discontinuous. Their proper-
ties depend significantly on the values of the elastic con-
stants of the rod. The buckling transition of circular
shapes changes from continuous to discontinuous behav-
ior within the range of physically accessible values of the
elastic constants.

The paper is organized as follows. The basic mathe-
matical concepts to describe the geometrical properties
of DNA are introduced in Sec. II. The physical model is
defined in Sec. III. In order to obtain stationary shapes,
variational methods are used which are described in Sec.
IV. The complete phase diagram is derived in Sec. V. In
Sec. VI, the results of the theory are related to those ge-
ometrical and elastic properties of DNA which have been
measured experimentally. The Appendixes give some
technical details. In Appendix A, the shape equations are
derived. Boundary conditions for self-interacting shapes
are discussed in Appendix B.

II. GEOMETRY AND TOPOLOGY OP CLOSED
DNA MOLECULES

DNA molecules are large polymers which consist of two
strands forming a double helix. The geometry of this dou-
ble helix can be modeled by a twisted ribbon as shorn in
Fig. 1 [2,8]: The axis of the ribbon is given by the molec-
ular axis with coordinates K(S) parametrized by the arc-
length S. Along the axis K(S), we define two unit vec-
tors t and u. The tangent vector t obeys t(S) = R(S),
where the overdot denotes a derivative with respect to
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FIG. 1. Twisted ribbon as a model for the geometrical

properties of DNA. The central line of the ribbon follows the
molecular axis with coordinates R(S) parametrized by the

arclength S. Two unit vectors are de6ned along the axis: the

tangent vector t and the vector u perpendicular to t which

points to the edge of the ribbon.

in a simple model those of a homogeneous elastic rod
along the curve R(S) [5—12]. The total energy of an elas-
tic rod is given by the sum [14] F:—F~ + FT of the
bending energy

So

F~ =—— dS c(S)
2 0

and the energy of torsional deformations

So

FT —= — dS [a(S) —ap] (6)
2 o

The bending rigidity and the torsional rigidity are de-

noted B and C, respectively. The curvature c(S) = vt2
along the curve R(S) describes bending deformations of
the rod. Torsional deformations lead to a nonvanishing
physical torsion a(S) —np. Here np is the helicity of the
DNA molecule in the torsionally relaxed state [2,5,12,15].
For a molecule of length So, this helicity corresponds to
l'p = a!psp/(27r) windings of the helix around the molec-
ular axis.

So
7—:— dS cr(s)

27K p

is a functional of the helicity

(2)

lH
n = (t x u) (3)

So is the length of the molecule.
The writhing number W characterizes the shape of the

curve R(S). It can be expressed by a double integral [2]

[t(S,) x t(S,)][R(S,) —R(S,)]
R(s, ) —R(s, ) I'

and is defined only for curves which do not self-intersect.
For a DNA molecule, a self-intersection of the molecular
axis is avoided, since two segments of the molecule cannot
interpenetrate.

the arclength S. The vector u(S) is orthogonal to t(S)
and points &om the axis to the edge of the ribbon.

The topology of a closed DNA molecule can be char-
acterized by its linking number 8, which is an integer
counting the number of times the helix winds around the
axis. White's formula [2,13]

~ = &[~(s)l+ w[R(s)]
expresses the linking number 8 as a sum of two geometri-
cal quantities, the twist 7, and the writhing number W.
Both 7 and W are in general not integers and depend on
specific geometrical properties of the closed ribbon. The
twist 7, with [2,8]

IV. ENERGY MINIMIZING SHAPES

The physical state of a closed DNA molecule is defined
by the shape of its axis R(S) together with the torsional
deformation cr(s) —o.p. Neglecting thermal fiuctuations,
the molecule attains a shape which has a minimal total
energy F for given linking number Z. The constraint on
2 leads to an effective coupling of bending and torsional
deformations as described by White's formula (1). The
two relevant dimensionless parameters of this problem
are (i) the linking difference

and (ii) the ratio C/B of the two elastic parameters.
The phase diagram of this model can be obtained in

two steps. First, the limit of large torsional rigidity C is
studied. In this case, the torsional energy effectively acts
as a constraint on the writhing number W Second, once
this special case is solved, the energies and the shapes
that correspond to arbitrary values of the torsional rigid-
ity C can be obtained by applying a generalized Legendre
transformation.

This procedure is carried out in Secs. IVA —IVC. In
Sec. IV A, the bending energy E~ is minimized for given
writhing number W. Two different branches of station-
ary shapes which are obtained as solutions of the corre-
sponding variational problem are discussed in Sec. IV B.
In Sec. IVC, a generalized Iegendre transformation is
introduced. This transformation will be used in Sec. V
to derive the complete phase diagram.

A. Minimal bending energy far Bxed writhing
number

III. ELASTIC ENERGY

While the geometrical properties of DNA are best rep-
resented by a twisted ribbon, its elastical properties are

For a torsionally stiff rod with large rigidity C, the he-
licity of a configuration which minimizes the total energy
F is given by o.(s) = ap. This corresponds to a tor-
sionally unstressed state which is governed by bending
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energy F = Fgy only. The twist of this configuration is

7 = Zo. The constraint of fixed linking number 8 thus
transforms into the constraint W = EZ on the writhing
number, as follows from White's formula (1).

Shapes that minimize the bending energy I'~ for 6xed
writhing number W are obtained as stationary solutions
of the functional

lQ

g

CO

I I I I
/

I I I ~
t

I I ~ I
)

I I I I
}

~ I I I

F' = Fg+pW

Here p is a Lagrange multiplier which has been intro-
duced to incorporate the constraint on W. In order to
obtain Euler-Lagrange equations for this functional, it
is convenient to use an expression for W which is local.
The definition given in (4) is nonlocal and thus not use-
ful for this purpose. Applying White's formula (1) to
the curve R(S) with the special choice n = 7, where
7 = t (t x t)/tz is the difFerential geometrical torsion,
the writhing number W can be written as [13]

1 L,

, 1111I I I I I l I I I I I «« I I I I I

Sp

7-(S) dS+ 8
2X 0

This representation decomposes W into a sum of an inte-
gral over 7 and a nonlocal part, the so-called self-linking
number 8 [13,16]. The self-linking number is an integer
quantity which, in general, does not change with small
variations of the curve R(S). It will therefore be omitted
as a constant contribution to F' [17].

With this representation of W, the functional F' can
be expressed as

F' = dS —t'+ — . + N(R —t)
B 2 p t (t x t)
2 2' t2

The additional vector N of Lagrange multipliers has been
introduced in order to incorporate the contraint R = t
on the coordinates R. This is important since boundary
conditions on both R and t have to be imposed. The
condition 6F' = 0 determines the shape equations as
described in Appendix A.

FIG. 2. (a) Bending energy EII of stationary shapes as a
function of the writhing number W. For W = 0, the branch
starts with the circle L„„.The energy increases monoton-
ically with W. For integer values W = 1 and W = 2 of
the writhing number, the planar limit shapes L„andL; are
reached, respectively. (b) Limit shapes L;„„L„,and L; co.r-

responding to integer values of the writhing number W = 0,
1, and 2 are shown. These shapes are planar and can therefore
be displayed as two-dimensional contours.

Fig. 3(a). For W = 1 the branch ends up with a singular
limit shape L„.The shape L„again is planar and begins
to self-intersect; see Fig. 2(b). For finite rod thickness a,
this limit shape is not reached because the chain would
interpenetrate itself. The shape L„therefore represents
the onset of self-interaction in the limit of small a.

Shapes with W ) 1 are not obtained with the branch
discussed above since those shapes self-interact. In the
most simple case of a pure hard core interaction, self-
interacting configurations are stationary shapes with the

B. Branches of solutions

Stationary shapes are obtained as solutions of the
shape equations (A5) together with appropriate bound-
ary conditions. They form one-dimensional branches
which can be parametrized by the writhing number W.
Using the boundary conditions

R(0) = R(So), t(0) = t(So), t(0) = t(So), (ll)

(a) z

W=0.5

li z

x gQv

)i z

which guarantee the smooth closure of the ring, one ob-
tains a branch of nonplanar rings with 0 & W ( 1; see
Fig. 2. For W = 0, this branch starts with the cir-
cle L,;„with EII = 21r2B/So. Shapes with finite W
are nonplanar and begin to supercoil. As an example,
the projections of the shape with W = 0.5 on the X-Y
plane, the X-Z plane, and the Y-Z plane are shown in

X

w=1.5

FIG. 3. (a) Projections of the nonplanar ring with W = 0.5
on the X-Y plane, the X-Z plane, and the Y-S plane, respec-
tively. (b) The same projections for the self-interacting ring
with W = 1.5.
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additional constraint of self-avoidance of the rod. For
small rod thickness a, the region of self-interaction and
self-contact of the rod reduces to a point. In this point,
self-avoidance restricts the allowed variations of the rod.
As described in Appendix B, this restriction corresponds
to modi6ed boundary conditions for the shape equations,
which have to be imposed at the point of self-contact.

Together with these boundary conditions (B3)—(B7)
for self-interacting shapes, the shape equations lead to
a second branch of stationary shapes with 1
2 [18]. This branch starts for W = 1 with the limit
shape L„-.As an example for a shape along this branch,
three projections of the shape with W = 1.5 are shown
in Fig. 3(b). The branch ends up at W = 2 with a
new limit shape L; shown in Fig. 2(b). This shape L;
is again planar and represents the onset of interwound
con6gurations which are shapes, where the rod winds
around itself at least once. It consists of two identical
loops which are connected in the point of self-contact
as shown in Fig. 2(b). Interwound configurations with
W & 2 are described by the same two loops but rotated
with respect to each other by the angle 4 = (W —2)/m
around the vertical symmetry axis; see Fig. 2(b). They
have the same energy E~ as L; and exist with arbitrary
values of W ) 2. However, only for W 2 they would
give a good description of interwound shapes for finite
rod thickness a. The energy EB of the two branches is
shown as a function of W in Fig. 2(a) [19].

V. PHASE DIAGRAM OF SUPERCOILING

The phase diagram of supercoiling is derived from dia-
grams of the energy E(AZ) for difFerent choices of C/B
These energy diagrams are obtained by applying the gen-
eralized Legendre transformation (14) to the function
E&(W). Figure 4(a) shows the total energy E as a func-

fQ I I I I
i

I

~ - (a) C/B=0. 7
OJ

LU

I I I

)
I I I ~ I

CIA

E(EE) of stationary configurations for any finite C can
be obtained by the generalized Legendre transformation
as given by Eqs. (13) and (14) [20]. For infinite C, Eq.
(14) simplifies to W' = AZ, which was already observed
in Sec. IVA.

C. Generalized Legendre transformation 0

I I I I I I I I I I I I I I

~L

Shapes of minimal bending energy E~(W) for given
writhing number W are now used to solve the complete
problem, namely, to minimize the total energy I" = F~+
FT for given linking number Z. First, the energy ET(7 )
is de6ned to be the minimum of the torsional energy FT
for all configurations n(S) with given twist 7 . Using Eqs.
(2) and (6), a simple calculation leads to [8]

CQ
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(b) C/B=~.7
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ET (7) = (7 —8o)' (12)
CII'

The total energy E of a stationary con6guration with
given linking number l; can now be expressed as

2.7
E = E~(W')+ ET(L —W')

= E~(W') + (b,C —W')
Sp

(13)
I I I I I l I » I l I I I I

1 aL

Here the minimization of bending and torsional energy
have been carried out independently and White's for-
mula (1) has been used to incorporate the topological
constraint. The writhing number W' satis6es the equa-
tion

4~'C
(b,Z —W')

BW ~=~ ~o
(14)

which describes stationarity of the energy E in (13) with
respect to variations of the writhing number W'. Once
the energy E~(W) has been determined, the total energy

FIG. 4. (a) Total energy E as a function of the linking dif-
ference b,Z for C/B = 0.7. The dotted parabola represents
the energy of the circle. At the point I„„,the branch of
nonplanar rings bifurcates from the parabola of circles. Two
discontinuous transitions occur at the points D~ and Dq. Be-
tween these two points, the branch of self-interacting shapes
has the lowest energy. The planar limit shapes at both ends
of this branch are denoted L„andL; (b) The total energy.
for C/B = 1.7. In this case, the bifurcation of the nonpla-
nar rings at L;„leads to a continuous transition Co. This
transition is, for increasing El:, followed by a discontinuous
transition D~ to self-interacting shapes.
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FIG. 5. Phase diagram for supercoiling. The two relevant
parameters are the absolute linking difFerence )DZ( and the
ratio of the two elastic parameters C/B Four difFer.ent rea-
gions can be distinguished: (i) a region of circles, (ii) a region
of nonplanar rings, (iii) a region of self-interacting rings, and
(iv) a region of interwound con6gurations. Transitions be-
tween these regions are continuous along the dotted lines Co,
Cq, and Cq and discontinuous along the lines Dq, D2, and D3.
For an explanation of the other symbols, see the text.

tion of b,Z for C/B = 0.7. The circle with W = 0
is always stationary for any value of bt: with energy
E = E~(0) + 2z' CEl: /So. This line is shown as a
dashed parabola. At the point L„„,.the branch of non-
planar rings bifurcates &om the parabola of planar cir-
cles. This branch is unstable for C/B = 0.7 and ends
in the limit shape L„.. At this point the branch of self-
interacting rings starts, which is locally stable within a
large range of AZ. It ends up at the limit shape L;
The dotted line with constant energy, which starts in
the point L;, describes interwound shapes with W ) 2.
The discontinuous transitions Di and D2 correspond to
the crossing of the branch of self-interacting rings with
the dotted parabola of circles and with the line of inter-
wound shapes, respectively. The corresponding sequence
of lowest energy shapes with increasing b,Z is (i) circles,
(ii) self-interacting rings, and (iii) interwound configura-
tions.

The energy E versus 6Z is shown for C/B = 1.7 in Fig.
4(b). Here the bifurcation of the nonplanar rings at L

„„

leads to a stable branch. Therefore a continuous shape
transition occurs at Co. It is followed by a discontinu-
ous transition Di of nonplanar rings to self-interacting
rings. The branch of self-interacting rings ends up at
b,Z = 2 with the limit shape L; . At this point, a con-
tinuous transition Cg between self-interacting rings and
interwound shapes occurs.

The complete phase diagram is shown in Fig. 5. The
two relevant variables are the absolute linking difFerence
~AC~ [21] and the ratio C/B of the two elastic parame-
ters. Four different regions can be distinguished within
the phase diagram: (i) a region of circles with W = 0, (ii)

a region of nonplanar rings with 0 & W & 1, (iii) a region
of self-interacting rings with 1 & W & 2, and (iv) a re-
gion of interwound configurations with W ) 2. While for
large values of C/B all transitions are continuous, they
all become discontinuous for sufBciently small values of
C/B T. his behavior also holds true for the buckling tran-
sition of the circle. Previous studies predicted this insta-
bility to occur along a line Co with C/B = v 3/(Al:( [6,8].
The phase diagram shows that this statement is correct
for C/B & 1.62, where a continuous buckling instabil-
ity occurs along the line Co. For C/B & 1.62, however,
this transition turns out to be discontinuous along the
line Di. The order of the transition changes at the crit-
ical end point CE where infinitesimally deformed circles
become unstable. The three different discontinuous tran-
sition lines Di, D2, and Ds meet at the point DE. The
discontinuous transition lines Di and D2 end up in the
tricritical points TP i and TPI, where the transitions be-
come continuous along the lines Ci and Cg with ~b, Z~ = 1
and ~b, l;~ = 2, respectively.

VI. DISCUSSION

The topological constraint present in closed DNA
molecules efFectively couples bending and twisting defor-
mations as described by White's formula. This interplay
of elastic energies stabilizes supercoiled shapes for suffi-
ciently large absolute linking difFerence ~b, l:~. The cor-
responding shapes and shape transitions of closed DNA
have been studied systematically for a simplified elastic
model. In this model, the DNA is described as a homo-
geneous rod with bending and torsional elasticity. Self-
interaction is included by a steric self-avoidance of the
rod which is taken to be infinitely thin. Stable shapes
are obtained as shapes of minimal total energy for fixed
linking difference Al: by solving Euler-Lagrange equa-
tions for the shape of the molecular axes. The energies of
stationary shapes for different values of the elastic param-
eters are related by a generalized Legendre transforma-
tion. The stability properties of stationary shapes can be
checked by close inspection of the energy diagrams. Us-
ing these methods, the complete phase diagram as shown
in Fig. 5 has been derived.

This simplified model applies for DNA molecules which
are homogeneous along their axes. Higher order terms of
the elastic energies which can become 'relevant for strong
deformations have been neglected. A further simplifica-
tion is the restriction to a steric self-avoidance of self-
interacting configurations, thus neglecting adhesion en-
ergies and interaction potentials between different seg-
ments. For molecules with a length large compared to
the persistence length L„500A [12,22], thermal Quc-
tuations and entropy become important, which has been
neglected in this study.

The model restricts to molecules which are long cern-
pared to their diameter a 24 A [1]. However, the
main results presented in this paper are unchanged for
finite rod thickness a, since in this case the topology of
the phase diagram will not change within the parameter
range that has been investigated. The reason is that for a
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rod with small diameter a, the energies of self-interacting
shapes are changed by corrections of the order of a/Sp,
which only leads to small shifts of the phase boundaries.
An important effect, however, arises for larger values of
[Al:]: For a rod with finite diameter, the bending energy
of interwound configurations increases as a function of
the writhing number W. This can lead to additional tran-
sitions between interwound shapes which differ in their
degree of supercoiling. These transitions are expected to
occur close to integer values ]b,E~ 3, 4, ... .

In order to apply this theory to observations of the
shape changes of DNA molecules, the knowledge of the
values of the elastic parameters is crucial. The bending
rigidity B and the torsional rigidity t have both been
determined in different studies [12,22]. Typical values
for the torsional rigidity are C (2 —4) x 10 i@ erg cm.
The bending rigidity is related to the persistence length
by B = L„kT,which leads to B 2x10 erg cm. Here
k is Boltzmann's constant and T denotes temperature.
Physically accessible values for the ratio of the elastic
parameters are therefore C/B 1 —2. Inspection of
the phase diagram shows that within the corresponding
range, the sequence of shape transitions is very sensitive
to the precise values of the elastic parameters.

The shape changes studied in this paper should be ob-
servable experimentally by varying the linking difference.
This can be performed by different methods. Under the
action of topoisomerases, one strand is cut and again re-
connected, which leads to a change of the linking differ-
ence 6l: by an integer amount [1,4,15]. In order to vary
the linking difFerence continuously, ethidium bromide can
be used. This is a dye molecule that tends to be inserted
into the double helix, lowering the helicity o.o of the DNA.

An increase of the ethidium bromide concentration thus
decreases the linking difference b,l: continuously [15].

In conclusion, the topological coupling of bending and
twisting, which leads to supercoiling of closed DNA
molecules, has been studied in detail. The restriction
to a simplified model allows the derivation of the com-
plete phase diagram by using well established variational
methods. The study reveals a complex structure of shape
transitions and thus gives a deeper insight into the ge-
ometry and energetics of supercoiled DNA.
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APPENDIX A: DERIVATION OF THE SHAPE
EQUATIONS FOR CLOSED DNA

The axis of the molecule (the ribbon) is parametrized
using spherical coordinates for the tangent vector

t = (sin8cosg, sin8sing, cos8) (A1)

In this parametrization, the functional F defined in Eq.
(10) can be written as

SpF'=B LdS
0

with the Lagrange function

(A2)
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L(0, 8, 8, P, Q, Q)—:
1 2 . 2 2 . P cos8sin8+ $8 —8$

sin 8+ 8 + p sin8 . . —2 cos8
sin 8+ 8

+N (x —sin 8 cos P) + X„(j—sin 8 sin P) + N, (z —cos 8) (A3)

OL d OL d2 OL

BP dS gj dS2 gj
. + .. =0,

OL d OL d2 OL

f90 dS gj dS2 gj
. + .. =0

(A4)

follow &om the condition bE' = 0. Inserting the expres-
sion (A3) for L into (A4), one obtains the shape equations
for closed DNA, which read

Here p = p/(2vrB) and N = N/B. In the following,
we choose a coordinate system with N = N„=0 and
N = (O, O, N, ) This conditi. on can always be achieved
by a rotation.

The Euler-Lagrange equations

Psin0+ 2$0cos8+ p8 = 0,

~ ~

0 —P cos0sin8+ 1V, sin0 —pgsin0 = 0

Note that all terms containing derivatives of third and
fourth order cancel. Similar shape equations have been
derived in Ref. [7] by a less straightforward method.
The bending energy E~ for given writhing number W
as shown in Fig. 2 has been obtained by solving Eqs.
(A5) and inserting the resulting shapes into (5) and (9).

APPENDIX B:SELF-INTERACTION
OF THE ROD

Shapes of lowest bending energy with W ) 1 in gen-
eral do self-interact. For small rod diameter a 0,
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bIl' (BL d BL) BL
8 (BP dS BP)

('BL d BLi BL BL

L, B8 dS B8 B8 BR

Inserting the expression (A3) into (Bl) leads to

p/ p8 sin 8= (/sin 8 —7cos8)bp — . . bQB 42sin 8+82
$8cos 8 ) pgsin8

sin2 8+ 82) p2 sins 8+ Hs
0 —.

p2

+A;bZ, (82)

self-contact of self-interacting configurations occurs at a
point along the shape. We assume that this point of self-
contact is the center of symmetry of the shape. There-
fore, it is sufficient to study a segment of length So/2
with both ends 6xed at the point of self-contact. This
segment is shown by a solid line in Fig. 3(b).

The boundary conditions at both ends of this seg-
ment have to guarantee the symmetry and the station-
arity of the complete shape taking the constraint of self-
avoidance into account. The variation of the functional
I" for variations at one boundary reads

where bg, b8, bP, b8, and bS denote the variations of the
angles P and 8, their derivatives P and 8, and the Z co-
ordinate at the corresponding boundary. The boundary
conditions for self-interacting shapes can now be derived
from Eq. (82). For the segment of length So/2, they
read

R(0) = R(S,/2) = O,

8(O) =8(S,/2) = /2,

4'(0) = m $(So/2)

8(0) = 8(So/2)

(0) = j(S,/2) = 0 .

(83)
(84)
(85)
(86)
(87)

Equation (83) fixes both ends in the point of self-contact
and Eq. (85) fixes the orientation of the shape in the
X-Y plane. Stationarity with respect to bX and bY
follows from N» = 0 and Ny = Q. Variations bS are
suppressed by self-avoidance; see Fig. 3(b). Equations
(84)—(87) are required by the symmetry of the shape.
In terms of boundary variations, Eqs. (84) and (87)
correspond to b8 = 0 and bP = 0. If all these relations
are inserted into Eq. (82), the boundary variation be'
vanishes. Therefore the corresponding solutions are sta-
tionary with respect to variations of the shape. Using
these boundary conditions, the branch of nonplanar self-
interacting shapes, with 1 (& ( 2 as discussed in Sec.
IV 8, has been obtained.

[1] L. Stryer, Biochemistry (Freeman, New York, 1988).
[2] J. White, in Mathematical Models in DNA Sequencing,

edited by S. Wassermann (CRC, Baton Rouge, 1989).
[3] F.B. Fuller, Proc. Natl. Acad. Sci U.S.A.. '75, 3557

(1978).
[4] W. Keller, Proc. Natl. Acad. Sci. U.S.A. 72, 2250 (1975).
[5] C. Benham, iu Mathematical Models in DNA Sequencing

(Ref. [2]).
[6] C. Benham, Phys. Rev. E 89, 2582 (1989).
[7] C. Benham, Biopolymers 18, 609 (1979); 22, 2477

(1983).
[Sj E. Quitter and S. Leibler, Europhys. Lett. 1'7, 643 (1992).
[9] M. LeBret, Biopolymers 18, 1709 (1979).

[10] T. Schlick and W.K. Olson, J. Mol. Biol. 228, 1089
(1992); Y. Yang, I. Tobias, aud W.K. Olsou, J. Chem.
Phys. 98, 1673 (1993).

[ll] M.D. Barkley and B.H. Zimm, J. Chem. Phys. 70, 2991
(1979).

[12] M.T. Record et aL, Annu. Rev. Biochem. 50, 997 (1981).
[13] J. White, Am. J. Math. 91, 693 (1969).
[14] L.D. Landau aud E.M. Lifshitz, Theory of Elasticity, 2nd

ed. (Pergamou, Oxford, 1970).
[15] W.R. Bauer, Aun. Rev. Biophys. Bioeug. 7, 287 (197S).

[16] W.F. Pohl, J. Math. Mech. 17, 975 (196S).
[17] Under continuous deformatious of a closed space curve,

the value of the self-linking number can change discon-
tinuously by an integer amount.

[18] For molecular thickness a = 0, the axes of the self-
interacting shapes self-intersect. The writhe of these
shapes is de6ned to be the limiting value of W for c -+ 0.

[19] Note that EII()41) = Ee(—W), which follows from the
symmetry of the energy I' with respect to inversions R ~
—R. Under an inversion, the writhe transforms as W m

[20] This method has been introduced in the context of curva-
ture models for vesicle shapes, where a generalized Leg-
endre transformation is used to map the energies of sta-
tionary shapes within dHFerent curvature models; see L.
Miao, U. Seifert, M. Mortis, and H.G. Dobereiner, Phys.
Rev. E (to be published).

[21] The phase diagram does not depend on the sign of bX
since the energy E obeys E(6Z) = E(—AC). This fol-
lows &om the symmetry of EII [19] and Eq. (13).

[22] P.J. Hagermaun, Annu. Rev. Biophys. Chem. 17, 265
(1988).




