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Scaling behavior of some molecular shape descriptors of polymer chains and protein backbones
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Some global folding features of macromolecular chains are characterized using a family of molecular

shape descriptors. These descriptors are derived from the following basic notion: the probability of ob-

serving N "crossings" between bonds (i.e., double points or overcrossings) when a rigid placement of a po-

lymer backbone is projected onto two dimensions. The approach combines simple elements of geometry
and topology of linear polymers, and it quantifies the compactness and the complexity of chain entangle-

ments in three-space. The asymptotic behavior of the shape descriptors has been determined as a func-

tion of the chain length. It is found that the configurational averages of the most probable number of
overcrossings N, the mean number of overcrossings N, and the largest probability of overcrossings A *,
obey power laws in terms of the number of monomers. The critical exponents have been estimated nu-

merically for random-walk polymers with excluded-volume, as well as for a large number of experimen-

tal protein backbones. The results indicate that the scaling behavior is little a8'ected by the
configurational state of the polymers, since virtually the same exponents are obtained for both "swollen"

and compact" structures. The same scaling behavior is found in polymers with various excluded-

volume interactions and in a set of 197 proteins. The mean number of overcrossings in proteins is well

described by a simple law: N=0.045n', where n is the number of amino acid residues. The shape

descriptors for proteins show little dispersion away from the asymptotic regime, whereas a less uniform

behavior is found in the radius of gyration. The results complement the analyses based on other more fa-

miliar (geometrical) descriptors, and provide some insights into the large-scale folding structure of poly-

mer chains and proteins.

PACS number(s): 87.15.He, 82.20.Wt, 05.90.+m

I. INTRODUCTION

In this work, we study the asymptotic behavior of
large-scale folding features of macromolecular chains.
To describe these features, we use a family of molecular
shape descriptors that characterize the type and complex-
ity of "entanglements" in rigid polymer configurations.

Many properties of chain macromolecules depend on
their fold in three-space. For instance, the protein func-
tion is strongly dependent on the tertiary structure [1-3],
which is determined by the array of main-chain atoms in

space as well as by their connectivity. The simple array
of atoins in space is specified by the molecular geometry.
However, other properties of polymers depend not too
strongly on the details of the geometry, but rather on the
topology of the chain Agreat .deal of work has been de-
voted to the study of the dependence of both dynamic
and thermodynamic properties of polymers on their topo-
logical state (e.g., see Refs. [4-7] and others quoted
therein}. In this work, we follow an approach that com-
bines elements of both the geometry and topology of the
chain.

A rigid three-dimensional (3D} polymer configuration
can be somehow characterized in terms of a number of
functions derived from the molecular geometry. %'e shall
refer to these functions as molecular geometry descriptors,
since they do not depend on the chain connectivity. The
term molecular shape descrIptor will be reserved for func-
tions that also take into account the connectivity. Only
these latter descriptors can characterize the degree of

folding in a chain in addition to its compactness.
Some geometrical parameters can be used to study

large-scale (global) properties of polymers. Among them,
we can mention the end-to-end chain distance and the ra-
dius of gyration [6,8-10], the principal moments of iner-
tia (and measures of anisotropy derived from them, e.g.,
asphericity) [11-14],as well as the helical content in pro
teins [9,15]. Other geometrical descriptors, such as per-
sistence length [6,9,10],molecular kurtosis [16],and mea-
sures of structural deformation [17-20] serve to assess
the chain's fiexibility. These functions describe mostly
large-scale size and compactness of a backbone. Since we
are presently interested in the global properties of a
chain, descriptors dealing mostly with the local proper-
ties [21-28]will be excluded.

Topological methods provide an approach to describ-
ing the shape of a polymer that is valid for entire subsets
of configurations. Some limited aspects of the molecular
geometry and connectivity are used to characterize the
topological state of a macromolecule. The resulting
description is independent of properties such as polymer
size and compactness. In contrast, typical properties that
are important include: probability of knot formation
[5,7,29—35] and enumeration of knots [5,34—37]; writh-
ing, linking, and twisting numbers [7,38—43] loop-
threading [30,44,45); and knot invariants, including poly-
nomials and the minimum number of crossings
[34,35,46,47].

In this work, we preserve the information about each
actual polymer conformation. A deformed chain is re-
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garded as a new configuration with, possibly, a different
molecular shape. Consequently, purely topological tech-
niques are not convenient to us since they do not
differentiate between the conformations derived from one
another by homeomorphic deformations. Similarly,
purely geometrical approaches (e.g. , the ones based on
the radius of gyration or asphericity) exclude connectivi-
ty and therefore are not convenient to recognize folding
features common to two different conformations. The
method we use here describes the shape of a macro-
molecule by a hybrid technique that combines elements
of the chain's geometry and topology [48,49]. The molec-
ular geometry and connectivity are used to determine the
so-called "overcrossings" [49] or "double points" [34] in
the 2D projection of a rigid polymer placement. These
points are defined by pairs of bonds that cross over each
other when the backbone is viewed along a given direc-
tion in three-space. The analysis of all possible projections
provides a characterization of the type and complexity of
entanglements in the polymer chain. In other words, the
geometry and connectivity are used to convey aspects of
the polymer "topology" (i.e., its folding features) by
means of a global shape descriptor: the probability distri-
bution of overcrossings. The essential features of this
descriptor are very simple: the more entangled the back
bone, the more probable the observation of larger numbers
of overcrossings. The moments of the probability distribu
tion provide additional descriptors to characterize the
subtleties of the polymer fold. The method was originally
designed to study rigid protein motifs [48-50]; recently,
similar notions have been introduced to measure entan-
glement complexity in self-avoiding walks [51].

Overcrossing probabilities [52] have been used mostly
as tools to monitor dynamic and conformational flexibili-
ty in chain and cyclic molecules [52,53]. Overcrossing
descriptors appear to discriminate well between folding
features [50,52] and complement the information provid
ed by geometric properties. However, a more detailed
contrast between molecular shape descriptors and molec-
ular geometry descriptors is lacking. Moreover, very few
numerical and analytical properties of the shape descrip-
tors have been studied until now [50—53]. In this work
we begin by studying a key property: the asymptotic
behavior of overcrossing descriptors for long linear poly
mers. Scaling laws are known for some geometrical and
topological descriptors, such as the radius of gyration
[6,10,54,55], the anisotropies [14], and the minimum
number of crossings in macromolecular rings [34,35].
The main goal of the present study is to establish whether
or not similar scaling behaviors exist when a different
viewpoint is adopted to analyze 3D molecular shape. We
have thus studied numerically the asymptotic behavior of
configurationally averaged 3D shape descriptors for ran-
dom (linear) polymers with excluded-volume, as well as
for experimental a-carbon backbones of proteins.

The article is organized as follows. In Sec. II, we dis-
cuss briefly the notion of overcrossing probability distri-
bution, the molecular shape descriptors derived from it,
and their numerical computation. Section III deals with
the model of a polymer with excluded volume and the
determination of the configurational average of shape

descriptors. The results for the asymptotic behavior of
various descriptors of polymer shape are given in Sec. IV.
The analysis of protein backbones is presented in Sec. V,
and the scaling relations obtained are contrasted with
those of polymers. Section VI contains a summary of
conclusions.

II. CHARACTERIZATION OF THE GLOBAL
MOLECULAR SHAPE OF LINEAR POLYMERS

Consider a linear polymer (or protein backbone) given
as sequence of n —1 straight-line segments defined by n

identical "nodes" or "main chain atoms" (n ~ 3), where
each segment has the same length. Since the number of
atoms is proportional to the backbone contour length, we
shall loosely refer to n also as a "chain length. "

A polymer configuration is specified by the set of atom-
ic positions (r;, i =1,2, . . . , n) and the connectivity be-
tween the atoms. (For convenience, the geometric center
of the polymer chain is chosen as the origin. ) One can
characterize the configuration by means of molecular
geometry descriptors, such as the radius R of the smallest
sphere (centered at the geometrical center of the back-
bone) that encloses completely the polymer chain,

R =max(, }r, , r, =//r, //;

the instantaneous radius of gyration Ro [10],

(la)

(lb)

or other related quantities, such as moments of inertia or
asphericity [11,12,14]. These parameters mostly convey
features related to the size and anisotropy of a chain. In
addition, the radius of gyration and asphericity give some
measure of compactness in the spatial distribution of
atoms. However, in order to recognize 3D folding
features, geometry alone is not enough. In this work, we

describe some aspects of the polymer folding at a given

rigid conformation (the "topological shape, " in the sense

used in biochemistry) by taking into account the molecu-

lar geometry and the connectivity. The essentials
of the technique for shape characterization are described
elsewhere [48—50]; a brief review is given below to make
the work self-contained.

Let E denote a generic configuration of the backbone.
No physical property of the backbone changes if we
translate or rotate it rigidly, as long as no external fields,
solvation effects, or other molecules are included. Our
shape descriptors characterize folding features of the iso-
lated backbone by using all the nuclear conftgurations
that are translationally and rotationally equivalent to K.

A rigidly rotating polymer can appear in infinitely
many placements. A 2D projection can be associated with
each placement, as if an imaginary "viewer" would take a
snapshot of the configuration along a direction passing
through the geoxnetrical center of the backbone. One can
use properties of this 2D snapshot to characterize the
particular placement. By extension, by using all possible
2D projections we can characterize completely the poly-
mer configuration K [49].
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A geometrical criterion is used to quantify the topologi-
cal shape of the polymer configuration K. Wherever two
segments of the backbone "cross over" each other in
front of the viewer, the 2D projection will show an actual
crossing. We refer to this projected crossing as an over-
crossing. (In knot theory, sometimes these are referred to
as "double points. ") Let N be the number of overcross-
ings at this generic 2D projection. We now introduce the
probability Az(n } of observing a rigid placement with N
overcrossings in an n atom-polymer chain [26], or simply
the "overcrossing probability AN(n). " The set [ Az(n)I
defines a probability distribution for the discrete variable
N. We refer to the histogram representation of AN(n) vs
N as the overcrossing spectrum of the backbone [50]. For
a linear n-atom polymer (i.e., with no branching or self-
intersections}, this distribution satisfies

maxN

A~(n)=1, Vn ~3
N=O
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for a n=170 random chain
with excluded volume.

(N=59 for this view)

Overcrossing spectrum
of the n=170 chain.

(All placements are taken
into account)

where Az(n)=0 for N &maxN=(n —2)(n —3)/2. In
practice, Az(n} also vanishes for some N values below
maxN. The function [ AN(n) } is a global shape descrip
tor, and it conveys some essential aspects of the 3D shape
of the polymer. A configuration K which is "open" (not
compact) will mostly appear in placements with low num-
bers of overcrossings (i.e., it will have large Az(n) values
for small N). In contrast, compact and entangled
configurations will exhibit a large number ofovercrossings
[i.e., the largest Az(n) values appear for large N]. In
brief, the overcrossing probabilities can distinguish be-
tween configurations with different folding features.

The overcrossing spectra are computed numerically; an
algorithm for determining the overcrossings is provided
in Ref. [48], and a strategy to calculate the probabilities is
given in Ref. [50]. The distribution [ AN(n) I is evaluated
as follows: (a) a randomly chosen sample of m viewing
directions is defined over the smallest sphere enclosing
the backbone [Eq. (la)]; (b) each viewing direction gen-
erates one 2D projection for which a number of over-
crossings N is computed; (c) the probability AN(n) is
made equal to the number of views with N overcrossings
over the total number of random directions generated.
The randomization algorithm we use is that of Marsaglia
[56]. Accurate results for [ Az(n)I are obtained by
averaging over several computations with difFerent m
values.

Figure 1 illustrates these notions with one example.
Here, we have considered one generic configuration of a
random-walk linear polymer with excluded interaction
between beads. The number of beads is n =170, and the
distance between connected beads is constant. The top
diagram displays an arbitrary 3D placement of the chain.
The projection exhibits N =59 overcrossings. The lower
diagram shows the corresponding overcrossing spectrum
for this polymer configuration, once a large number of
random projections are used. The spectrum superim-
poses the results obtained with six randomizations, in-
cluding m =4000, 6000, 8000, 10000, 15000, and 20000
snapshots, respectively. The oscillations in the probabili-
ties [ Az(n)] illustrate the typical accuracy achieved in

FIG. 1. Illustration of the main concepts used in this work.
The top diagram shows the 2D projection of one possible 3D
placement of a generic random walk with n =170. The projec-
tion exhibits N =59 overcrossings (points where two segments
cross over each other). When the computation of N is repeated
for all possible placements, one can construct the probability
histogram of observing a given number of overcrossings (or
overcrossing spectrum) shown in the lower diagram. The results
obtained with various numbers of random placements are super-
imposed in the diagram. The oscillations illustrate the typical
accuracy with which the probabilities [ A„(n) ) are evaluated in

this work.

this work. Our present results for [ AN(n)] have an un-

certainty smaller than 0.003. This accuracy is enough to
carry out the analysis in next sections.

A number of molecular shape descriptors can be de-
rived from the probability distribution [ Az(n)]. For in-

stance, the most probable number of overcrossings N' of
a polymer configuration and its associated probability

A'=A~g, (n)=max(~)AN(n) . (3)

Similarly, one can analyze the moments of the distribu-
tion:

maxN
Ni'= g Ni'A~(n), p =1,2, . . . .

N=0
(4)

In this work, we will use A ', N', and N (the mean num-
ber of overcrossings}. A magnitude similar to N has also
been proposed recently to study entanglements in self-
avoiding random walks in lattices [51]. Note that the
descriptors N' and N refer to the actual number of over-
crossings in the rigid configuration. These descriptors are
not related to the minimum number of crossings" used
in the literature to study knotting in polymer rings
[34,35]; in this latter case, the descriptor is determined by
performing homeomorphic (nonrigid) transformations on
the configurations.
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We use the results in Fig. l to illustrate the accuracy in
the shape descriptors. Averaging over the six randomiza-
tions, the descriptors for this polymer configuration are
A *=0.0307+0.0007, N' =47+2, and X=59.3+0.4
(with n = 170). These results are accurate; the uncertain-
ties are larger for longer polymers.

Despite being computed from the geometrical informa-
tion (i.e., atomic positions), the probability distribution
Az(n) vs E does not depend explicitly on local features,
such as the distance between the segments that overcross.
These probabilities may not necessarily change much
when the molecule undergoes conformational rearrange-
ments. This property makes [Az(n)] a useful tool to
monitor the persistence of folding features over time, e.g.,
along molecular dynamics trajectories [52,53]. Similarly,
one can explore the relation between shape descriptors
and conformations by searching randomly over the
polymer's configurational space. This problem is ad-
dressed in the next section where we study the asymptot-
ic behavior of A * and N' in terms of the chain length n.

III. MODEL OF A POLYMER WITH
EXCLUDED-UOLUME INTERACTION
AND COMPUTATIONAL STRATEGY

A simple model molecular chain with excluded-volume
interaction is used in our analysis. For these chains, the
configurationally averaged shape descriptors are evalu-
ated as a function of an excluded-volume parameter.

The model consists of a rod-and-bead necklace poly-
mer chain [57—59]. These polymers are off-lattice, Pear-
son random walks with constant-length steps, meeting a
criterion of excluded volume about each bead [60]. At-
tached to each "nucleus, " a sphere ("bead" ) of radius r,„
is considered. The configurations permitted are those in

which no "nucleus" (a node in the walk) penetrates inside
the spheres about other nonconnected nodes. Similar
models are commonly used to compute excluded volumes

[60], simulate polymer swelling in various solvents [61],
study the behavior of rigid and flexible fibers in flow fields

[62], and evaluate the topological state of large polymer
rings [34,35]. Self-avoiding, off-lattice models describe
configurational transitions in polymers and proteins
better than the lattice inodels [8,10,61,63—69]. Neverthe-
less, both approaches are expected to give the same seal-

ing laws for configurationally averaged molecular proper-
ties [6,70].

In order to later compare these polymers with protein
backbones, we consider a constant internuclear ("inter-
bead" ) distance of / =3.8 A, which is the average dis-
tance between a-carbon atoms in proteins [1]. The bond
angles are chosen randomly, subject to the constraint set
by a given excluded-volume radius r,„. The generation of
polymer configurations is straightforward. After two
beads have been bonded at distance l, a third bead is at-
tached to the second at a distance I but otherwise an arbi-
trary location in space. (The random location in space is
performed by following the procedure in Ref. [56].)
Then, the distance between the third and first bead (not
linked) is checked; if this distance is smaller than r,„, the

configuration is rejected and the walk recommences from
scratch. If the conformation is accepted, a fourth bead is
linked to the third with the same criterion as before, and
the contacts with the nonbonded beads are checked again
to decide whether the partial walk is acceptable or not.
The procedure continues until a successful configuration
with n beads has been generated.

Note that r,„can take a maximum value of 2/ A.t this
limit value, the chain is forced to be linear. For smaller
values of r,„, the chain can adopt infinitely many
configurations, even though the range of configurations
with distinct folding is limited for large r,„. This range is
maximized only in the limit of r,„~0. The change in the
nature of the polymer configurations as a function of r,„
ean be compared to a "temperature" or "solvent" efFect

[61,70,71]. In a "poor" solvent, the chain is ideal and
adopts compact configurations (small r,„), whereas in a
"good" solvent, the chain appears in extended
configurations characteristic of swollen polymers (large
r,„) [72]. The swollen polymer is less flexible since its
configurational possibilities are restricted by the
excluded-volume condition. The transition between these
two configurational regimes can be described in terms of
the single dimensionless parameter y =r,„/21. (The
change of configurational regime is not a true phase tran-
sition in this model but a crossover phenomenon caused
by a growing repulsive interaction in the finite polymer
[6,70].)

Each configuration of the present polymer model has
the same "energy. " Therefore, configurational averages
are evaluated in the microcanonical ensemble, where
each configuration I(; has the same a priori probability.
The configurationally averaged largest probability of
overcrossing is thus given by

M

( A') = lim g A'(E, ),
~ M,.

(sa)

with similar expressions for the other shape descriptors.
In addition, configurational fluctuations can be represent-
ed by standard deviations,

—[( A+2) ( ge)2]1/2 (5b)

In practice, the number of configurations M is finite. In
actual calculations, we have added randomly generated
configurations E, until a desired stability in the values of
averages (e.g. , ( A ")) is achieved. The computations are
quite demanding, particularly for long polymers. The
evaluation of the configurational averages with an accu-
racy of three significant figures for a 500-bead chain with
no excluded volume requires approximately 80 h of CPU
on a VAX-4000 computer. The computational demand is
heavier for larger r,„, since many randomly generated
conformations are rejected for failing the criterion of ex-
cluded volume. The present analysis is limited to poly-
mers with n ~ 500. On the other hand, computations for
proteins (Sec. V) include the largest ones in the
Brookhaven Protein Data Bank (PDB) (ca. n -800).
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IV. RESULTS FOR THE ASYMPTOTIC BEHAVIOR
OF POLYMER SHAPE DESCRIPTORS

100
10 100

n, number of main chain atoms

1000

Configurational averages of shape descriptors have
been determined for polymers with the bead numbers
(number of "main-chain atoms"} n =4, 5, 10, 20, 50, 100,
150, 200, 300, 400, and 500. Several values of the radius
of excluded volume were studied, ranging from
r,„=0.001 A (practically, no excluded volume) to
r,„=7.0 A (very large excluded volume}. Since the dis-

tance between connected "atoms" is constrained to
1=3.8 A, the maximum value for r,„ is 21=7.6 A. In
practice, it is very time consuming to generate a large
number of configurations when r,„&7.0 A. Moreover,
the closer the parameter y=r, „/2I to unity, the longer
the chains needed to reach the asymptotic scaling
behavior.

As discussed in Sec. III, random configurations have
been added until achieving an accuracy of at least +0.002
in ( A '), which appear to be the shape descriptor most
sensitive to relative error. Since the actual calculation of
each A «(K, ) value has also an error of ca. 0.002, we esti-
mate that the results for ( A ') will not be useful for po-
lymers much larger than n =500 unless another compu-
tational algorithm is adopted. To achieve the present ac-
curacy, some 1000 configurations are needed for small
values of r,„; for r,„close to 7.0 A the number of
configuration needed may be as small as 200. Under
these conditions, the other averages are computed with
three significant figures (e.g., (N'), (1Tt), and (RG )'~ )

or 2 (e.g., (R ) and the standard deviations a z, o „and
cr „).

The reliability of the configurational averages can be
asserted from the molecular radii ((RG) and (R ) ) and
the fluctuation 0 z, whose asymptotic behaviors with the
polymer length are well known. The following power
laws are expected as a function of n for both radii and
standard deviations [6,10,54,55]:

(R ')'"=k'n", (R)=kn", (6)

with v, ~ v & v2, where the exponents v, =0.5 and v&=0. 6
are associated with the scaling behavior in a "poor" sol-
vent and a "good" solvent, respectively. For large poly-
mers with excluded volume, the asymptotic exponent pre-
dicted by field theory is v~v3=0. 588 [54]. Our
configurational sampling verifies these results with accu-
racy. The results for chains in the limit of a "poor" sol-
vent are shown in Fig. 2, corresponding to the value
r,„=0.001 A. A linear fitting with 50 & n & 500 produces
the results

ln(RG ) ~ =(0.500+0.001}Inn+(0.44%0.05),
C =0.99923,

ln(R ) =(0.52+0.01)inn+(0. 90+0.05),
C =0.99904,

lno& =(0.51+0.02)Inn+( —0.5+0.1), C =0.9949,

~0

[]

10--
W

p

D

I

E

0. 1

[]&R&

l ca'd~
I aR

FIG. 2. Log-log plot of the configurational averages of the
radius of gyration (R~ )'~, the radius of the smallest sphere
(centered at the geometrical center) enclosing the polymer (R ),
and the standard deviation (fluctuation) in the latter, 0&, as a
function of the number of main-chain atoms n, for the model
polymers with very small excluded volume (r,„=0.001 A). The
dashed lines, with slope 0.5, represent the exact "ideal"
behavior. The agreement ensures a reasonable configurational
sampling. (The difFerent errors bars represent the uncertainties
due to variable numbers of configurations M included. )

which agree with the exact exponent v, =0.5. (Standard
errors are given for slope and intercept; C stands for
correlation coefiicient. ) The exact behavior (slope =0.5)
is indicated in Fig. 2 with a dashed line. The results in
the regime of a polymer swollen in a "good" solvent are
given in Fig. 3, where the value r,„=7OA was. used.
Notice that the asymptotics requires longer chains to set
in. A linear fitting with 50~ n & 500 produces the results

ln(R& )'~ =(0.5710.01}inn+(0.44+0.05),

C =0.99923,

ln(R ) =(0.60+0.02)inn+(1. 64+0.09), (s=0.9981,

intra =(0.58+0.03)inn+(0. 3+0.2), C'=0.9935,

which compare well with the exact result 0.588. (The
latter is indicated with a dashed line in Fig. 3.} For inter-
mediate values of r,„, the scaling for the radius of gyra-
tion has an effective exponent between v& and vz, as it
corresponds to the crossover between the regimes dom-
inated by either compact or extended chain
configurations.

The results above indicate that the conformational
search is thorough enough and the chains long enough to
reach the scaling regime. As shown below, the asymptot-
ic behavior for the molecular shape descriptors is deter-
mined with an accuracy similar to that of the radius.

Using the same configurational sampling, we have
studied the average of the highest probability of over-
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1000—
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n, number of main chain atoms

1000

values, an estimate of the "critical" exponent in the scal-
ing of ( A ' ) can be given as

b = —1.00+0.03 for all r,„.

100
~ tj-0

0 I-

10

0. 1

~(}&R) '
g &R2)1/2

I aR

crossings, ( A ' ). Since ( A ) decreases with the chain
length, the relative errors are larger for the long poly-
mers. Therefore, the data have been analyzed allowing
for a possible residual error, that is,

FIG. 3. Log-log plot of the configurational averages of the
radius of gyration (RG )'~, the radius of the smallest sphere
(centered at the geometrical center) enclosing the polymer (R ),
and the standard deviation (fluctuation) in the latter, Oz, as a
function of the number of main-chain atoms n, for the model
polymers with large excluded volume (r,„=7.0 A). The dashed
lines, with slope 0.588, represent the expected behavior accord-
ing to field theory. The agreement ensures a reasonable
configurational sampling.

Figures 4—6 illustrate this reciprocal relation between the
shape descriptor and the chain length. (The error bars
indicated in these and the following figures represent the
uncertainty in the averaged shape descriptor due to the
use of various numbers m of randomized projections and
configurations M.} Figure 4 shows the correlation in
( A'), and its configuration fiuctuation 0 „„asa func-

tion of 1/n for small excluded volume. Figure 5 displays
the same behavior in the limit of very large excluded
volume. Finally, Fig. 6 summarizes the results for vari-
ous r,„values. This latter figure illustrates the apparent
universality of the exponent b, whereas the coefficient a
shows a strong dependence on the excluded-volume in-
teraction. The results indicate that the information on
the type of dominant polymer configurations is retained
in a, which appears to depend only on the parameter y,
for sufficiently long chains [a =a (y)]. Small a (y) values
are characteristic of polymers in compact configurations
(y =0},whereas larger values of a (y) correspond to poly-
mers in swollen configurations (y = 1).

The occurrence of a similar power-law dependence was
studied for the configurationally averaged most problem
number of overcrossings: (N' ) -an~. Figure 7 gives a
log-log plot for this shape descriptor as a function of n, in
the case of small excluded volume. The results are an ex-
ample of the behavior encountered for other r,„values.
The average (N') presents a well-defined scaling. The
standard deviation o, reaches the asymptotic regime

for polymers with n & 500.
The numerical fitting indicates also little dependence of

the "critical" exponent P over the r,„value. The results
for small and large excluded volume are

( A " ) an +c-onst, (7) ln(N' ) =(1.3610.02)inn +( —2.39%0.08),
and the correlation maximized over the exponent b. The
results for n & 50 are C'=0. 999 781 for r,„=0.001 A

b = —0.99+0.02, a =3.5&0.3, 8=0.999919

for r,„=0,001 A

b = —1.01+0.02, a =25+1, C=0.999959

0.05--

0.04--

for r,„=7.0 A

with a small residual, const-0. 003. A similar behavior
is observed for other excluded-volume values. As well,
despite their intrinsic larger error, the results for the fluc-
tuations in long polymers agree with these estimates
(n ) 150).

incr „~= ( —0.98+0.06)inn + (0.0+0.4), C =0.9958

for r,„=0.001 A,

0.03--

0.01--

0. 005 0.01

1/n

0.015 0.02

lno „~=( —1.10%0.06}inn +(2.1+0.4), C =0.9953

for r,„=7.0 A

Finally, bringing together the numerical results for all r,„

FIG. 4. Configurational averages of the largest probability of
overcrossings ( A ) and its standard deviation o „~ as a func-

tion of the reciprocal number of monomers 1/n for r,„=0.001
A.
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FIG. 5. Configurational averages of the largest probability of
overcrossings ( A ) and its standard deviation o „~ as a func-

0
tion of the reciprocal number of monomers 1/n for r,„=7.0 A.

1 (N') =(1.4+0. 1)1 +( —5.5+0.6)

8=0.9970 for r,„=7.0 A,
for n & 100. We have also analyzed the data allowing a
residual, as done in Eq. (7):

(N' ) —an ~+const,

and maximizing the correlation over the exponent p. The
results obtained are

P=1.34%0.02, a=0. 10+0.01, C =0.99989

0.01

FIG. 7. Configurational averages of the most probable num-

ber of overcrossings (N ) and its standard deviation cr ~ as a
0

function of the number of monomers n for r,„=0.001 A (log-log
plot). Similar behaviors are found for all other values of r,„.

An "effective" exponent p,a=1.3320.03 describes (nu-

merically} well the behavior of the shape descriptor
(N~ ) for medium size polymers, and it can be used con-
veniently to produce approximate linear plots. However,
averaging over the various fittings, a more conservative
estimate to the actual value of p would appear to be

for r,„=0.001 A, P=1.4+0. 1 for all r,„. (10)

P= 1.31&0.02, a =0.00720.001, C'=0.99925

for r,„=7.0 A .
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&A*& 0.1-
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tj.10-- A

0.0

0.015 0.02

1/n

FIG. 6. Configurational averages of the largest probability of
overcrossings (A ) as a function of the reciprocal number of
monomers 1/n or polymers with varying excluded volumes.
The r,„values are indicated next to the straight lines. The
slopes depend on the excluded-volume interaction.

The same scaling behavior is found for the average of the
mean number of overcrossings, (N). (This result im-
proves on a rough estimate of P given in Ref. [53]. In
Ref. [51], a study of a function similar to (N) shows
rigorously that p cannot be smaller than 1.)

Within the accuracy of the present calc ilations, any
dependence of this exponent upon the excluded-volume
radius r,„cannot be discerned. This is illustrated in Fig.
8, which shows the results for various r,„values in a plot
with the "efFective" exponent p,&=1.33. Whereas the
same scaling is found in all cases, the coefficient a de-
pends strongly on the excluded volume. As found in the
analysis of ( A *),the coefficient a=a(y) contains all the
information on the dominant polymer configurations.
Large a(y) values correspond to compact polymers,
whereas small values are characteristic of polymers in
mostly swollen configurations [i.e., an opposite behavior
to a (y}].

The present results are not enough to estimate an
analytical form for the functions a (y) and a(y). Howev-
er, they must satisfy some known limit properties. For
very large excluded volume (y ~1), the molecular chains
adopt only perfectly linear configurations, and therefore
show no overcrossings (i.e., (A )~1 and (N') —+0}.
Consequently, in the asymptotic limit, we find
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That is, the coefficient a(y) for ( A*) must be infinitely
large for infinitely long and stretched polymers, whereas
the coefficient for (N' ) (or (N ) ) must be zero. The re-
sults indicate as well that a (y) is a monotonously increas-
ing function of y, with no inflection points. [A very
rough approximation to the present numerical value is
a(y)-4. 1/(I —y).] In contrast, a(y) appears to be a
monotonically decreasing function of y, exhibiting one
inflection point. For large excluded volume, a(y} de-
creases almost linearly with y. [With the data in this
work, the inflection point is not far from
y -0.26 (r,„-2.0 A).]

In summary, it is found that the molecular shape
descriptors of the polymer model can be written asymp-
totically in terms of two multiplying factors: on the one
hand, one function that depends on the excluded volume,
that is, on the type of dominant configurations in the
chain (swollen or compact); on the other hand, an ex-
ponential of the chain length, where the exponent seems
independent of the excluded volume. %e shall see in the
next section that results for proteins suggest also that
these exponents depend little on the "swollen" or "col-
lapsed*' state of the polymer.

V. SCALING BEHAVIOR OF SHAPE DKSCRIPTORS
FOR PROTEIN BACKBONES

The asymptotic behavior of the shape descriptors has
also been studied for a set of 197 protein backbones. The

FIG. 8. Linearized plot of the con6gurational averages of the
most probable number of overcrossings (N ) as a function of
the number of monomers n for various values of excluded
volume. [The effective exponent P,~= l.33 is used on1y for illus-

tration purposes since it provides the optimum regression of the
form (N ) =ans+const for not too large values of n. The ac-
tual scaling exponent is probably closer to P=1.4 (see text).
The r,„values are indicated next to the straight lines. ]

overcrossing probabilities [ Az(n)] are computed using
the same approach employed for the polymers. For each
protein, only one or a handful of experimental (x-ray,
NMR) configurations are available, and therefore we
drop the notation of configuration average in the descrip-
tors. For single configurations, the most convenient
property is N, since it is less sensitive than A * and N' to
computational error due to the randomization of rigid
backbone projections.

The protein backbones are given by the sequence of a-
carbons associated with the amino acid residues. The
backbone structures have been extracted from the
Brookhaven PDB [73,74] and selected in an unbiased
manner searching for both structural variety and possible
chain lengths. To our knowledge, our present survey
contains the most varied set of proteins on which an
analysis of molecular shape descriptors has been carried
out to date. Previous works in the literature (e.g., Refs.
[75,76]} have included up to 90 proteins, most of which
are globular and contain no more than 300 amino acid
residues (n ~300). In contrast, our set of proteins con-
tains both globular and irregular proteins, together with
other exhibiting familiar folding patterns [1,77]. The
number of a-carbons for each protein, n, has been taken
as the number of backbone atoms in the actual structures
deposited in the PDB, and not as the ideal number of resi-
dues in the complete primary sequence. The largest pro-
teins in our set correspond to two chains of glycogen
phosphorylase, 1GPA (n =828) and 1GPB (n =823),
which are the longest backbones included in the PDB
[78]. The smallest protein in our analysis is deamino-
oxytocin (1XY1, n =8), which has N'=0, as it is the
typical case in isolated a helices and P sheets [48,49].
The smallest structure with N') 0 is a chain of insulin
(9INS, n =30). The shape descriptors have been evalu-
ated upon averaging six di8'erent computations of the
overcrossing spectrum of each protein, corresponding to
4000, 6000, 8000, 10000, 1S 000, and 20000 random pro-
jections. DifFerent random seeds were used in each case.
The results for the shape descriptors are accurate up to
three significant figures. The present survey is thorough
enough to draw clear conclusions on their scaling
behavior.

Dewey [76] found for a set of 43 (mostly globular) pro-
teins that the radius of gyration scaled as RG-n, with
v =0.3S+0.03, with "slight deviations" from this
behavior. This result was in support of the "collapsed"
polymer model, which requires v= —,

' below the theta
point [6,79]. We have reanalyzed this behavior using the
present set of proteins, and the results are shown in Fig.
9. The dispersion from a linear behavior is large and the
values for the exponent v result from a poor correlation,

~=0.38+0.OS, C =0.819

for n & 55 (166 proteins),

v=0. 37+0.03, C =0.921

for n & 150 (107 proteins),

~here the statistical 95% confidence intervals are given.
This outcome adds a note of caution with respect to
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course excluded from the diagram on the left of Fig. 10.}
Both descriptors exhibit the same behavior, although N
has a smaller deviation. A linear fit gives the results

lnN =(1.37+0.05)inn +(—2.9+0.2),
C =0.981, n &55,

lnN = (1.42+0.03)inn + ( —3.2+0.1),
C =0.9933, n & 150,

0. 6
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FIG. 9. Log»-log&0 plot of the radius of gyration of a set of
197 proteins as a function of the number of amino acid residues

n. The set has been selected without structural bias; the pro-

teins included represent a random sampling of all the possible

folding features know to date. (The dashed line has slope —,', and

it represents the behavior expected in the "collapsed polymer"
model. Clearly, the power law n' is satisfied only by the
smallest proteins associated with a given n value. )

drawing universal conclusions about the state, collapsed
or extended, of proteins as polymers. Our results show,
though, that the "collapsed" state probably characterizes
the proteins exhibiting the smallest size compatible with
a given number of residues n. As Fig. 9 shows, the
"lower bounds" for RG follow a —,'-power law very closely

(dashed line), that is,

min(RG )„-n ' (12)

where (RG )„ indicate a value at constant n. For proteins
with a larger radius of gyration (for a given n), no con-
clusion can be deduced since the dispersion is quite large.

In contrast, the shape descriptors N' and N show

smaller deviations, and better defined asymptotic
behaviors can be deduced within the same set of proteins.
Figure 10 displays the results for N' and N vs n, in a
log-log plot. (The short proteins with N'=0 are of

3
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FICx. 10. Log&0-log&0 plot of the shape descriptors N (most
probable number of overcrossings) and N (mean number of
overcrossings) as a function of the number of amino arid resi-
dues (n) in a survey of 197 protein backbones. The molecular
backbones have been extracted from the Brookhaven PDB, and
cover proteins with very different folding features. The two
descriptors exhibit the same power-law behavior in terms of n.

with 95% confidence levels. The shape descriptor N'
produces a comparable critical exponent P=1.41+0.08
(n &55). From the results above, an empirical law for
the global shape of all proteins is derived,

N =0.045n ' (13)

with 95% confidence levels, which corresponds to the ap-
proximate behavior A ' =5n '. As found for the
deseriptor N, the asymptotic form of shape descriptor
3 ' and the exponent b obtained for proteins cannot be
distinguished from the results in Sec. IV for the polymer
model [cf. Eq. (8}].

Figure 11 makes explicit the comparison between poly-
mers and proteins by superimposing the results for N' in
proteins with the linearized diagram for the same
descriptor in polymers (cf. Fig. 8 using the exponent
P,ir=1.33). Note that the polymer model was given a
distance between beads of I =3.8 A and therefore it can
properly be contrasted with protein backbones. The
figure illustrates that protein backbones follow the same
behavior as the polymers, and that their shape descrip-
tors are neatly bound between the values corresponding
to r, =1.0 and 3.0 A. For proteins, the numerical re-
sults give a=0.045 and a=5, which are close to the

0
values corresponding to r,„-2.0 A in the polymer mod-
el. As discussed before, this r,„value corresponded to
random-walk polymer con6gurations that were in the

where each significant Sgure is deenMd accurate. The
same behavior holds approximately for N'. Equation
(13) is valid even for small proteins; note that it gives
N &1 for n &9, which is a reasonable approximation of
the result for real peptide chains [50].

The numerical fittings above give a conservative esti-
mate P=1.4+0. 1 for proteins, in agreement with the ex-

ponent found in the case of linear polymers with various

r,„v al ues [cf. Eq. (10)]. Our results for the radius of
gyration (Fig. 9) indicate that the considered protein
backbones appear in many configurational states and not
only as "collapsed" structures. Consequently, the fact
that a clear scaling behavior is found for N' and N,
whereas this is not the case for RG, suggests that the ex-

ponent P depends little on the swollen or collapsed nature
of the protein configuration. That is, all the results for
shape descriptors of proteins appear to be consistent with
the observations for linear polymers.

The descriptor A' shows a larger dispersion, but its
scaling behavior is still better defined than that of RG. A
linear fitting with all proteins gives

ln A ' = (
—0.98+0.04)inn +(1.6+0.3), C =0.961,
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60Q— ic) form of the configurationally averaged shape descrip-
tors, i.e.,

2.0 (D ) -d(y)nx, n »1, (14)

~ OQ t

&N*& 300
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n1.33

FIG. 11. Superimposed results for the shape descriptor N
as a function of chain length for protein backbones and poly-
mers with excluded volume (with the same distance between
connected atoms). The straight lines represent the results for
the configurationally averaged descriptor (N ) of linear poly-
mers (cf. Fig. 8). The values next to the straight lines indicate
the radius r,„ for the excluded volume. Each square represents
the X value for one protein backbone. The efFective exponent

P,a= 1.33 is used only for illustration purposes, since it provides
an approximately linearized plot for all the polymers.

transition regime between compact and swollen [i.e., near
the infection point in the function a(y)]. This coin-
cidence suggests that the set of proteins is found, on the
average, on a similar "intermediate" regime. This is
again consistent with the fact, illustrated in Fig. 8, that
the radius of gyration shows a scattering of values away
from the regime corresponding to only "collapsed" back-
bones.

Two additional comments can be added. First, it is ob-
served in Fig. 11 that the shape descriptors for proteins
come close to those of "swollen" polymers (e.g., those
with r,„&3.0 A) only for quite small values of n This re-.
sult is consistent with the fact that very open conforma-
tions are found only in rather small objects, such as a hel-
ices, pure P sheets, and irregular proteins. Finally, it can
be noted that the radius r,„ that would fit the average
protein behavior more closely is not far from the accept-
ed van der Waals radius of aliphatic carbon (ca. 1.75 A
[80]). It is unclear at this moment whether or not this
latter coincidence is of any significance.

VI. CONCLUSIONS

In this work, we have studied the 3D molecular shape
description of a simple random-walk model of polymer
chains specified by two parameters, namely, the chain
length n and the dimensionless excluded-volume radius

y =r,„/21. The results obtained suggest that these two
parameters appear separated in the analytical (asymptot-

where d is a function that depends on the shape descrip-
tor D (e.g., D = A, N', or N) and, through y, on the
dominant configurational state of the polymer. In con-
trast, the exponent g appears to depend little (if at all} on
y. With respect to this latter exponent, Eqs. (8), (10), and
(13) represent the main numerical results, where
g= b=——1.00 for D=—A* and g—=P=1.4 for D=N'
and N are obtained. The uncertainty in these exponents
gives an upper bound to their possible dependence on the
excluded volume: it should be below 5%, on average.
This can be contrasted with the scaling behavior of the
radius of gyration (or (R )), which exhibits a ca. 20%
variation in the critical exponents as a function of y. Re-
garding the function d (y), its qualitative dependence
with the shape of the dominant configurations [Eqs. (11)]
is probably universal. That is, for a given polymer
length, a should decrease with the complexity of the
backbone's entanglements, whereas a should increase.
The actual form of the functions will, though, depend on
the details of the potential-energy function describing the
molecular chain.

The asymptotic behavior of the same shape descriptors
has also been surveyed in a large set of protein back-
bones, exhibiting very diverse folding features. The re-
sults obtained indicate the following interrelated facts:
(1) A single scaling behavior is found for N, N', and A '
throughout the whole set of proteins, whereas Rz does
not follow a clear single law; (2) The exponents character-
izing the scaling behavior of shape descriptors appear not
to depend on the swollen or collapsed nature of the pro-
tein configuration; (3) The shape descriptors scale with
the number of amino acid residues (n} in the same
manner as found for the polymers.

We believe that the finding of well-defined correlations
between global descriptors of backbone entanglements
(such as A ', N', and N} and the protein's size is a valu-
able piece of information. From a conceptual point of
view, the analysis provides an insight into describing the
3D structure of protein folds. Such viewpoints are need-
ed as a larger number of structures are deposited in data
banks [81]. The shape descriptors convey information on
aspects of the "topology" of the fold not readily available
when using geometrical descriptors such as RG, and
therefore can serve as a complementary tool. From the
practical side, relations such as Eq. (13) (and a similar one
for the standard deviation in the descriptor) can be used
to assess the likelihood of some conformations in three-
space for a given sequence of amino acid residues. This is
a central issue in molecular modeling and protein en-

gineering, where one tries to rationally determine the 3D
structure of a protein from its primary sequence (e.g.,
Refs. [2,67,82,83]}. With the present criterion, a "trial"
folding pattern with an N value very far from 0.045n '
could, in the first instance, be discarded. In order to ex-
plore these possibilities, a more detailed analysis of all
proteins available in current data banks (close to 500 in
full release) is presently under way.
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