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Determination of the linear coupling resonance strength using two-dimensional
invariant tori
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Experimentally obtained Poincare maps in the resonant rotating frame for particle motion with
linear coupling revealed invariant tori of the two-dimensional Hamiltonian. Using these tori, we

obtained the linear coupling strength, the tune shift with betatron amplitude coefBcients, and the
proximity parameter to the resonance. The coupling strength obtained with this method agreed
well with that obtained &om measuring the betatron tune separation of the normal modes.

PACS number(s): 41.85.—p, 03.20.+i, 05.45.+b, 29.20.Dh

I. INTRODUCTION

Almost all synchrotrons encounter problems related
to the linear betatron coupling between the horizon-
tal and vertical motion, which can arise f'rom skew

quadrupole s, vertical closed-orbit deviation in sex-
tupoles, and solenoidal fields. The effects of linear cou-

pling on the beam dynamics are betatron tune shifts,
beating between the horizontal and vertical betatron os-
cillations, induced vertical dispersion, emittance dilution,
and reduction of the dynamical aperture. Thus linear
coupling can lead to performance degradation of collid-
ers and storage rings. On the other hand, a controlled
amount of linear coupling can be helpful in achieving a
desirable vertical emittance for electron storage rings.

The horizontal and vertical deviations from the closed
orbit of a beam particle satisfy Hill's equation [1]:

Z AB, d2z 6B
d z +K (s)z = *, +K, (a)z =—

Here K (s), K, (s) are focusing functions due to
quadrupoles, Bp is the magnetic rigidity, a is the lon-
gitudinal particle coordinate, and b,B and QB are lin-
ear or nonlinear magnetic multipole field errors. In the
linear approximation, the solution of the error-free Hill s
equation is

g= 2 y s Jycos y+ y 8 —vy8)

where P„(s)is the betatron amplitude function, (J„,P„)
are the conjugate action-angle variables, vP„(a) = J' &'

~o fjy
is the betatron phase advance relative to a reference point
sa, vv ——2„$&' is the number of betatron oscillations in

one revolution and is called the betatron tune, 8 = (s-
ao)/B is the orbital angle, while B is the average radius
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of the accelerator. Here y stands for either z or z. Thus
particles are executing betatron oacillationa transversely
about the closed orbit of an accelerator.

The linear coupling resonances, which couple the hor-
izontal and the vertical betatron oscillations, are located
at v + v, = /. This paper studies the linear difference-
coupling resonance. The magnitude C and the phase y
of the coupling constant for the linear difference-coupling
resonance v —v, = l are given by [2]

ep+2mR
Ce*" = — QP P,A, (s)

where

A, (s) = 1 BB,
Bp z

(1 dP 1 dpi
4Bp (P ds P, da)

B(( &1 1)
2BI gP P.)

Here &,*/Bp and B~~~/Bp are respectively the skew

quadrupole and the solenoidal field strengths.
For betatron motion with linear coupling in two de-

grees of freedom (2D), the equations of motion can be
decoupled into two normal modes [3]. The measured be-
tatron tunes correspond to the eigenvalues of these nor-
mal modes. Traditionally, the linear coupling is mea-
sured and corrected by minimizing the separation be-
tween the betatron tunes of normal modes with combos
of quadrupoles and skew quadrupoles. The magnitude
of the coupling constant is given by the minimum tune
separation between these two eigenmodes, which is also
characterized by the beat period of the horizontal and the
vertical betatron oscillations. However, this method fails
to determine the phase of the linear coupling. For accel-
erators with periodic focusing and defocusing (FODO)
cell structure, the linear coupling constant is dominantly
real. On the other hand, the linear coupling constant may
contain a substantial imaginary part due to solenoidal
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field and/or large local phase difference between the hor-
izontal and vertical phase advances at the low-P inser-
tion section for high energy colliders and storage rings.
Therefore the task of developing methods for measuring
both the strength and the phase of the linear coupling is
important.

This work is intended to study a method of measuring
the magnitude and the phase of the linear coupling by
using the 2D torus for the Poincare surface of sections
derived from experimental data. Section II discusses
properties of the linear-coupling Hamiltonian. Section
III deduces invariant tori for the linear coupling Hamil-
tonian from experimental data. The conclusion is given
in Sec. IV.

JQ 2J$bi+ jillJ1 +C
2 Jl( Jg —Jl)

= 0.

These tori depend only on two parameters, 6 =
and c = J . Examples of tori for the Hamiltonian

Hl are shown with parameters J~ ——1 (1j-mm-mrad)
and b = 0, c = 0.25 in Fig. 1(a), 6 = —0.5, c = 0.25
in Fig. 1(b), and b = —0.5, c = 0.5 in Fig. 1(c), respec-
tively, where we have used. the normalized coordinates

Q = v 2Jl cos $1, P = —g2Jl sin &j&1.

The 6xed points of the Hamiltonian are given by the
conditions Jl ——0 and Pl ——0. There are, in general, two
or four possible fixed points at $1 ——0 or 1j. with

II. HAMILTONIAN FOR LINEAR BETATRON
COUPLING

2 I I I I I I I I I I I I I I

By transforming the phase space coordinates into the
action-angle variables, the Hamiltonian describing the
betatron motion, in the presence of linear coupling, can
be approximated by

H=v J +v, J, + —o. J +o. ,J J, + —o.„J,
2

* ' ' 2"'
+C/J J, cos(P —$, —l8+ g), (2)

where v and v, are the linear betatron tunes, J, p,
J„and P, are, respectively, the action-angle variables
for the horizontal and vertical betatron motions, o. , o. ,
and o.„arethe nonlinear betatron detuning parameters,
and C and y are the strength and phase of the linear
coupling constant given by Eq. (1).

We transform the Hamiltonian into the resonant pre-
cessing frame by using the generating function

-2-8
2 I I

0—

I I I I I l I I I I I I I I

I I I I I I I I

to obtain new action-angle variables given by
—P, —l8+ g, Pg

——P„J1——J and Jp ——J + J, .
The new Hamiltonian can be decomposed into H
Hl(Ji, gl, Jq) + Hq(Jq) with

1
Hl bl Jl + ~1l Jj + CQJl (J2 Jl) cos 41 1

2

-2
-2

2 I I

I I I I I I

I I I I I I I I I I I I

aild Hp(J/) = v~Jg + ~n„J~,~h~re &1
——v~ —v, —

l + (o. , —u„)Jq is the resonance proximity param-
eter observed &om the horizontal action variable, and

—2o. + o. is the effective nonlinear detun-
ing parameter at the resonance. There are two invariants
for the motion, i.e. , J~ and H. Hamilton's equations of
motion are given by

0—

Jl ——Cy Ji(Jp —Jl) sin/i,
Jg —2Jg

4'1 bl + oil Jl + C COS $1.
2 Jl (JP —Jl)

(4)

(5)

I I I I

The particle motion in the resonant rotating frame is de-
termined completely by the condition of a constant J~
and a constant Hamiltonian value Hl(Ji, Pi, Jq) = E.

FIG. 1. The invariant tori of the 2D linearly coupled Hamil-
tonian with parameters (a) b = 0, c = 0.25; (h) b = —0.5,
c = 0.25; and (c) b = —0.5, c = 0.5, respectively.
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Solutions of Eq. (6) can be divided into two cases: (a)
three stable fixed points (SFP's) and 1»»stable fixed
point (UFP) [Fig. 1(b)] or (b) 2 SFP's [Figs. 1(a) and
1(c)]. Note particularly that Ji ——J2 and Pi ——+ 2 are
not the UFP of the H~m~ltonian. The arc of J1 ——J2
corresponds to J, = 0 and vice versa, i.e., Ji ——0 is
equivalent to J, = J2.

The n»mber of fixed points depends on the parameters
6 and c. The "square" symbol of Fig. 2 shows the critical
coupling resonance strength cs as a function of the pa-
rameter b. When the parameter b lies between [

—1,0] and

(c~ & cs, there are four fixed points. Figure 1(b) shows an
example of having four fixed points and Fig. 1(c) shows
an example that three fixed points have just merged to-
gether to form a single SFP at zsFP = 0.5 with b = —0.5
and c = cs = 0.5. The corresponding coupling strength
cs is called the bifurcation coupling resonance strength.
As (c( approaches cs from below, two fixed points (1 SFP
and 1 UFP) on the Pi ——0 axis are merging and vanish-
ing. If the sign of c is reversed, all tori shown in Fig. 1
will be refiected with respect to the vertical axis. The bi-
furcation resonance strength exhibited a symmetry with
respect to the value 5 = —2. This symmetry is equiva-
lent to expanding the resonant rotating frame around the
vertical action. The diamond symbols in Fig. 2 show the
transition resonance strength, ct, where the torus passing
through Ji ——Js is also the separatrix. When (c~ ) cq,
the torus, which describes the particle motion for a beam
kicked horizontally, will intercept the Pi ——0 or z axis at
a coordinate inside the UFP. This marks a possible siz-
able exchange of the horizontal and the vertical actions.

06 i i i I
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I I I I
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FIG. 2. The normalized bifurcation resonance strength cy

(squares) and the transition resonance strength ct (diamonds)
are plotted as a function of the normalized resonance proxim-
ity parameter b. Note here that c& is symmetric with respect
to b = —~. Si~i&ar symmetry can be obtained for ct.

J1 —— J2 —E2 A2cos 8+ y + J,

Ji+A Ji = A J,
where J = (2biE + C2Jz)/2A2 with the energy E =
bi Ji + Cg Ji(Jz —Ji) cos Pi. Thus the evolution of the
action at a linear coupling resonance is sinusoidal, given

by

A. Small nonlinear detuning limit

In the limit that o.ii ——0, the SFP's of the Hamiltonian
are

A+ bi
1 SFP 2A

J2, A = biz+ Cz,

at Pi ——0 and z respectively. Particles located ini-
tially at the SFP's of the Hamiltonian have the be-
tatron oscillations which are correlated in phase with-
out an exchange of betatron amplitudes. Particle mo-
tion is divided into two halves by the resonant curve
C~Ji cos Pi ——bi/Js —Ji.

Using Hamilton's equations [Eqs. (4) and (5)], one ob-
tains

where (E~ ( AJ, p is an initial phase factor. Thus the
"island" tune of the coupling oscillation for any torus is
equal to A, which is independent of the amplitude. Thus
the orbiting periods are identical for all tori of the Hamil-
tonian. For a given bunch distribution with identical be-
tatron tune, the bunch shape will return to its original
bunch shape after

&
turns. Particles with difFerent beta-

tron tunes will be orbiting around difFerent fixed points
at difFerent island tunes.

B. Evolution equation arith noniero detuning

In the case where aii g 0, the period of the linear cou-
pling oscillation for a torus at constant Js and constant
energy H1 ——8 is given by

—+4+ 4bx3+ 4j a2— ~Ei
I

+2 —8a2 —x+ 41
~iiJ') J2 I ~»J2)

(10)

There are possibly four or two roots for the denomina-
tor of Eq. (10) for a given energy E. The integral of
Eq. (10) is independent of the specific pairs of turning
points. This means that particle orbits with the same en-

ergy E have identical frequency orbiting about difFerent
SFP's. The minim»m splitting between normal modes
depends in general on both o.11J2 and C. Similarly, the
equation of motion for J1 is given by
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JI + (A —nIIE) JI + —arrbI J~ + —n, I J~ = J. (11)2 3 2 123
1 2 1

In the limit oII J2bz « A, (crIa J2) « A, and nIIE ((
A, then the betatron tune separation of two normal
modes becomes A.

III. EXPERIMENTAL METHOD AND DATA
ANALYSIS

I-2

I I I I

4
I I I I III I III I I II I

!
I I I I I I I I I I I I I I I I

The experiment started with a single bunch of about
5 x 10s protons with a kinetic energy of 45 MeV at the In-
diana University Cyclotron Facility (IUCF) Cooler Ring.
The cycle time was 10 s, and the injected beam was
electron cooled for about 3 s before the measurement,
producing a full-width at half-maximum bunch length of
about 9 m (or 100 ns) depending on the rf voltage. The
rf system used in the experiment was operating at the
harmonic number h = 1 with &equency 1.0309 MHz.

To study the linear coupling, the horizontal and ver-
tical betatron tunes are adjusted close to the resonance
line, i.e., v —v, = —1 with v = 3.826, v, = 4.817. The
coherent betatron oscillation of the beam is excited by a
transverse dipole kick with a 600-ns Hat top. The sub-
sequent bunch transverse oscillations are detected and
recorded. The experimental hardware has been reported
earlier [4].

Figure 3 shows a typical example of the beating os-
cillations due to the linear betatron coupling following
a horizontal kick. The beat periods were measured to
be about 120 turns. We obtained A 0.0083 for this
data set. The linear coupling in the IUCF Cooler Ring
arose mainly from the solenoid at the electron cooling sec-
tion, and possibly also &om quadrupole roll and vertical
closed-orbit deviations in sextupoles. The Lambertson
septum magnet at the injection area also contributed a

0

I I I I1I I I I 't I I I I I I I I I I I I I I

0 100 200 300 400 500
Turn number

FIG. 3. The measured coherent betatron oscillations ex-
cited by a horizontal kicker. The linear coupling gives rise
to the beating between the horizontal and vertical betatron
oscillations.

certain amount of skew quadrupole field, which was lo-

cally corrected.
The linear coupling resonance is usually corrected by

maximizing the beat period of the transverse oscillations
using a pair, or at least two families, of skew quadrupoles.
Figure 4 shows the output &om a spectrum analyzer us-

ing the difference (6,) signal of a horizontal beam posi-
tion monitor (BPM) as the input. The spectrum ana-
lyzer was tuned to a horizontal betatron sideband and
was triggered 1.5 ms before the beam was coherently ex-

" )ll 'i.

3 res/rJv

FIG. 4. The spectrum of the
4 signal from a horizontal BPM
was shown from a spectrum an-
alyzer tuned to a betatron side-
band frequency with resolution
bandwidth of 30 kHz triggered
at 1.5 ms before a coherent hor-
izontal kick. Note here that (1)
the time interval between these
dips corresponded to the beat
period of Fig. 3, (2) the de-

cay of the power spectrum cor-
responded to betatron decoher-
ence, and (3) the characteristic
change in feature at a 17-ms in-
terval corresponded to a strong
60-Hz ripple, which altered be-
tatron tunes.
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cited by a horizontal kicker. The beat period shown in
Fig. 3 corresponds to the time interval between the dips
of Fig. 4.

The procedure for the linear coupling correction usu-
ally proceeds as follows: (1) maximize the peak to val-
ley ratio in the spectr»m by using quadrupole com-
binations and (2) maximize the time interval between
dips (or peaks) of the spectrum by using families of
skew quadrupoles. Repeated iteration of the above steps
can efficiently correct the linear coupling, provided that
these skew quadrupole families have proper phase rela-
tions. This procedure is however hindered by the beta-
tron decoherence and by the 60-Hz power supply ripple,
which is evident in Fig. 4. Other possible complications
are closed-orbit changes due to ofF-center orbits in the
quadrupoles and skew quadrupoles. However, the most
important issue is that there is no guarantee a priori that
the set of skew quadrupoles can correct the magnitude

and the phase of the linear coupling. Thus measurement
of the coupling phase is also important.

To measure the linear coupling phase y, we can trans-
form the horizontal and the vertical Poincare maps into
the resonant rotating kame discussed in Sec. II. Figure 5
shows the normalized phase space x, p and z, p of the
data shown in Fig. 3. Because of the linear coupling
between the horizontal and the vertical betatron oscilla-
tions, the horizontal and vertical phase spaces were com-
pletely smeared. Transforming the phase space into the
resonant rotating frame, the torus of the 2D Hamiltonian
is shown in Fig. 5(c), where the Courant-Snyder invari-
ant circle and the resonant curve are clearly visible. The
orientation of the resonant line was used to determine
the coupling phase g = 1.59 rad, where the relative be-
tatron phase advances at the locations of the horizontal
and vertical BPM's were included. The action Jq as a
function of time and its time derivative, z& ——2n Jq,
were plotted in Fig. 6, where a five-point moving average
of JI was used to obtain a better behaved time deriva-
tive of the action J1. The time derivative, &&, was fitted
with Eq. (4) to obtain C = 0.0078 + 0.0006, shown as
a solid line in the lower graph of Fig. 6. Once C and y
were known, one used the torus of Fig. 5(c) to determine
the parameters aqua

——0.001 + 0.0005 (Ir-mm-mrad)
and hq ———0.0016 + 0.0005. The percentage errors for
the determination of hq and a1I were considerably larger.
Nevertheless, the resulting A 0.008 + 0.001 agreed rea-
sonably with the beat period observed in Fig. 3.

Figure 7 shows two invariant tori with an identical skew
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FIG. 5. The top taro graphs show the observed Poincare
maps in (x, p ), (z, p, ) of Fig. 1. The Poincare map iu
the resonant precessing frame derived from top taro graphs
is shown at the bottom, where Q = /2JqP cos@q and
P = —/2JqP sinPq with P = 7.55 m are used for this fig-
ure. The resonance phase was properly added to obtain the
torus in the upright position.

FIG. 6. The action Jq (top) iu (s-mm-mrad) and its time
derivative, z~ (bottom) in (s-mm-mrad)/turn, were plotted
as a function of time in orbital turns. The solid line in the
top graph corresponded to a Sve-point running average of the
action. The solid line in the bottom graph corresponded to a
fit by using Eq. (4) to obtain the coupling strength C = 0.0078
and the coupling phase y = 1.59 rad.
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IV. CONCLUSION
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FIG. 7. Tori of the 2D Hamiltonian close to a linear cou-
pling resonance condition were obtained from experimental
measurements with identical skew quadrupole strengths. The
outer torus corresponded to a purely horizontal kick and the
inner torus corresponded to both horizontal and vertical kicks.
Again, Q = /2JqP cosPq and P = —/2JqP

sindhi

with
P = 7.55 m are used for this figure.

quadrupole strength at different initial betatron ampli-
tudes similar to that of Fig. 1. The outer curve cor-
responded to a torus with horizontal kick only and the
inner curve corresponds to a torus with both horizontal
and vertical kicks. The beat periods were 333 and 384
revolutions, respectively. The fact that the beat periods
of these two tori were close to each other was another in-
dication that the nonlinear detuning parameter crqq was
small. The measured Poincare maps indeed exhibited
Hamiltonian flow similar to that of Fig. l.

We found that the linear coupling in the presence of
nonlinear detuning exhibited intricate stable and unsta-
ble 6xed points of a Hamiltonian system. The Poincare
map derived &om experimental data at a 2D linear cou-
pling resonance showed invariant tori of the Hamiltonian
flow. Using these invariant tori and Hamilton's equations
of motion, the magnitude and the phase of the linear be-
tatron coupling were determined. The magnitude of the
linear coupling obtained Rom the invariant tori agreed
well with that obtained from the traditional method of
finding the minimum separation of the betatron tunes
with combinations of quadrupole strengths. In a single
digitized measurement, one could obtain the magnitude
and the phase of the linear coupling. Such a correction
method can be used for an on-line diagnosis system in
order to choose more efficiently proper skew quadrupole
correction families.

Knowing the dynamics of the linear coupling of a
single-particle motion may also help to unravel questions
concerning the dynamical evolution of the bunch distri-
bution when the betatron tunes ramp through a cou-
pling resonance. Such a problem is important for the
polarized-proton acceleration in a low to medium en-

ergy synchrotron, where the vertical betatron tune jump
method is necessary in order to overcome intrinsic depo-
larizing resonances. When the betatron tunes cross each
other adiabatically after the tune jump, the increase in
the vertical emittance due to linear coupling may cause
difficulty in later stages of polarized proton acceleration

ACKNOW'LEDGMENTS

We thank Dr. Leo Michelotti for helpful discussions.
Work supported in part by a grant from National Science
Foundation NSF PHY-9221402 and Rom the U.S. DOE
DE-F002-93ER40801.

[1] E.D. Courant and H.S. Snyder, Ann. Phys. 3, 1 (1958).
[2] G. Guignard, CERN Report No. 76-06, 1976 (unpub-

lished); J.P. Gourber et al. , in Proceedings of the Second
European Particle Acceleration Conference, Nice, 1990,
edited by P. Marin and P. Mandrillon (Editions Frontieres,
France, 1990), p. 1429; G. Guignard et al. , ibid. , p. 1432.

[3] D.A. Edwards and L.C. Teng, IEEE Trans. Nucl. Sci. 20,
855 (1973).

[4] S.Y. Lee et aL, Phys. Rev. Lett. B7, 3768 (1991); D.D.
Caussyn et aL, Phys. Rev. A 4B, 7942 (1992); M. Ellison
et al. , Phys. Rev. Lett. 70, 591 (1993).

[5] S.Y. Lee, Phys. Rev. E 47, 3631 (1993).






