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Longitudinal bunched-beam instabilities going nonlinear:
Emittance growth, beam splitting, and turbulence

A. Gerasimov
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Numerical results of the nonlinear evolution of longitudinal instabilities of bunched beams are
presented. Only a pure-dipole instability is considered which appears for the short-bunch, long-
wavelength-of-impedance situation, when the wake-Seld force is a linear function of the coordinate.
An argument is made for a rescaling of multibunch dynamics to a single-bunch case for the case of a
narrow-band impedance exciting a single coupled-bunch mode. Saturation effects due to the deco-
herence caused by tune spread are categorized according to the magnitude and type of impedances.
The phenomenon of a nonsaturating instability (beam splitting) is described. A slow decay of insta-
bilities after saturation with randomlike bunch-centroid oscillations ("beam turbulence" ) is observed
and discussed.

PACS number(s): 07.77.+p, 41.60.—m, 41.75.—i, 41.85.—p

I. INTRODUCTION

Coherent iastabilities of beams in high-energy acceler-
ators due to the interaction with self-iaduced wake fields
were studied extensively over the past decades within the
&amework of the linearized Vlasov equation. In this ap-
proach, one solves for the complex frequency of the small
perturbations of the beam density. However, when deal-
ing with an unstable situation, the method applies only
to the very early stages of the instability developmeat
and is therefore of limited value. Furthermore, the prac-
tical issue of emittance growth due to an iastability can
not be clarified in the linear analysis.

The later nonlinear stages of longitudinal instability
evolution for a coasting beam were studied by a few au-
thors [1—3]. Some numerical simulation studies were car-
ried out for the bunched beam, but with the emphasis
on a comparison with the linear theory and the thresh-
olds of iastabilities [4]. Numerical simulation results [1]
indicated that the longitudinal instabilities of a coast-
ing beam always saturate and eventually decay due to
the effect of decoherence. A theory of this phenomenon,
predicting the energy-spread overshoot was developed in
Refs. [2] and [3].

In the present paper, we undertake a numerical sim-
ulation study of the late-stage nonlinear development of
longitudinal instabilities of bunched beams. Some phe-
nomena observed are quite unusual for the accelerator
physics domain and an effort is made to establish a qual-
itative connection with some esoteric concepts of plasma
physics. This may allow a full theoretical description in
the future.

The goal of this paper is to study the long-term devel-
opment of the longitudinal dipole instabilities of bunched
beams, with an emphasis on the scenarios of nonlinear
saturation and emittance growth. These issues are of
considerable importance for the operation of multibunch
machines and, in particular, "booster" rings. In the lat-
ter, the instabilities can hardly be avoided because of the

wide frequency sweeps during the cycle (see, e.g. , [5]).
The simulation is carried out for the simplest model

which allows for the effects of nonlinear saturation of aa
instability due to the tune spread in the beam. This
model consists of a single bunch interacting with a purely
dipole-mode wake-Beld force (long-wavelength or low-

frequency impedance in the classification of Ref. [6]).
The long-wavelength condition provides for the domina-
tion of the dipole mode in the linear iastability analysis

[6]. Through the use of that approximation we are able
to concentrate on the saturation processes of a purely
dipole instability, leaving out all the issues of the mode
coupling that become relevant for a shorter wavelength.
Notice also that, in spite of a linearized wake force, the
problem is fully aonlinear due to the tune dependence
on the amplitude. In particular, one can see all higher-
order multipole modes developing at the late (aonlinear)
stages, out of purely dipole instability.

We present a theoretical argument that our siagle-
bunch model also describes the dynamics of a multi-
bunch system when the impedance is narrow band aad
peaked near a single revolution harmonic. The results
therefore apply to a fairly wide range of realistic situa-
tions.

One of the major findiags of our study is that the sta-
bilizing effect of the tune spread depends very sensitively
on the sign of the cohereat frequency shift which is deter-
mined by the imaginary part of the effective impedance.
Vfhen the coherent &equency is shifted from the syn-
chrotron tune in the direction opposite that of the in-
coherent tune spread (which is always negative for the
sinusoidal rf potential), the instability cannot be fully
saturated by the decoherence due to the tune spread.
One can observe instead that either the whole beam or a
part of it that splits oK the core oscillates arith increas-
ing amplitude without decohering. This beam splitting
phenomenon is interpreted as the trapping of particles
in the separatrices of self-excited nonlinear resonances,
similar to the Bernstein-Greene-Kruskal (BGK) modes
in plasma physics.
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Simulation results on emittance growth are presented
from the perspective of an "overshoot" description. A
simple scaling law for emittance growth with the centroid
oscillation amplitude is derived for the case of a small
synchrotron tune spread.

Late stages of instability development demonstrate a
slow decay. The oscillations in this regime become ran-
domlike and the emittance continues growing. This be-
havior is interpreted as a self-sustained "beam turbu-
lence. "

To summarize, the importance of our findings is in
the identification of the qualitatively different scenarios
for difFerent signs and magnitudes of real and imaginary
parts of the eHective impedance. Explicit delineation of
the parameter regions of the more dangerous regimes,
such as beam splitting, can be helpful for choosing bet-
ter operational conditions of real machines.

The plan of the paper is as follows. In Sec. II we

present some theoretical cosiderations regarding the ap-
plicability of the model and the scaling of time evolution
of observables with the tune spread and impedances. In
Sec. III we present the results of numerical simulations.
Discussion and conclusions are given in Sec. IV.

II. THEORETICAL CONSIDERATIONS

A. Model

We study the model of the longitudinal dynamics of
a bunch interacting with a localized wake field that is
represented by the equations

z';+(u, z; —Az, = —qb2 (t),

q + nq+ ~,q = V'e¹h2 (t),

where time is normalized to make the revolution &e-

quency uo ——1, the quantity x, is the coordinate of the
ith particle of a beam that consists of N particles, z
is the coordinate of the center of gravity of the beam
z = ~ P, i z;, and q is the coordinate of a damped os-
cillator, coupled to the beam. The oscillator represents
the amplitude of an effective single-mode impedance (see
below). The interaction is periodic in time and instanta-
neous (b2„ is a 2'-periodic b function). The parameter
e measures the strength of the interaction in the contin-
uous limit N —+ oo and is related to the conventional
notations [6] as e = 2me &

' (with e for electron charge,
0

Io for the bunch current, and Eo for the particle energy).
Frequencies cu, and u are, respectively, the synchrotron
and resonant impedance frequencies. The constant A & D

measures the nonlinearity of the potential well for the
beam particles and is always small in our study. This
corresponds to the assumption that the beam occupies a
small fraction of the rf bucket(s).

The model (1) can be derived based on the conven-
tional considerations for the longitudinal motion of a
single-bunch beam interacting with a single-mode lon-

gitudinal wake field, if the bunch length is assumed
short relative to the wavelength of the wake field (long-
wavelength approximation in the analysis of Ref. [6])
and the impedance is narrow band and nearly resonant.
The detailed derivation is presented in Appendix A. The
single-mode restriction is manifested in the pure har-
monic (single-&equency) oscillations of the wake field q.
The condition of the long wavelength of the wake field
allows us to keep only the lowest-order dipole-mode in-
teraction (the force that is independent of the coordinate
z, ).

It should be emphasized that the linearization of the
wake field was not necessitated by the needs of the nu-

merical simulation. Rather, it was used in order to re-
duce the number of the relevant parameters that define
the system and to simplify the physics. It can also be ar-

gued that the long-wavelength regime is more important
practically as well as theoretically. Indeed, the instabil-
ity in this case is purely dipole-mode (in the linearized
Vlasov analysis) and the issues of the mode coupling that
are important for a shorter wavelength (see [6,7]) are not
present.

Model (1) also describes the dynamics in the multi-

bunch case under certain conditions. In Appendix 8 we

present the argument for the applicability of model (1) to
the multibunch instability with an arbitrary impedance
(including the many-modes case), which is peaked near
a single revolution harmonic, and for the case of a weak
interaction. The bandwidth of the impedance 6&ug (the
inverse of the characteristic decay time of the wakefield)
has to satisfy the condition (i) of restricted bandwidth

z &&~0 (2)

4)z(d, (dc

This condition is often satisfied in cases of practical in-

terest.

B. Stability analysis and scaling laws

Throughout this study we will assume that the condi-
tion (i) of restricted bandwidth is satisfied for our model

(1) ( with b,wz = n). The dynamics then can be sim-

plified to a (non-Hamiltonian) collective effective inter-
action of the particles in the beam as shown in Appendix
B.

(4)

where the complex effective impedance Z = Z„+ iZ,
is defined as Z = Z(ur, ), with the regular frequency-
dependent impedance

Z((u = — . (5)
(2vr)2 - ~2+in((u+ n) —(~+ n)2

where bur, is the tune spread in the bunches, b~,
~" (z2), and uo = 1 was left in its dimensional form to

emphasize the nature of the approximation. The other
condition (ii) is that the interaction must be sufficiently
weak:
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However, for the numerical simulation, we used the origi-
nal model (1) as it can be cast in the form of discrete-time
mapping, which allows a considerable economization of
computer time.

The linear stability analysis of model (4) can be done
by the conventional linearization of the Vlasov equation
(see, e.g. , [6]). Since the nonlinearity A is small, one can
use the action-angle variables of the unperturbed linear
oscillator, I =

2 (z +&a, z ), and 0 = tan ( ) to
obtain the dispersion relation for the complex coherent
&equency u of centroid oscillations x = ae'~~:

1.0

0.5—

C;

dII~
1 =ieZ dI

, (uz —((u2 —A'I) ' (6)

0.0— . I

-1.0 0.0 1.0 2.0
I

3.0 4.0

where A' = 4", fs(I) is the unperturbed normalized den-
sity distribution and the integration is along the Landau
contour. For a vanishingly small tune spread A ~ 0 and
a weak interaction ~eZ~ && u, , the complex coherent f're-

quency shift b~, = ~ —u, is

FIG. 1. Stability border for the Gaussian distribution
fo ~ e ~~ ' ~. The area under the curve is stable.

$6Z

2s

This defines both the growth rate Im(b, u, ) and the (real)
coherent frequency shift Re(b, ur, ).

It is often true under realistic conditions that both the
coherent frequency shift bu, and the incoherent tune
spread bu, are small, so that one can use the approxima-
tion (iii) of fast synchrotron oscillations

/b, ~,
f

&& cu, , /bee,
/

&& cu, . (8)

This approximation is used in the conventional linear sta-
bility analysis (see, e.g. , [6]). The synchrotron oscilla-
tions then are fast and can be averaged over. For the
nonlinear evolution in system (4), the only relevant pa-
rameters left are bur„Re(Eu, ), and Im(Eu, ). Any one
of these parameters defines the time scale, so that the
"slow" evolution of coherent instability depends essen-
tially on two dimensionless parameters

Re(b, (u, ) Im(b. ur, )

where the minus sign was inserted because the nonlinear
tune shift is always negative, while the tune spread bur,

is defined as a positive quantity. The stability border in
the C„,C; plane for a Gaussian distribution as obtained
&om our simulation results is shown in Fig. 1.

All quantities pertaining to the coherent insta-
bility evolution can be scaled in the form y
yo f„(b~,t, C„,C;), where yo is the initial value and f„ is a
dimensionless function of three dimensionless arguments.
In the present study we will concentrate on interpreting
and categorizing the scenarios of nonlinear evolution in
terms of parameters C„and C;.

C. Energy balance and emittance grow'th

The active part of the efFective impedance Z„accounts
for the energy loss (when Z„& 0) or production (when

Z„)0) in the system. This is clear for the case of a single

particle N = 1, when —e~ is the conventional damping
decrement. For many particles, the energy balance is
obtained from Eq. (4) in the form

eNZ„(z)dW
dt

(10)s
where W is the total energy of the system, comprised of
both the incoherent and interparticle interactions:

i2 '2 4) 2

with z = 1/Ng, . z;.
Under the condition (iii), the parameters e and A are

small, so that the frequency ur, is a "fast" one. The mo-
tion of all particles then is separable into the slow and

fast part as z; = —Leos u, t+8;, wit both action I;
and angle 8; being slow variables. Averaging both parts
of Eq. (10) over the fast oscillations and dropping the
higher-order contributions from nonlinear and interpar-
ticle terms in R', one obtains the energy balance equation
in the simplified form

dt
0 ~ g (»)

Here the unperturbed energy Wo ——P, [z; /2+~, (z; /2)]

and centroid oscillations amplitude A = x ~, + x so
that z = A cos(u, t+ p)] are both slow functions of time.

In the slow-fast approximation, it is natural to de-
fine the emittance as the average over the fast oscil-
lations cr = 1/N (P,. z,. ), so that 0 = Wo/N~z An.
alternative de6nition of emittance can be based on the
width of the distribution, relative to the center of mass
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o' = 1/N(g, .(z; —x) ). In the slow-fast approximation,
these two quantities are related through the amplitude
of oscillations A: 0' = 0 —A2/2. Equation (12) defines
the rate of emittance growth and can be written as

oscillations approximation (iii) and therefore applies only
when the beam 6lls the small &action of rf bucket.

III. NUMERICAL SIMULATION

dc'

dt

A2

7gr

A. Scenarios of evolution: Strong Landau damping

where 7g, is the instability rise time in the absence of
the tune spread 7s, ——I (& )

. This simple scaling of
emittance growth is a consequence of the fast synchrotron

The evolution in model (1) is directly simulated by
using many particles and implementing the single-turn
mapping. In that mapping, the nonlinearity of oscilla-
tions A is treated perturbatively, i.e., the mapping for
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x;, x,. between the 6-functional "kicks" is that of a linear
oscillator with the frequency

(14)

The number of particles N was taken to be large enough
to reproduce the continuous limit and in cases close to
the instability threshold was as high as N = 10 .

We present the scenarios of instability evolution by di-
viding all cases in two categories: C„) 0 (strong Lan-

dau damping) and C„(0 (weak Landau damping). The
asymmetry of the stability border in C„as seen in Fig. 1
is indeed quite natural, since when the coherent tune is
shifted outside of the nonlinear tune spread, no Landau
damping is possible. The asymmetry of the linear stabil-
ity diagram, however, is much less pronounced for other
types of distributions like fo (1 I/—u, cr) (see Ref. [8])
so our terminology is more applicable to the properties
of nonlinear saturation than to linear stability.

We first discuss the strong Landau damping C„) 0
category. Four characteristic examples of instability evo-
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lution in that category are presented in Figs. 2—5. These
examples are representative of four diferent scenarios
that we loosely de6ne by the relative strength of the
instability (distance from threshold) and the type of
impedance: (i) strong instability C„» C„„,C; » C;„;
(ii) weak instability C„C„, C; C;„; (a) reac-
tive impedance C„& C; (or IZ;I & IZ„I); and (b) active
impedance C„(C, (or

I Z;I ( IZ„I).
The quantities C„„= C„,(C„/C, ) and C;„

C,„(C,/C;) are the critical (i.e., corresponding to the

stability border) values for a given value of the ratio
C /C;. The quantity C; is positive in all examples (neg-
ative C; corresponds to the stable beam).

An example of scenario (i),(a) (strong instability, re-
active impedance) with parameters C„=4.16 and C; =
1.65 is shown in Fig. 2. The time dependence of the cen-
troid oscillations x(t) is plotted in Fig. 2(a). Emittance
growth as a function of time o (t) is shown in Fig. 2(b).
Samples of the corresponding phase space snapshots are
shown in Fig. 2(c). Time is measured in number of
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turns [number of "kicks" in model (1)j. The instability
rise time in the absence of tune spread is rs, ——188 turns.

The centroid oscillations in Fig. 2(a), as well as in all
other cases to follow, presents itself as a fast-oscillating
sinusoidal signal (with the synchrotron frequency) with a
slowly changing envelope, since the parameters are cho-
sen so as to satisfy condition (iii). The slow evolution
in Fig. 2(a) demonstrates three consecutive stages: (1)
initial monotonic growth, (2) saturation at some rather
high level (comparable to the size of the beam), and (3)
slowly decaying oscillations of apparently random nature

("turbulence" ). Transition from smooth "laminar" enve-
lope to the "turbulent" behaviour occurs approximately
at the saturation point. The monotonic growth of the en-
velope of oscillations until saturation is the characteristic
feature of a strong instability regime.

Emittance evolution is shown in Fig. 2(b). The maxi-
mum rate of emittance growth is occuring roughly at the
saturation point. After saturation the emittance growth
slows down considerably. We interpret it as a turbulent
regime with slowly decaying quasirandom oscillations.

In Fig. 2(c) the phase-space snapshots of the distribu-
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tion are shown for ten equidistant moments of time over
the time span of evolution in Figs. 2(a) and 2(b). These
snapshots provide some insight into the nature of the pro-
cesses leading to saturation and turbulence. One inter-
esting property is that until saturation the bunch oscil-
lates with increasing amplitude as a single entity without
any visible effect of decoherence due to the tune spread.
Closer to saturation, the bunch develops a thin "tail" of
particles trailing behind it. After that, the bunch is los-
ing particles to its tail, diminishing in size, and returning
back to the center of origin. The spiral-like tail of par-
ticle density that the central bunch left behind is gradu-
ally decohering due to the phase mixing. The remnants
of the higher-density bunch near the center continues to
maintain some small-scale motion, as the thin tail of that
bunch is discernible for a long time.

An example of scenario (i),(b) (strong instability, ac-
tive impedance) for C„= 1.20 and C, = 4.56 is shown
in Fig. 3. The time dependence of centroid oscillations
is presented in Fig. 3(a). The time scale is determined
by 7s, ——1221 turns. The general pattern of evolution
is similar to the previous case. The initial stage up to
saturation is the monotonic growth of the oscillations.
After saturation, the oscillations become randomlike and
decay slowly.

Emittance growth as a function of time is shown in Fig.
3(b). After saturation, the emittance growth is slowing
down. A series of phase-space snapshots is shown in Fig.
3(c). One feature of this series that is different from the
previous case is that the particles that are located at
larger radia (amplitude of oscillations) at the moment of
saturation start moving toward increasing amplitudes in
a sicklelike formation. This structure persists for some
time, though particles are apparently being lost in the
course of the radial motion, producing a sparce "tail" of
density at large radia. We view this structure as a weak
remnant of "trapped modes" that are observed for the
weak Landau damping regime C„(0, which is discussed
in Sec. IIIB.

An example of scenario (ii), (a) (weak instability, reac-
tive impedance) for C„= 1.25 and C, = 0.49 is shown
in Fig. 4. This case corresponds to about the same ra-
tio C„/C; as for the case of Fig. 2 and can represent
then the same impedances but lower interaction strength
e (current in the ring).

The time dependence of the centroid motion is pre-
sented in Fig. 4(a). The time scale is defined by
7g, ——315. An important distinction from the previous
cases is that the envelope of oscillations is not a mono-
tonically growing function of time even before the satu-
ration. The signature of the weak instability, as observed
from this and other graphs, is threefold: (1) the initial
growth rate of the instability is very slow, as one would
expect from the linear theory; (2) the first maximum in
the envelope of the oscillations occurs early before the
saturation and is quite small, and it is followed by several
more maxima of increasing amplitude before the satura-
tion; and (3) maximally attainable amplitudes of centroid
oscillations are much smaller than in the case of a strong
instability.

Emittance growth as a function of time is shown in

Fig. 4(b). The saturation point on the emittance curve
is less pronounced than in the case of a strong instability.

In Fig. 4(c) the phase-space snapshots of the distribu-
tion are shown for ten equidistant moments of time over
the time span of evolution in Figs. 4(a) and 4(b). Most
of the structure (radial and angular inhomogeneities) can
be seen at t = 18000 and t = 24000, which are the mo-
ments of time close to when the saturation occurs.

An example of scenario (ii), (b) (weak instability, active
impedance) for C, = 0.24 and C; = 0.89 is shown in Fig.
5.

The time dependence of the centroid motion is pre-
sented in Fig. 5(a). The time scale is defined by ws,

——175
turns. All properties of the weak instability (1)—(3) are
true in this case as well. An apparent randomization of
oscillations is happening before saturation. The decay of
these after the saturation is quite slow and does not ap-
pear to be determined by any relevant time constant of
the system. Remember here that what looks like broad-
band oscillations in Fig. 5(a) is still a relatively slowly
modulated sinusoidal signal, since the time scale plotted
is quite long.

Emittance growth as a function of time is shown in Fig.
5(b). Small undulations on the curve are real (not a com-
putational artifact) and correspond to the local maxima
in the envelope of oscillations of Fig. 5(a). As in pre-
vious examples, the emittance growth after saturation is
slowing down but does not disappear altogether.

In Fig. 5(c) the phase-space snapshots of the distribu-
tion are shown for ten equidistant moments of time over
the time span of evolution in Figs. 5(a) and 5(b). Little
structure can be discerned and one can only notice that
azimuthal and radial inhomogeneities of the density are
quite irregular even before the saturation (which happens
at about t = 14000).

B. Scenarios of evolution: Weak Landau damping

In the case of weak Landau damping C„(0 the sce-
narios of evolution are qualitatively different from the
strong Landau damping case C„)0. Two examples for
different ratios C„/C, are presented in Figs. 6 and 7.

An example of evolution of a relatively strong insta-
bility (not close to the threshold) with the active type of
impedance (with parameters C„=—0.64 and C, = 2.96)
is shown in Fig. 6. Centroid oscillations and emittance as
functions of time are shown in Figs. 6(a) and 6(b). The
striking feature of these plots is that the instability does
not saturate, as the centroid oscillations grow to the level
of seven times the initial size of the beam and continue
growing. More insight into this behavior is provided by
the phase snapshot series of Fig. 6(c).

Until the moment of time t 12000 the bunch os-
cillates as a whole, while after that it decoheres into a
spiral-like structure. After t 16000, the outmost par-
ticles form a sicklelike "beamlet" that splits ofF the rest
of the distribution and oscillates as a rigid entity with
increasing amplitude. It is this nondecohering beamlet
that causes unlimited growth of centroid oscillations and
emittance in Figs. 6(a) and 6(b).

An example of instability with even weaker Landau
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damping (larger negative C„, reactive impedance) with
parameters C„=—2.89 and C; = 1.61 is shown in Fig. 7.
Centroid oscillations and emittance time dependences in
Figs. 7(a) and 7(b) again indicate an unlimited growth.
The phase space snapshot series in Fig. 7(c) shows that
here nearly all particles are going into the nondecohering
sicklelike formation and just a tiny part of the bunch is
left near the center.

We suggest the term "beam splitting" for the phe-
nomenon of a nonsaturating instability through the for-

mation of nondecohering "beamlets" (or whole beams).
The border of the beam splitting region in the plane
C„,C; was verified by many additional runs to be de-
ined by the line C„=0 and the stability border of Fig.
1. It was observed also that the border is a "soft" one,
i.e., the percentage of particles trapped in the beamlets
approaches zero when approaching the border. In some
cases one can also see several beamlets successively split-
ting from the core of the distribution.

It can be important to suggest the possible devel-
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opment, in the realistic environment, of the oscillation
growth that is unlimited in our model. This can be
done upon the realization that there are two approx-
imations that will cease to be valid when the ampli-
tude of oscillations grows too large: the condition of the
fast synchrotron oscillations (8) and the condition of the
long wavelength of impedance. Accordingly, there are
two mechanisms that can stop the growth of oscillations:

Grst, when the oscillating beamlet approaches the separa-
trix of the rf bucket and, second, when the amplitude of
oscillations becomes comparable to the impedance wave-
length. The first mechanism will dominate when the
rf wavelength is longer than the impedance wavelength.
The oscillations will stop to grow, however, at much
higher amplitude than in the strong Landau damping
regime.
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C. Emittance growth and overshoot

both in theor
In the past, substantial eKort was ded t d te ica e to study,

o in theory and in simulation [1—3] the
spread blowup owup due to longitudinal instabilities of coast-

th t
gradually ies away when the spread

'

e cri ic v ue. Th
ea is increasing above

to the de en
he term overshoot specificall 11 d

pendence of the final spread on the init' 1' the
smaller is the latter, the larger the former.

In the bunched-beam model in the weak Landau damp-
ing regime C„(0 the instabilit d

e concept of the overshoot does not apply. For strony. or s rong
'

g „), owever, the approach is jus-
ti e and we studied the emittance growth frprocess om

the i
perspec ive. The results of these simul t'sim a ions, when

im edances
e initial emittances were cha d hil k
p d nces Z„,Z; constant, are presented in Figs 8 and
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cr . e impedances ratio is C;/C = 1.
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F gr o'( ) for diferent inital valuesFIG. 8. Emittance owth cr t
cr . The impedances ratio is C;/C„= 5.38.

In Fi . 8 the'g. , the case of active impedance with the ratio
~ ~

C;/C„= 5.38 is shown. The basic patter f
owthint '

pa em o emittance
grow in s case follows the overshoot sce

evia ious from this scenario though are noticable as well
as one can see some airs of
A hnother feature is the shh

'
he sharp rise of emittance growth for

0(0) ( l. It is associated somehow with the transient
sicklelike structures as seen in Fig. 3(c).

n ig. , the rise of emittance growth with the low-

ering of 0(0) is more gradual than in Fi . 8. One can
again see some
instabilit t, '

s in
e pec 'arities in ernittance growth th

It can
i

'
y hreshold, with the curves int t's in ersec ing twice.

can also be noticed that near the threshold
tance does no

r e es o the emit-
oes not always completely saturate, but ra her

continues some slow growth. We return to the discussion
of this phenomenon in the next subsection

D. Beam turbulence

Centroid oscillations after the satur t'a ura ion in t e stron
Landau damping regime C & 0

g
appeared to a certain

egree random in all the examples th ts a were given so far.
o quantify this randomness w t k, we oo a series of power

spectra of relatively short sections of t
-(t) Th

ions o centroi ' oscillations

g series was chosen to cover thez . e len th of the

p
'

p to and around the saturation.uration of the eriod u
The centroid osci a 'Th '

sci&&ations and emittance growth for this
example are shown in Figs. 10(a) and 10(b). Thean; = 1.12 are not very close to the
stability border (see Fig. 1). In Fi . 10

e is inct irregular outbursts of centroid oscillations
a er saturation that also prod 11

'
o uce sma irregular steps

in t e curve cr t in Fin Fig. 10(b) in accordance with the
emittance growth scaling law (13).

In Fig. 10(c) we present the series of the power spec-
trum evolution for the sections of th

(a). The whole period was divided in ten sections, and
time a e s refer to the end of each t'c sec ion. i erent

p o s were scaled vertically to have th h
'

e e same eig t of

the saturation (the plot at t = 3816 the s
es roa er several times and develops a multipeaked

structure. This proves our th f thesis o e randomization of
oscillations, or the onset of t bul, f
tion.

o ur ence, after the satura-

The question of the long-term behavior of the instabil-
ity was touched upon in Sec. III C It appeared Rom the

a i' y, a east insomea a in that section that the instabilit at 1

cases, does not completely decay after thea er e saturation.

centroid oscillations that persist for a long time after the
saturation and cause a slow emittance growth 0
exam le — o s

ne more

of Fi s. 10a a
pie of a long-term evolution of this ki d fo s n or the case

igs. (a) and 10(b) is given in Fig. 10(d). The
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sensitivity of the long-term turbulent emittance growth
to the number of particles in the simulation is very high
(N = 3 x 10 particles were required to reproduce the
continuous limit in this case).

The phase-space plots after the saturation in all previ-
ous examples show only small azimuthal inhomogeneities
that are hardly discernable by eye. That is the case as
well for the turbulent stage of Fig. 10. To provide more
insight into the nature of the turbulence, we present in
Fig. 10(e) a few line density profiles for the case of
Figs. 10(a) and 10(b). One can see that the turbulent
regime corresponds to the presence of a short-wavelength
low-amplitude "microstructure" or "jitter" on top of a
smooth density profile. This microstructure undergoes
relatively fast [on the scale of the time span of Figs.
10(a)—10(e)] variations that appear to be random.

IV. DISCUSSION AND CONCLUSIONS

The physics of the observed nonlinear phenomena of
saturation, beam splitting, and turbulence is far from
being fully clari6ed by our numerical Gndings. This calls
for a future study, and we would like to make a few sug-
gestions in that direction.

The most striking of all nonlinear effects observed
is the nonsaturating instability, beam splitting phe-
nomenon that happens for the weak Landau damping
regime C„&0. We suggest that this may be interpreted
as the trapped-particle nonlinear modes, in extension of
a similar concept of persistent nonlinear (BGK) waves in
plasma physics (see, e.g. , [9]). We expect by that analogy
that in our system a group of particles can stay, under
certain conditions, near the center of the self-driven non-
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linear resonance. The elongated shape of the beamlets
in Figs. 6(c) and 7(c) corraborates that interpretation,
since that is what one would expect to see for a distribu-
tion of particles near the center of a narrow resonance.

The conceptual importance of the BGK modes in
plasma physics stems &om the fact that they present
themselves as persistently oscillating states where no en-

ergy exchange between the particles and the wave is tak-
ing place. In our case, the energy is pumped into the
system by the real part of the impedance [see Eq. (10)j
and persistent steady-state oscillations are impossible.
The trapped (BGK) modes for our system can be visu-
alized as the states without any Landau damping, with
the amplitude of a dipole oscillation increasing in time
by taking the energy from the external source (which is

eventually the rf system). The resonant frequency will
change as well, while the particles stay inside the sep-
aratrix of the resonance as it moves towards larger ra-
dia. The difference with conventional BGK modes is
in this (anti)dissipation in the system that causes the
&equency sliding. Thus we suggest the term "sliding
trapped (BGK) modes. " A preliminary result is that
these modes exist only for the weak Landau damping
regime C„(0, conforming with our observations of in-
stability development scenarios. One can anticipate ob-
taining a theoretical description of beam splitting phe-
nomenon on the basis of this approach.

Beam turbulence is another class of essentially nonlin-
ear phenomena. Even after saturation when the emit-
tance becomes large enough to make a beam stable for
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any smooth bell-shaped distribution, the small-scale "mi-
crostructure" of the density can persist in the beam for
a long time, causing low-level centroid oscillations and
slow emittance growth. This may be an issue of practi-
cal importance and requires a further study.

Emittance growth is related to the amplitude of the
centroid oscillations through the convinient scaling law
(13). The self-consistent theoretical prediction of how the
oscillations will evolve is, however, very dificult. Some
estimates of this kind were obtained in a quasilinear over-
shoot approach [10] along the same lines as in the coast-
ing beam theory [2,3]. However, these are based on the
single-mode approximation and may not work well for the
weakly unstable case when the turbulence sets in early
before saturation.
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APPENDIX A

In this appendix, we show how to derive the linearized-
wake-field model (1) from a generic wake-field (single-
bunch) model under the condition of the Long wave-
length of the impedance. The general expression for the
collective force in the time domain is (see, e.g. , [7])

incoherent (p-independent) part Fo and a coherent part
Ff.

Fo(z) = Ir, ) W(lLo) —rx) W'(tLo);
l=l l=1

(A3)

F'=K dx'px', t +K x t —lTo W tL,o
z l=o

where x(t) = f dz'z'p(z', t) is the centroid coordinate
and W' = "& is the wake-field derivative. The inco-
herent time-independent component Fo produces a shift
in the equilibrium synchrotron phase (which accounts for
the parasitic energy loss) and a change of the synchrotron
frequency. Both of these quantities are small under the
assumption of weak interaction (3) and (8) and will be
neglected in what follows.

The first term in the coherent component I"' corre-
sponds to the single-pass contribution to the potential
well distortion in the absence of coherent oscillations. In
general, it produces a contribution to the tune spread
b~' K. In the case of a narrow-band nearly reso-
nant impedance, however, this extra tune spread is much
smaller than the unperturbed tune spread her, . By the
same token, in the presence of coherent oscillations, the
dipole mode contribution of the first term in I"' is much
smaller than the second term for the case of a narrow-
band nearly resonant impedance. In other words, the
multiturn wakes in this case are much larger then the
single-turn ones. We are left finally with the dominant
term in the wake force in the form

F(z, o = m) f dx'p(z', t —IT'0)w(ILO+*' —*),
l=o

F = K) z(t —tTo) W'(LLo)
l=o

(A4)

(A1)

where p(z, t) is the line density of the beam, W(z) is
the wake-field function, To is the revolution period, Lo is
the circumference of the ring, and the summation is over
all preceding revolutions. The intensity parameter ~ is
K = e &

' (with e for electron charge, Io for the bunch
0

current, and Eo for the particle energy) [6]. The form
(Al) is equivalent to a more familiar frequency-domain
representation when the line density perturbation p' is a
harmonic function of time:

F'(x, t) = i ~ ) p„'Z(p+ O)e*-
p

where p' are the Fourier harmonics p'(x, t)
p' e'~i'~ ni) and Z(u) is the impedance Z(tu)

~Tf dze' o W(x). The condition of the long wavelength
of the wake field relative to the bunch length can be used
in expanding all the terms I g 0 in the wake field W
(Al) up to linear terms in the small argument x' —x.
In the l = 0 term, one can use the same condition by
substituting for the wake field W(x) by the step function
of x. This yields the force as the sum I" = I"o + F' of an

In our model (1), where the wake field is localized (the
interaction is h functional) the collective force F
ge/Nqb2 can be expressed as

F(t) = eb'2~ ) z ([t]2~ —2z.n) G(t —[t]2~ —2irn), (A5)

where [t]2 is the moment of time of the last "kick"
[t]2 ——27r[t/2ir] ([] denotes the integer part). The quan-
tity t is given by

G(t) = sin(~„t)e ", (A6)

F(t) = —) x([t]2 —2irn) G(2mn) .
n=O

(A7)

This is equivalent to the expression (A4) [with a specific

where u +i ur; = —in/2+ g—o.2/4 + ur2. This expression
becomes equivalent to the distributed wake (A4) if one
utilizes the condition of the synchrotron &equency be-
ing much smaller than the revolution frequency ~, (( 1.
Indeed, averaging F(t) (A5) over the "fast" time scale
At = 2' yields
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APPENDIX 8

Consider a multibunch longitidinal motion with a lo-
calized impedance of a long wavelength:

N E Mi

tll + Clllll + K [Ill = IIX ) ~E'IT b2 (f + 2w —
)n=1

(81)

where q = Pi qi gei/e is the sum over difFerent modes qi
with difFerent frequencies a,i and damping decrements ni
which are coupled to the beam with a diferent coupling
strength e~. Furthermore, M is the number of bunches

and xI") is the coordinate of the ith particle in the nth
bunch. The representation of the wake field in (Bl) is
fairly general as one can represent an arbitrary spectrum

choice of W'(x) = G(2vrx/Ls) (A6) and tc = e/2'] since
x(t) changes very little over the revolution period b,t =
2'.

z =acos~~~, t+2x +p)(~) ( Ap,
(82)

where the amplitude a and the phase p are slow functions
of time. Expanding the periodic h function in Fourier se-
ries, one finds the dominant response of the cavity at
positive and negative synchrotron sidebands of the reso-
nant coupled-bunch frequency:

of impedance as a superposition of Lorentzian curves.
We assume now that the dominant modes of the wake

field are tuned near only one of the coupled-bunch mode
frequencies ~ur, —(p+ kM)

~
&& 1 (here p is the coupled-

bunch integer index between 1 and M) and that the
width of the impedance peak near that coupled-bunch
frequency is small Au, « 1 [right-hand side of condition
(i)]. These conditions allow us to have a single coupled-
bunch mode dominating the dynamics.

As a next step, we assume that the interaction is weak
~ « nial, u, i [condition (ii)] and the tune spread is small
A(z ) « u, . The first condition is necessary for the
introduction of an efFective impedance. The centroid os-
cillations z~") (t) then can be separated into the fast syn-
chrotron oscillations with the &equency u, and a slowly
changing envelope:

~N).
2x

I,

i [(u,+p+IcM) 4+~j g ~i[(~,—p —A:M)t+~]
Re (u„—((u, + p+ kM)2+ in)(ur, + p, + kM) (u„—(u), —p, —kM)2+in(((u, —p —kM)

+

(83)

In Eq. (Bl), the two-time scale approximation allows us to retain only the Fourier component of the collective force

F = ge/Nqbz (t + 2n'M) at the frequency u„yielding

3
+~ ~ —A + I = /Re gggg ( +++ M)

e $ 't )I
(84)

where Z is the effective impedance Z = Z(ur, ). The impedance Z(u) is

Z(ur) = —) (2n)2 (u2, —(~+ p+ kM)2+in)((u+ p+ kM) or~, —(~ —p —kM)2+ in)((u —p —kM)
+ . (85)

One can now extract the equation for the slowly varying quantities a and &p directly from Eq. (84). Using the
alternative slow variables for the centroid y = acosrp, y = —au, sing and for individual particles y; = a; cosy;,
y; = —a;u, sing;, one obtains after averaging over the fast oscillations

y;+~, y; ——A(y, +y /u), ) ' = e —Z;y+ —y (86)

Equivalently, one can return to the initial variables x; = x, , x; = x,- and present the averaged equations of
motion in the form

xi + Q) zi —As ~ = 6 —Zix +e
Z„.l

In our single-bunch, single-mode wake-field model (1), the efFective impedance Z is defined by only one term in the
siim in expression (85). Since one can achive arbitrary values of Z„and Z; by adjusting w, and n, the single-bunch
model is fully equivalent, under specified restrictions, to the multibunch system (81).
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