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Birefringence by a smoothly inhomogeneous locally isotroyic medium
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Propagation of an electromagnetic wave in a layered locally isotropic medium is considered. An
effective birefringence n l

n—
~
—(A, /a) for the

(~
and 1 eigenpolarizations appears, and the corresponding

phase difference y~~
—y~-(A, /a} is calculated in this paper. An alternative method of calculation of the

higher {-A,/a} WKB corrections for the one-dimensional Schrodinger problem is developed as a by-

product of the work.

PACS number(s): 42.15.—i

I. HVmODUcmrON

Nh%(r)+ n (r)4=0,
C2

(2)

where r0 is the frequency of monochromatic wave

g(r, t)=%'(r)exp( icot), an—d c is the speed of light in
vacuum. We have also introduced in (2) the refractive in-

dex of our transparent medium:

n(r)=& e(r)p(r) . (3)

Asymptotic solution of a one-dimensional problem for
Eq. (2) is given by the WKB method, or so-called quasic-
lassical approxitnation [5—7]. The details of WKB
method for multidimensional problems are discussed in
Refs. [8-10].

The most naive generalization of the Helmholtz equa-
tion (2) for the account of polarization degrees of freedom
makes use of the local isotropy of the mediutn (1} and
consists in a suggestion to make propagation and polar-
ization independent. Such an approach has some appli-
cability for the limiting case of an optical beam with very
small (((1 rad) angular deviations of the propagation
direction from some fixed axis, i.e., for the paraxial ap-
proximation. However, that approach fails completely if
the ray's angular deviation is more than or about 1 rad.
In that case "conservation" of a polarization in "abso-
lute" coordinate frame would contradict the transverse
nature of electromagnetic waves.

The solution to that problem in the first nonvanishing
approximation was given in the works by Bortolotti [11]
in 1926, by Rytov [26] in 1938, by Vladimirsky [12] in
1941, by Berry [13]in 1984, and apparently in some oth-

Propagation of light in a smoothly inhomogeneous
medium is a subject of geometric optics [1—4]. We will

limit ourselves by the case of locally isotropic medium,
where the tensors s;k(r) and y,;k(r) of dielectric and mag-

netic susceptibilities are reduced to scalars:

e'k(r) (e}r5'k I k(r) I (r')5ik

The most crude approximation is to neglect completely
the polarization of a wave and to discuss the "corre-
sponding" Helmholtz or Schrodinger-type equation

ers, see also [1,3,4], a recent review of Berry's phase [14],
and experimental observations by Chiao and co-workers
[15]. The equation for the ray in that approximation is
the same as for a scalar wave:

ds
l

=Vlnn —s(s Vlnn) . (4)

de ds
dl dl

(5)

so that (e s):—0 at any 1. Thus the inHuence of the trajec-
tory s(l) on the polarization e is governed by Eq. (5). For
the sake of estimation of the order of magnitude it may
be considered as resulting from a correction to the
effective refractive index,

de e co c
5n etre& 5n ~s.

df a c " ' " ~a 2&Q
(6)

Here a is the spatial scale of inhomogeneity of the refrac-
tive index and of the ray (if 5n -n ).

A reverse effect of the influence of (circular) polariza-
tion on the trajectory was recently calculated [16-18]
and observed experimentally [19,20), see also [21]. It was
called "optical Magnus effect" or "optical Ping-Pong
effect" and consists in a transverse shift of the ray in the
process of refraction:

dr c=s+ o [sX V inn ]=—s+ s XccT ds
con con

where cr =+1 or —1 for right and left circular polariza-
tion, respectively. Thus both effects (5) and (7) appear as
resulting from the corrections 5n,s (A/a) for-smo, oth
variations of refractive index n (r).

Here s is approximately the unit tangent vector and I is
the distance along the trajectory r=r(l}. The polariza-
tion unit vector e is assumed to be subjected to a parallel
transport [11-13,26]. The idea of those works may be
expressed in the following terms: let us try not to change
the polarization vector e, since the medium is locally iso-
tropic, the only changes that we must introduce are those
which keep the polarization transverse to the new propa-
gation direction

T
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Two features of those corrections should be mentioned.
The first feature is the conservation of the circularity
0 = is [eXe'] along the trajectory. In particular, the ini-
tial linear polarization (e=e') is kept linear during the
propagation. That means that the Rytov-Vladimirsky-
Berry-Chiao rotation of polarization may be considered
as "geometric optical activity, " i.e., as a circular
birefringence, but without "usual" birefringence.

The second important feature is the purely geometric
origin of those corrections. Namely, those effects (in the
range of the validity of corresponding equations} are
determined by the trajectory r(l) and hence by the refrac-
tive index profile n(r) only, without being connected to
e(r) or }u(r) separately. As a matter of fact, p(r) =1 with
a very high precision in optics, but for radio waves both
ii(r) and s(r) may be inhomogeneous.

To illustrate the point of the present paper, let us con-
sider two optical devices with rather similar geometry of
propagating rays. The first one is the Fresnel rhomb, Fig.
1(a). This device is usually adjusted to produce the m. /4
phase shift between e~~ and ei polarization in each (of two)
step of total internal reflection. As a result the input
linear polarization tilted +45' to the ray's plane is
transformed into the right circular output polarization,
and the —45' input polarization gives the output circle.

The second one is the piece of a planar multimode
gradient-index waveguide cut off as a Fresnel rhomb, Fig.
1(b). Suppose that the waveguide is polarizationally neu-
tral (made of a locally isotropic material) and really mul-
timode, a &)A, , where a is the core size and the ray's cur-
vature radius scale. Then we know both from theory and
from the experiment that the arbitrary input linear polar-
ization is transferred into the linear output one, i.e., that
such a gradient Fresnel rhomb possesses no birefringence.

The work of the Fresnel rhomb is connected with a

p(r)=v'p(r )/s(r ) (8)

along with the spatial profile of refractive index n(r)
from (2).

Another example shows that, unlike the circular
birefringence -(1,/a) in (5) and (7), linear birefringence
-(1,/a) is not a geometrical effect caused by the ray's
behavior only. Let us remember that Chiao and co-
workers used a curved monomode 5ber instead of curved
ray to measure Berry's phase [15] (or the geometrical ro-
tation of the polarization). If one tried to measure linear
birefringence in a smoothly bent fiber instead of our gra-
dient Fresnel rhomb the result would be quite different
[22].

II. BASIC EQUATIONS

very sharp change of dielectric susceptibility e(r} at the
glass-surface —air interface. That sharpness means that
a «A, in the case of the Fresnel rhomb, so that the ex-
pansion into A, /a series is not valid anymore. Besides
that, the hypothetical Fresnel rhomb made of a material
with s(r }=1,but p(r) & 1, would give the opposite sign of
output circularity, since the +45 linear polarization of
the electric vector of the incident wave corresponds just
to —45' linear polarization of the magnetic vector of that
wave. Speaking very crudely, the aim of the present pa-
per is to describe gradual transition from the device at
Fig. 1(b) to that at Fig. 1(a). In other words, we want to
describe the linear birefringence which appears as a
correction 5n

~i

Sn—i- ()/hatt ) or as a phase shift

ip~~
—t'ai-(A, /a). The above-mentioned example of a hy-

pothetical "magnetic" Fresnel rhomb leads us to the con-
clusion that here we must also take into account the spa-
tial variation of the so-called wave resistance

Taking monochronatic tine dependence as
exp( idiot), we r—educe Maxwell equations for the com-
plex vector amplitudes of electric (E) and magnetic (H)
fields to the system

. CO .NrotE=i —pH, rotH= —i—cE .
c c

The well-known conditions div(sE) =div(pH) =0 are not
independent equations, but follow from (9). We will con-
sider the case of a layered medium, i.e., the one where all
the parameters [s,p, n =(sp)', p=(p/s)'~ ] depend on
one coordinate only, and it will be denoted by z. For
such a medium the solution of the system (9) may be tak-
en in the form exp(ik x +ik y )f (z). By a proper choice
of orientation in the (x,y) plane the value of k may be
reduced to zero, and it will be assumed so. Then the
value of k„ is convenient to write as k„=(co/c)p, where

p=sina„, may be interpreted as the sinus of the in-

cidence angle in the air. Thus we may look for a solution

FIG. 1. (a) Birefringence in a Fresnel rhomb. (b) A gradient
analog of the Fresnel rhomb with very small ( —k/a )

birefringence.

(10}

and for the amplitudes E(z), H(z} -.!eget from (9)

E(r)=E(z)exp i Px, H—(r}=H(z)exp i Px-
c C
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Ey .N= r—pH„,
dz c

dH
~x ~

dz c

Ex .CO .Q)i—P—E,=i pH,
dz c ' c

PE»=pH„PH = sE—, .

Hx . cg) .Q7
i—1—3H, = i —e—E

dz c ' c

(12)

(13)

It is convenient to exclude H, and E, and to get two pairs
of first-order coupled equations. One of them governs E
polarization:

&y = —l—PH„,
dz c

dHx . CO 1 zi ——(n——P )E» (14)
dz c p

and the other deals with Hy polarization,

dHy co dEx co 1=i eE„—, =i (n——P)H—
dz c "' dz c s

(15)

Sections III—V and VII of the present paper are devot-
ed to the approximate solutions of (14) and (15) for the
case A, «a, where a —=5z is the characteristic size of the
smooth inhomogeneity of the parameters n(z) and p(z).

IG. NO TURNING POINT CASE:
SLOWLY VARYING ENVELOPE APPROXIMATION

Suppose that the refractive index n (z) and the in-
cidence angle a„,=arcsinP are chosen in such a way that
the function n (z) —P is always positive and does not
take very small values. Besides, we assume that
n(z)~n, at z —+ —oo and n(z)~nz at z~+ oo. Then
the trajectory of a ray propagating from z =—oo to
z =+ oo looks like the one shown in Fig. 2, and there is
no turning point.

Application of classical Snell law would give for the lo-
cal "refraction angle" a(z)

Xexp i— n z' — z'
C

(17)

E„(z)= A„(z)v'p(z)y(z}

Xexp i— n z' — z'
c

for which we can get the second-order equations. Direct
substitution gives an equation which originally contains
28 terms. However, after long work on cancellation and
reduction of similar terms we were able to get

Ay dAy . co ic d inn
2

+ 2l—ng 1+
dz c 2con y

+ A„(z)Dy(z)=0, (19)

.co, 5ic dy ic d inn+ 2i ny 1+—
dz dz c 2cony3 dz cony2 dz

We will use (16) as a definition to be used in the new form
of amplitude representation. In the same classical ap-
proach the Poynting vector S= ( [EXH' ]
+[E XH])c/16m must have constant z component.
Since s(E) =p(H( in monodirectional wave, one gets
S,=(c/8m ) ~E~ (e/i4}'~ cosa=const. Besides that, with
the same precision ~E„(= ~E~coscr(z) for E„polarization
and )Ey [

= (E) for E» polarization.
In the same approximation, z component of the local

wave vector k, = ( co/ c) n( z) co scz( z) =(co/c)+n (z) P—,
and z de endence of the phase is given by
exp[i(co/c) 'dz'+n 2(z') p—]

All that suggests the idea to introduce the couple of
new unknown variables Ay{z)(z) and A„(z)(z) as the
slowly varying amplitudes:

E„(z)= A»(z)i/p(z)/y(z)

sina(z) =
n (z)

'

cosa(z) =y(z) = 1—
n (z)

1/2 (16)
Dy(z) = d inn

dz

'2
+ A„(z)D„(z)=0,

5—4y —y 1 d lnp
4y4 4 dz

(20)

D„(z)=

1 d inn d lnp 1 d lnp
2 dz dz 2 dzz

'2 t'

d inn —7+8y +9y 1 d lnp
dz 4~4 4 dz

(21)

y —2 d inn d lnp 1 1 —y2 d2lnn

y dz dz 2 y2 dz2

{22)

FIG. 2. Propagation in a 1ayered medium without turning
point.

We see that the order of magnitude of D„and D„ is abouta, where a is the spatial scale of inhomogeneity. The
assumption of slow dependence of the amplitudes A„(z)
and Ay(z) on coordinate z[dA /dz-(A, /a ) A] allows us
to neglect d A/dz in (19), (20) and to take the terms
~ d A„/dz, dA„/dz only with the main part 2i

cony�

/c of
the coefficient. As a result we get the first-order equa-
tions
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dA dA
Zi —ny =D» A», 2i —ny =D„A„. (23)

These equations have evident solutions; for example, one
gets for A (z)

D»(z')
A„(z)= A (

—~ )exp i— J2' —~ n(z')y(z')

(24)

We are interested in this paper in finding the effective
birefringence, i.e., the phase difference between the x- and
y-polarized waves. Some of the contributions to q, and

are canceled, and finally

FIG. 3. Propagation in a layered medium with turning point.

(25)
z(x)=zo —(z —xo)

2n(z )
(28)

where

C

2con

l —y d inn

y' dz

1 d lnp

4y dz

(29)

Unfortunately, near that point the integral of
21 (q —y„)/dz becomes divergent:

Equation (25) constitutes the main result of the present
section. It is worth noting that the phase difference accu-
mulated at the interval from z ~—~ (where
n =ni =const, p=pi=const), to z~+ ~ (where
n =n2=const, p=p2=const) is not influenced by the
term dgldz with the full derivative.

It is evident that y„—p:—0, if P=O (normal in-

cidence), since in that case we have complete symmetry
of rotation around the z axis, i.e., x and y directions are
equivalent. Equation (25) shows also that the accumulat-
ed part of birefringence vanishes, if the wave resistance is
homogeneous, p=const. It was more or less evident be-
forehand, since the accumulated shift y„=y between E
and E is essentially the phase difference between H~ and
E; however, for p=const there is complete symmetry
relative to a substitution 8—+H, H~ —E. What is less
evident is that in the order 5p-(A, /a) the accumulated
phase difference p„—p is zero for a medium with vari-
able p(z), but with n =const. A very important case
p=—1, s=s(z), p(z)=n '(z) deserves special discussion.
In that case d Inp/dz = —d inn /dz, and the accumulated
phase difference y(E ) y(E„) turns —out to be negative.

2cP g d lnp 'o dzfx=
con (2ng) d»0 'i (zo —z)

—QO

(30)

We would like to make an even stronger statement. If
one would try to calculate y„and y~ separately from the
slowly varying amplitude first-order equations (23), the
corresponding integrals would diverge even stronger —as

J (zo —z) i dz. It means that one cannot neglect

second-order derivatives in (19) and (20) in the vicinity of
the TIR point. This circumstance is well known in optics
and in quantum mechanics. Interference of "incident"
and "totally rejected" waves produces a characteristic
picture which is depicted by the Airy function, known
from many papers and textbooks on quantum mechanics.

We will not consider the very special case when either
s(z*)=0 or p(z')=0 at some point z'. The singularity
which occurs in such a case is discussed in detail in Ref.
[3]. Then the only place which is singular from the point
of view of geometric optics is zo, the root of Eq. (27). In
the vicinity of that point one can use approximation

IV. GENERAL CASE WITH A TURNING POINT
n (z) —P2 = —2(z —zo )gn (zo ) (31)

The total internal reflection (TIR) phenomenon corre-
sponds to the trajectory of a ray shown in Fig. 3. In that
case there is some particular value zo, at which TIR
occurs according to the classical geometric optics. It is
determined by the equation

n (zo) —P =0 . (27)

Calculation of the phase difference should include dou-
bling of the integral of Eq. (25) since the same interval at
z axis is passed twice, see Fig. 3. The trajectory of a ray
has parabolic form in the vicinity of the TIR point:

V. REDUCTION
TO THE SCHRODINGER-HELMHOLTZ

SCALAR EQUATIONS

The coupled first-order equations (14) may be trans-
formed into a single second-order equation

p — + [n (z) —P )E =0.d 1 de
dz P dz

(32)

and reduce the wave equation to the standard Airy equa-
tion. The small difference which arises in the process of
such a reduction is just the aim of the next section.
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des — " + [n (z) P—]H =0 .
dz c dz

(33)

It is convenient to make a transformation of independent
variable

zE I lu(z }dz (34)

for which Eq. (32) takes the form of a one-dimensional
Schrodinger or Helmholtz equation:

2E
+kx(zx)E =0,

dzE2

COkz(zE)= z z [ii (z) —P'] .
c p, (z)

Similar substitution

Z~= 8 Z Z

yields

2H
+k~(z~)Hy =0,

dZH

(35)

(36)

(37)

In an analogous way the pair (15) may be transformed
into

VI. CORRECTIONS -(A, /a)
TO THE %'KB PHASE OF REFI.ECI iON

The results of this section were obtained in collabora-
tion with A. Yu. Savchenko and will be presented in an
enlarged version separately. The calculation of the
reflection phase for some given profile k (z) is based on
the idea of using as the basis the exact solution of some
sample equation. One (but not the single one) example of
such a sample problem is the quantum-mechanical
motion in a homogeneous field, U(x}=Ex, which corre-
sponds to the well-known Airy equation

2 —xf(x) =0
dx

(39)

after the proper adjustment of the scale.
We will discuss here a slightly more general method of

consideration of an arbitrary "sample" profile k„(x) to
model the solution of the equation with the "physical"
profile k, (z}:

integral along the real axis [23]. Such a presentation of
the result was not convenient for our needs. That en-
couraged us to derive it again through another technique.
The corresponding results, formally equivalent to the
ones from Refs. [23,24], are presented in the next section.

%x +kz(x)%(x) =0, (40)

While the particular behavior of functions zii(z) and

z&(z) is difFerent, the only turning point in both cases
corresponds to z =zo from (27}.

Thus we must find the phase of the total reflection
coefficient from a smooth barrier in the Schrodinger-type
equation (36} or (37) with the eff'ective potential energy
U(z)=[ko —k (z)]A' /2m so that U(z) —+0 at z~ —oo

and the kinetic energy of the incident particle A' ko/2m;
here ko=k(z~ —oo). This problem has exact solution
only for a very limited number of types of potentials
U(z), see, e.g., Ref. [5-7]. Thus we need some approxi-
mate methods for the caIculation of that phase with the
accuracy of the order (A, /a )'.

The well-known WKB approximation gives the next
expression for that phase:

Zp

Ip=2 Z 0 Z 7T 2 (38)

where the integral-type term is the ordinary quasiclassi-
cal (geometric-optical} phase, and —n. /2 is the Airy-type
correction due to a turning point. However, that expres-
sion (38) has the precision -(A, /a) rad, i.e., the error of
Eq. (38) is about (A./2~a ) =(koa ) ', just about the value

we need.
In the process of doing this work we were glad to make

the reduction to Eqs. (35) and (37). We assumed that as
the next step we would take the expression of our phase
with the necessary, - (A, /a }',precision from the quantum
mechanics. Unfortunately all the papers on the higher
WKB expansions we have found [8—10,23,24] give this
phase as some complex contour integral or, at best,
reduce it to the derivative over the classical energy of the

d (z) +k, (z)g(z)=0 .
Z'

(41)

For de6niteness we will choose the origins of x and z in
such a way that x &0 and z & 0 are the classically allowed
regions, x )0 and z )0 are classically forbidden areas,
and x =0 and z =0 are the corresponding turning points,
Fig. 4.

Let us consider now two linearly independent real-
valued solutions 0', (x) and %'2(x) of the "sample" equa-
tion (40). We will choose %,(x) in such a way that it is a
solution of the reflection problem: +,(x-++oo)~0.
Then its asymptotic behavior for x ~—oo is [5-7]

%,(x)= [k„(x)] '~ cos[g(x)],

k (x')dx' ———5
4 z

(42)

%2(x ) = [k„(x) ] '~2sin[/(x )] . (43)

For such solutions the Wronsky determinant
0",(x)% z(x) —%',(x)%'z(x) is exactly equal to l. It follows
therefrom that %2(x) grows exponentially for x ~+ oo .

The normalization in (42} is chosen for convenience of
subsequent calculations. Small value 5„ is the correction
-(A, /a) to the WKB expression for the phase of
reAection; it is assumed to be known for the "sample"
problem with k„(x) profile. As the second solution we
will take the one with the asymptotic behavior for

7
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iI v,(~)- E„ dC) dC2
%,(x(z)) +%2(x(z)) =0

dz 2
dZ

proved to be most convenient. [It is worth noting
that assuming another relation, 4', d (fC, ) /dz
++id(fc2)/dz =0 instead of (47), we will also get the
set of the first-order linear differential equations for C, (z)
and Cz(z), but their approximate solution with the same
accuracy is much more difficult. ] As a result we trans-
form Eq. (41) into the coupled first-order pair

dC, C2
+r(z)C, =L, (z)C, , —r(z)C, =M(z)C, ,

where

jt

KN
'll

r(z)=f " %%'~, L= f "—%z, M=f

(49)

FIG. 4. "Sample" potential (a) and "physical" potential (b)

for the calculation of the WKB phase of reflection.

Let us assume that F„/F, —1. Then A,„-k, and the
order of magnitude of the coefficients I', L, M (of the in-

verse length dimensions) is A. /a . That allows us to drop
a11 terms -I and to take C& =—l in the Srst order of per-
turbation theory and to get the Srst nonvanishing correc-
tion to the wave function in the form

The solution of the reflection problem for the "physi-
cal" profile k, (z) can be presented in the form

+~ z
d2

C, (z)=C,(+ ) —f e', (x(z'))f dz' .
z Z' (50)

it(z) =Ci(z)f(z)pi(x(z))+C2(z) f(z)qlz(x(z)) . (44)

Here the transformation of variables x =x(z) is defined

by the equalization of the classical action values (i.e.,
quasiclassical phases) accumulated from the turning
points:

f k„(x')dx'= f k, (z')dz',
x(z) z

k„(x)
dz k, (z}f (z)=

(45)

(46)

We use the factor f (z) so that the wave functions (44)
with C, =const, Cz=const are just the quasiclassical
(WKB) solutions [5—7] to the physical problem (41) with
correct preexponential. Despite k„(x) and k, (z) being
singular in the vicinity of the turning points x =0 and
z =0 (as &—x and &—z, respectively), the transforma-
tions x =x (z) or z =z (x ) according to (45) are smooth
analytical and mutually univalued near that point. In
particular, dx/dz ~0= [F,(0)/F„(0)]'~, where
F„= d(k, )/dz, F„=——d (k„)/dx. Such a transforma-
tion of independent variable (45) and representation (44)
of the wave function was repeatedly discussed in
mathematical and physical literature [10,27—29].

Even C, (z)—:1, C2(z)=—0 gives quite a good approxi-
mation for the wave function. We are going to find small
corrections to it. To solve this problem one can use the
method of variation of "arbitrary constants" C, (z) and

C2(z) with some additional relation between dC, /dz and
dC2/dz. The relation

The condition of the finiteness of the wave function (44)
at z —+ + ~ (deeply inside the barrier) implies that
C2(+ ~ ) =0. Then outside the barrier, i.e., for z ~—ao,

the wave function (44} of our "physical" problem gets the
asymptotic form

1
Q(z) = cos k, (z')dz' ———5,

+k2(z) ~ 4

5, =5„+Cp(—~ ) . (51)

Thus C2( —OD) is the desired correction to the phase of
reflection for the "physical" profile k, (z) in comparison
with that for the "sample" profile k„(x). The result (50},
(44), may be further simplified without loss of
accuracy by making the substitution
%i(x)~(+2i(x))=[2k„(x}] ' for the allowed region
x (0 and by taking %,(x)=0 in the classically forbidden
regionx &0. Then we get

5, =5„——J (k f) dz .1 o idf
Qo dz2

This is the main result of the present section, which
was obtained by the authors in collaboration with A. Yu.
Savchenko.

Important particular variant of Eq (52) may .be ob-
tained for the "sample" profile k ~(x ) = Fx with-
F=const. As is well known [5—7], 5„—:0 for that case,
since the extra phase shift exactly equals —m/4 for the
solution of the Airy equation. The transformation of
variables (45) acquires the form
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—x(z)=
2/3

I 'k, (z )d*
2 F z

(53)

However, the simplification of Eq. (52) consists in the as-
sumption 5„=0only.

VH. BIREFRINGENCE
IN THE CASE OF A TURNING POINT

C z 4

(54)

However, the small corrections 5,(E») and 5,(H»)
which must be calculated via (53) and (52) with 5„=0,
turn out to be different. The corresponding result may be
achieved after the calculations, which are simple in prin-
ciple but are quite tedious. Here it is:

tp(E» ) tp(E„)=25,(—E„)—25,(E„)
c 1

to g 2( ) p2

d inn d Inp d lnp z
dz dz dzz

(55)

We want to emphasize that Eq. (55) gives the conver-
gent integral in the vicinity of the turning point z =0.

At first sight, the second term proportional to
d lnp/dz in the right-hand side of Eq. (55) contradicts
the conclusion of Sec. IV where we have declared the ab-
sence of a accumulated birefringence in a medium with
n =const, p=p(z). However, for n =const there is no
turning point at all. Integration of that term over the in-
terval between the regions with p =pi =const and
p=p2=const for the case n =—const gives zero, in agree-
ment with the conclusion from Sec. IV.

Consider the case where there is a smooth layer
without total internal reffection (the first one} which is

Now we are equipped for the calculation of
tp(E») tp(H—~) for the case of trajectory with the total
internal reflection point, Fig. 3. The main parts of the
phases are identically equal,

2' 2' ——= z'0 s 7T

zg (z) 4 z~(z) + + 4

separated from the TIR layer by a slab with
n =n2 =const, p =p2= const.

In that case the overall phase difference tp(E» ) —qr(E„)
consists of a doubled contribution due to that first layer
and due to the TIR layer. It is quite natural that the first
contribution as calculated according to (55) equals just
the doubled value of contribution of the same layer as
calculated by integration of (25). That may be easily
verified through integration by parts; doubling is con-
nected with forth and back passage.

VIII. DISCUSSION

This paper is devoted to the calculation of small
(-)(,/a) correction to a phase of electromagnetic wave.
In this connection we would like to discuss the very no-
tion of that phase.

When a plane wave with linear polarization propagates
through homogeneous medium, all the six complex
values —E„E,E„H„,H, H, —have the same phase,
and therefore it is not necessary to mention specially
whose phase is discussed. In an inhomogeneous medium
the situation is more complicated, and the phases of
different Cartesian components of E and H may be slight-
ly difFerent: mutual shift may be about A, /a. This is one
of the sources of the apparent dissimilarity of Eqs. (55)
and (25) (including the dlbldz term). However, if one
starts and finishes at the homogeneous parts of the medi-
um, then any ambiguity vanishes from the accumulated
phase difFerence.

In conclusion, in this paper we obtained the explicit ex-
pressions for the phase difFerence y(E„) tp(E„) acqu—ired
by two orthogonally polarized waves, which has the or-
der of magnitude -lL, /a and appears due to efFective
birefringence of a locally isotropic layered medium with
an arbitrary profile of z(z) and p(z). It is important that
the expression is valid (and convergent) even in the case
of total internal reflection by a medium with smooth in-
homogeneity. Our work to generalize these results to the
case of three-dimensional smooth profiles of ( zyx, z) and
p( yx, )zhas not yet allowed us to make any definite con-
clusion.
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