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Raman-ripple lasers
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Radiation from a relativistic electron beam passing through a periodic electric field in vacuum is cal-

culated in the self-consistent-field approximation in the framework of nonequilibrium statistical mechan-

ics. The synergic frequencies of the emerging radiation are due to Raman scattering. The phenomena of
frequency switching and introduction of additional polarization take place as electric-field wave numbers

are changed. In the process of tuning, there are critical wave numbers for which radiation is ducted

through the medium without modification.

PACS number(s): 51.70.+f, 52.25.Tx, 52.40.Mj, 05.70.Ln

I. INTRODUCTION

In a series of papers, Raman and Nath [I] considered
the problem of the passage of a monochromatic beam
through a liquid medium in a cell sustaining a standing
acoustic wave. The experimental arrangement is shown
in Fig. 1. The monochromatic wavefront incident on the
Y-Z surface of the cell in the negative X direction would
experience a periodically varying refractive index and
produce maximum coherence on normal incidence. If
the beam is of oblique incidence, the component of the
beam parallel to the Y-Z plane will not contribute to the
diffraction pattern. On changing the frequency of the
acoustic mode, the phenomenon of frequency switching
takes place. The fact that the refractive index is a func-
tion of space in the case of standing waves or a function
of space and time in the case of progressive waves can
make Maxwell's equations nonlinear, resulting in the
Raman-Nath difference differential equation for the am-
plitude of the diffraction orders.

Similar ideas were invoked recently by Chen and
Dawson (CD) [2] in designing an ion-ripple laser. In this
scheme, the liquid in the above system is replaced by a
plasma, which is produced by a laser beam incident on
the Y-Z plane of the cell containing a gas, and the plasma
is produced by photoionization. On this plasma cell con-
taining the acoustic wave a relativistic electron beam
(REB) is shot in the positive Z direction. It was further
supposed that the REB would repel all the space charges
in the plasma and it would experience an undulating elec-
tric field provided by the rigidly fixed ions of the plasma.

The CD model, however, is physically unrealistic, for,
as the REB enters the plasma medium, it would establish
a Cerenkov cone. The beam electrons mould not interact
with the electrons outside the cone, while electrons
within the cone (which generate Cerenkov radiation) can-
not escape across the cone surface (a surface of discon-
tinuity). Hence the Cerenkov effect is significant and can-
not be ignored in a REB-plasma interaction.

In the present formulation, we investigate the problem
of radiation emission in the CD scheme. In this paper we
consider the motion of a REB through vacuum in which
there exists a periodic electric field with a wave number l

maintained externally. The more general problem of the
Cerenkov effect in the passage of a REB through a medi-
um plasma instead of vacuum sustaining an acoustic
wave will be considered in a later work. We label one
beam electron as a test particle (T) and the rest as field

particles (i) and hence the problem is that of propagation
of a relativistic test particle in an electrostatic periodic
field having a relativistic electron gas. In Sec. II we for-
mulate the problem by writing the general Hamiltonian
and the l.iouville equation. The operators that constitute

I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

REB

FIG. 1. Plasma cell containing the acoustic wave in hydro-
gen gas ionized by the laser beam (LB) in the negative X direc-
tion. The REB is in the positive Z direction. The planes of
node (N) and antinode ( A) are parallel to the X-Yplane.
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this equation have peculiar properties: the propagator
consists of two noncommuting parts because of the pres-
ence of the external field. A Baker-Hausdorff expansion
of these operators is effected in Appendix B. Explicit ex-
pressions for the operators containing the interaction po-
tentials are given in Appendix A. In Sec. III, we give the
general solution of the Liouville equation.

We exploit the linear nature of the Liouville equation
and write the formal solution in an iterative manner.
Following the diagrammatic technique [3] developed by
Prigogine et al. , we select a subset of diagrams from the
Dyson series corresponding to the interaction time scale
(m/e c)'~, e and m being the electronic charge and
mass, respectively, and c the concentration in thermo-
dynamic limit (N~~, V~~, N/V=c). The results
are known to be equivalent to those obtained starting
from the nonlinear Vlasov integro-differential equation.
This infinite set of terms can be summed up exactly, ob-
taining a response function. Since the system consists of
a longitudinal mode such as the electric wave, the in-
teraction between the transverse and longitudinal modes
has to be taken systematically. We ignore scalar modes,
as most of the effects are included in the longitudinal
case. In Sec. IV, we have the one-particle distribution
function (OPDF) having both the transverse and longitu-
dinal components. In these evaluations, we specify an in-
itial state constructed out of the eigenfunctions of the un-
perturbed part of the Hamiltonian. The arbitrariness of
the initial state is reduced since we sum up the entire
series consisting of the various field-particle interactions
with the test particle.

We then evaluate the power radiated per unit solid an-
gle by the system (Sec. V), by averaging the test-particle
Hamiltonian with respect to the OPDF and
differentiating this with respect to time and the solid an-
gle subtended by the propagation vector. We obtain the
usual resonance conditions which give the Cerenkov an-

gle as well as the refractive index. These optical proper-
ties are detailed in Sec. VI. It may be realized that the
radiated power depends on the response function of both
the transverse and longitudinal modes. As the OPDF
consists of two distinct modes, the transverse (A, ) and lon-
gitudinal (0. ) modes, we can calculate the radiated power
both in the electromagnetic and acoustic modes. In the
present paper we calculate only the transverse com-
ponent. In the acoustic mode, the longitudinal energy
would modify the acoustic frequency and we get a renor-
malized frequency for this mode. We shall investigate
this phenomenon in a later work. The present results
have a direct application to the problem of interplanetary
scintillation as we11 as the passage of a high-energy parti-
cle through an inhomogeneous medium.

The explicit evaluation of response function is given in
Appendix C. We close this paper with a discussion of the
main results and indicate the future direction of work.
We propose to make explicit numerical calculations of
these functions later.

in which a relativistic electron beam is pumped in. There
also exists a radiation field with both transverse (A, ) and
longitudinal (o ) frequencies. We follow the notations of
Heitler [4]. The total system is characterized by the
Hamiltonian

%=As+%~,

where As is the Hamiltonian of the beam electrons and

flan that of the radiation field. We shall assign a label T
for a particle in the beam and call it the test particle. The
rest of the beam particles are denoted by the index (i).
We write

&s=.&r+g&; .

The explicit form for these can be written as

&r =mc yr —e lcoslzr+ePr

=mc (I+uI)'~ e I co—slzr+ePr,
i'V, =mc (I+u; )' (mc—uzi/l )coslz;+eP;,

In the expression for &r;, the vector u is defined as

mcu= P —(e /c )( Ai+ A ), (4)

(3p +Xp=e(6L )p,

where L is the Liouville operator pertaining to the nonin-
teracting part of the Hamiltonian and (5L ) is that con-
taining the interacting part. These operators can be writ-
ten as

L =X~+X,+L~,
wherein

where P is the canonical momentum and A& and A are
the interaction vector potentials which are functions of
q, J&,coi and q,J,co, respectively. P is the interaction
scalar potential which is a function of q, Jo, coo . The
external field is represented by the harmonic potential
and Poisson's equation gives the local charge density cop]

is the plasma frequency (4mce /m)' wherein c is the
concentration in thermodynamic limit. The radiation
Hamiltonian is in the action-angle representation (J,co).

A& and A are characterized by the polarization vectors

ei and e such that Ai is the transverse (or divergence
free) part with ei K&=0 and A, the longitudinal part,
with e X K =0 (curl free).

We shall now define a Liouville density

p=p(qr, Pr, q;;P;;Junco&, J co;Jo coo, t), which satisfies

the linear Liouville equation

II. FORMULATION

The dynamical system considered here consists of an
undulating electric field maintained externally in vacuum,

Xz-=cP —(e I /mcy )sin(1zz-)k.
~qv T

(test particle), (7a)
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In writing the above operators, the test-particle operators
are expressed in P and q while those of beam particles are
expressed in canonical variables; vi=v +p)»/y in the
random-phase approximation (RPA) [5]. It may be real-
ized that (7a} and (7b) have two parts which do not give a
c number on commutation. Hence, to write the propaga-
tor e '"+ ' as e "'e+ ' we have to make a Baker-
Hausdorff expansion and this is given in Appendix B.

The interaction part (5L ) in Eq. (5) can be written as

(5L)=(Ar+2tT+AT+2PT+Ar +leer )

+(x', +x", +x;+x;+a', +xp ) (8)

and the explicit expressions are given in Appendix A. In
writing these operators, we have used, following [4], the
expressions for the interaction potentials as

A =(8c /Vv y)'i e (QJ costo )cosK'q,
(9)

P=(8c /Vv y)'i (QJp coscop )sinK q

together with the —j part by replacing cos(Ki q) by
sin(K'q) and sin(K'q) by —cos(K q), j being A, or (7,

I

X;=(P; /m y; ). —(mao i/1 )sin( lz, )k
a

» P;

(beam particle), (7b)

and q takes the sufBx T and i, representing the test and
beam particles, respectively. Further, in writing the S
operators, we have written only a part of Poisson's brack-
et since the initial state is taken to be independent of co ..
In the above operators p=uz /(1+ id' )' and
(1+id&)' =y=(1—P )

' . We have P. ()}/BP
=u.B/Bu.

III. GENERAL SOLUTION
OF LIOUVILLE EQUATION

We formally integrate the Liouville equation (5) and
write the general solution as a Volterra equation of
second kind as

p(t)=e 'p(0)+e f d7. e " '(5L)p(v), (10)
0

wherein the first term on the right-hand side is a free-flow
term in which the initial state (t=0) is transferred to
time t without any interaction, while the second term is
the modification in the evolution due to interaction in the
system. Equation (10) could be considered as an inhomo-
geneous integral equation with a kernel function as the
operator, and it is non-Markovian, wherein the final state
depends not only on the initial state, but on the path
along which the evolution has proceeded. Equation (10)
is an exact solution of Eq. (5) and hence contains all the
time scales that exist in the system. The non-Markovian
nature is due to this fact. We iterate Eq. (10) and write
the solution as a Dyson series

00
n —1p(t)= X e fdt, f "dtt f" dt e ' (66)e ' ' (66) e " ' " (66)e "p(0) .

n=0

In Eq. (11),since (5L ) are operators independent of time,
the propagators appear in a convolution form, and in a
resolvant formalism Eq. (11) reduces to a geometric
series. If we define the Laplace transform as in [6] we can
write (11)as

I

consistent-field approximation has been detailed else-
where [3]. After selecting the subset of infinite terms, we
integrate over all the field variables and sum the series to
obtain the OPDF.

p(t)= g e"fdZe ' % (Z)[(5L)% (Z)]"p(0), (12)
n=0

where

33 (Z)= f dt e' 'e '= —((Z —C) ', (13)
0

X being an operator and the Laplace parameter Z con-
sisting of a small positive imaginary part to ensure con-
vergence of the integral.

Equations (10}and (12) are exact solutions of the Liou-
ville equation and contain the full information of the sys-
tem. From this we now extract an infinite series, with the
nth term having (e c/m }"as the coefficient correspond-
ing to the interaction time scale and this constitutes the
self-consistent-field approximation. A fluid approxima-
tion is obtained if we take terms having coefficients
(e c) '(mlP }',which correspond to the relaxation
time (P '=kT). In these, as mentioned before, c is the
concentration in the thermodynamic limit. The method
of selecting the diagrams that constitute the self-

IV. ONE-PARTICLE DISTRIBUTION FUNCTION

e

X gaZe i Z(6( 33) —iZ—
Z —v.2 —2

J

1 ~z.
1 (Ci+g )

i'

—Jt2Xe 'pr(0}, (14)

where j takes the index k or o to get the OPDF for the
transverse or the longitudinal component. Hence in
evaluating the energy loss, one can calculate the elec-
tromagnetic radiation component by taking the A, com-

Any physical property of a system, given as a local
function, can be obtained by averaging that particular
microscopic variable with the OPDF. The OPDF can be
written as

XT(6 3() T X(t) (2)—— — —
J 0 0
=e "i dt2 ei
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ponent and the acoustic mode by the cr part. In evaluat-
ing the response function @,we have

e,'(t„,t„+,)
=g e I dt„+&fdp;dq, e

tt +2

i n+( n+2 ~i—X.(t —1 )

1

a =(E —m c )/fi c + ((—me@, /Acl ) —(p, +p2 }fi
(18)

b =2Emcopi/(ficl ), C=(ma), /hcl )

After performing all the integrations appearing in (15),
taking the Laplace transform, and going over to the
kinetic regime by taking the asymptotic limit in time
(Z~O) we get

X e "+'p,.(0) (15) Bg—CO /Z Vg s

where t„is the time at the nth instant and the summation
over the particle index i gives a factor ¹ The matrix ele-
ment connecting the test particle T at two instants at two
vertices can be represented by WTT and if the test parti-
cle interacts with a field particle i, then this matrix ele-
ment can be represented by Wz;, T, where each index
represents a vertex. One can show that Wz;, r= WrTC,
and it is this factorization that enables one to write (14).
In evaluating the response function (15), we need an ini-
tial state. We construct this as

2' /Z v~ (19)

where 8 is the square of the renormalized plasma fre-
quency as given in (C9). It may be seen that the renor-
malized plasma frequency is a complicated function of
plasma frequency and wave frequency co~( = 1v, /y ) ap-
pearing in (c0 i/co@, ) as also in the argument of Bessel
function. In this sense this is a transcendental function.
In the next section we evaluate the energy loss experi-
enced by the test particle which is the same as that radi-
ated by the system,

p(0)=y (y' ~(1+e ') '~q„),
n, m

(16) V. RADIATED POWER

p(0) =g S„,sin2nlz, 5(P, )5(P2)5(P3 Po), —(17)

where now S„satisfies the recurrence relation

2(a —n 1 )S„+b(S„,+S„+,)+C(S„2+S„+2)=0,
with

where g„areeigenfunctions of the unperturbed Hamil-
tonian of the system and p is the Boltzmann factor
(kT) '. In the cold-plasma approximation we set the
Boltzmann factor to naught. The presence of acoustic
wave gives the eigenfunction in terms of Mathieu func-
tions, and we retain the periodic part and write

In this formalism, as the test particle travels through
the beam particles, in the presence of the externally main-
tained periodic electric Geld, the test particle excites the
medium and establish a Cerenkov cone, generating
Cerenkov radiation. If there were no external mainte-
nance of the periodic field, the test particle would lose en-

ergy in the process of radiation. However, since there is
an external supply of energy, the system is open thermo-
dynamically, and therefore the test particle would extract
energy from the acoustic wave which has infinite capacity
(because of external supply} and give rise to nonlinear
free electron laser (FEL) interactions. We obtain the ra-
diated power by averaging the test-particle Hamiltonian
with the OPDF and di8'erentiating this with respect to
time. Thus the power emitted per unit solid angle is

d E
dtdQ

58 f pedes fdt) f dz f dtz(es tt)(es t()cos(pz+ p) pss(0e)
2c 0

iZ(t t2) i Z—— 1

0'
(20)

where now

Kq. =K~+kp,
which implies

~i p

p=p+k(e 1/mc y p3)Icos(lz clp3t tz) —coslzI, ——

g= —cp.K„(t t~)+(K3&e /mc y—p3)

X j sin( lz clp3t —t 2
)—

I

p and f have been obtained by applying the propagator
(shift operator} given in (B5). We get a conservation con-
dition on wave vectors as K&.=K&+kp with an addition-
al wave number in the Z direction. This modifies the po-
larization vector e& by introducing an additional polar-
ization in the X direction, normal to the plane of the
wave. The X and F components of propagation remain
unaltered. A straight-forward algebra would enable one
to evaluate the inverse Laplace transform appearing in
(20) as

—sinlz+clP3t t2coslz I . —
(21)

6)) V~
2 —2

C02 V~
2 —2

cosco)(t t2 ) ccoo(st 2t2 ), (22)
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where co, and coz are the effective frequencies given by

co, =(vz+v +3co +P)/2,
coz2=(vi+v +3co —$)/2,

with

(23)

of the velocity of the beam particles. Having obtained
these effective frequencies, we shall substitute (22) in (20)
and carry out the integrations over p, z, and tz. We shall

as before take an initial state of the test particle as given
by

P =(v&—v —co ) +Sco pT(0) = g C„cos2nlzr 5(P, )5(P2)5(P3 Pp),
n=0

(25)

It may be observed that co is always ~0. Hence co1 and
co2 are always &0. For those values at which co =0,
co/, coz=v&, v . Hence for those values of the parameters
for which co =0 the emerging radiation will have fre-
quencies of the original field. Again co[,co& are both syn-

ergic functions of the parameters of the system such as
density (through plasma frequency) and the Z component

I

wherein C„is the strength of the initial state. We shall
perform all the integrations, except that of Vz, and take
the asymptotic limit in time. We can do this also by tak-
ing the Laplace transform after combining terms in

(t t2 ) a—nd t2 and take the limit of Z-+0. It is obvious
that these two procedures are equivalent. We than obtain
the power emitted per unit solid angle as

d E
dtd 0

2

fvdv(1 —p )I'
C

COg V~
[(A p )' (P~+—co2/v~)']

N1 V
[(Ap) —(PpIt, +co, /vg) ]

A(co/ —v )+ [( AIM)2 —(Puu —clPpkco, /V~)2]

A(co2 —v }
[( A p)z (Pplc cl—Pp+co,—/vt„) ] (26)

VI. OPTICAL PROPERTIES

In expression (26), p ( =cos8) is the polar angle of the
propagation vector in spherical polar coordinates. From
(26), one can obtain various resonance conditions, viz. ,

p= +co„/v~(Ppk A ),
p =k(clPpkco„)/v~(Ppk A ),

(2g)

where n can be 1 or 2. This may be compared with those
obtained by Pratap and Sen [3]. One could see that the
denominator is also a function of l through A, and in the
second set of resonance conditions, m„ is shifted by
kclPp, forming sidebands. We shall now substitute these
conditions for p in (26} and can write it in the form sug-
gested by Frank and Tamm as

d E e 1

where now

A =(e l/rnc )(y3Pp)
(27)

I = Jp(Av~/cl)Jp(2nA )[2nclPp(A —1) '
]

1'

In the above, A is the ratio of the electric energy in the
wave to the rest energy. In Eq. (26) we get two sets of
terms, the former being implicit function of the acoustic
wave number while the latter are explicit functions of l.
Again the second one has the effective frequency shifted
by an amount Ppcl. The power given in (26) consists only
of the most important term as the full expression would
have terms from the higher harmonics.

I

where

N =(1+ A/P )p (30)

and

-2 -2
N =(1+A/Pp} ' (3l)

(co,kclPp) (co2kclPp)

We shall solve for vz in terms of co& or co2 and write

-2
=1-

N n

V~CO

(v +2co ) co„
2N 1

(v +2co2) co2 —v —2co

(32)

Substituting (32) in (30}we get the expressions for the re-
fractive index N We get sim. ilar expressions for the
shifted frequencies case appearing in (31). Since co& and
co& are both positive definite we could express N as a
function of co1 and co&. If we add expressions for co1 and
co&, we can write

vg co2 (v +3co )=1+
C02 C02

1 1 CO 1

coi (v~ 3co )
or 1+

~2
2 Q)

2
2

(33)

The refractive index is an explicit function of the acoustic
wave number through A in (30) and (31) besides being an
implicit function through the efFective frequencies co1 and
~2 as we11 as a function of v .
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VII. CONCLUSION

We have considered the passage of a REB through vac-
uum in which there exists a periodic electric field. This
periodic longitudinal field enables the exchange of energy
between the longitudinal and transverse modes and this
exchange process manifests itself in the OPDF as given in
(14). The solution of the Liouville equation as given in
(12) and the OPDF (14) after summing up a subset of
infinite terms that contribute towards the self-consistent
field are non-Markovian in nature, which implies the
presence of all time scales less than the interaction time
scale (m /e c }'~ . It may be seen that this method gives
synergic frequencies and is a direct consequence of taking
Raman scattering in a systematic manner.

To obtain the kinetic regime, we make the solution
Markovian by taking the asymptotic limit in time. This
procedure results in a "dressed" particle approach and
we get a "renormalized" plasma frequency as given by
(C9), which is a highly complex function of the plasma
frequency co

&
and the acoustic wave frequency ~~.

These also appear in the argument of the Bessel function
and this synergic frequency reduces to zero for a set of
critical values of the parameters for which
(2n/y )(co~, /coiv) are zeros of Bessel function of zeroth
order. For these critical values, the response function
reduces to zero and the emerging radiation is unaffected
by the presence of the longitudinal mode. The radiation
will have a frequency v& or v and the medium will

behave like a vacuum.
The second significant result presented here is the pair

of effective frequencies co, and co2 given by (23). These
frequencies are functions [through P (24)] of vi and v,
the plasma frequency co &, and the acoustic wave frequen-

cy co&. It may be seen that co&, co& are both & 0 provided
(v&+v +3' )&P, which implies v&V +co (2v&+v )

&0, which is always satisfied. Hence the possibility of
absorption does not exist. The above condition, however,
depends on the acoustic wave number l through 8 .
Hence the longitudinal mode of the energy is always con-
verted into the transverse mode as the acoustic mode is
maintained from the outside, and since it has an infinite
capacity, the system becomes thermodynamically open,
and the FEL mechanism becomes operative. This results
in an irreversible process.

The third feature is the Cerenkov angle given by p
( =cos8) as given by (28). The first part is that due to co,

and co2 and the dependence on I appears through these
frequencies as well as through A. However, in the
second expression, these frequencies are shifted by clP0,
where c is the velocity of light. There are in all six values
of p for each ~—or we get a set of six concentric cones,
one inside the other. This also manifests itself in the ex-
pression for the refractive index, as given by (30) and (31).
The conditions for the refractive index to be positive
definite is given by co&, co&) 3Q +v, which is always
satisfied. Hence the system can emit only at the expense
of the acoustic mode.

The above analysis can be generalized to include a ran-
dorn component. In this analysis, the acoustic wave
number I is taken completely arbitrary. If we now gen-

eralize this in such a way that this wave number has a
distribution given by a normalized Gaussian one, we can
interpret this as a random distribution and one can easily
extend the whole analysis. If we now integrate the vari-
ous parameters such as Cerenkov angle, refractive index,
the effective frequencies, etc. over l with this distribution
function, we can apply this to various situations such as
interplanetary scintillations as well as modulations
effected in various astrophysical situations on the passage
of a high-energy particle. It is, however, realized that it
may be diScult to get the results in a closed form and
probably one may have to expand these in series and in-

tegrate term by term, giving the series in terms of Her-
mite functions. This aspect of the work is in progress

We propose to extend this analysis to a situation taking
into account the medium being constituted by a quiescent
plasma. In that case the Cerenkov radiation generated by
the medium plasma would be more significant as com-
pared to that produced by the beam electrons that has
been considered here.

APPENDIX A

The operators as given in (8) are

AT= —[(my ) '(8/Vviy)' ]

8
X ei ( QJi sincoz )cos( Kz q 7 )

C

+P X ( e& X K& )(QJ&coscoi )

X sin(K& qT ) (A 1)

= —[(my ) '(8/Vv y)' ]

X [K (QJo cosa)() )cos(K 'qr}], (A3)

BT=(8c /Vviy)' (QJ&sinai)(P ei)cos(K& qr)

(A4)

B7 =(8c /Vv y)'~ (QJ sinco )(P.e )

aXcos(K qT) (A5)

BT = —(8c /Vv y)'~ (+Jo sincoo )

a
X cos(K qT )

A,. =[(my, ) '(8/Vviy)' ](QJicoscoi)

(A6)

X cos(Ki q;)ei.
l.

Bq;

+(e~.P, )sin(K& q;)Ki.
1

e (QJ sinco )cos(K qr), (A2)
C

AT =[(my ) '(8/Vv y)'~ ]
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A, =[(my, ) '(8/Vv y)'~ ](QJ cosco )

X cos(K q;)e .
Bq;

+(e .P;)sin(K .q, )K ~
a

(AS)

APPENDIX B

The operators defined in (7a} and (7b) consist of two
parts which do not give a c number on commutation.
Hence we have to perform a Baker-HausdorfF expression
to write exp( A +B ) =exp( A )exp(B ). Following
Fujiwara [7],we write

A, =(8c /Vv y)' (~Jcosco )cos(K q, )K .
P;

e '=e"+ =e "exp f dk[B —A[MB]
0

B;"=[(my, ) '(8/Vv&y)'~ ](QJ&since&)(ez P;)

Xcos(K& q;)

(A9)

(Alo)

+ [A[AB]]—
2, 't

(B1)

where the square bracket is a commutator. We can write,
from (7a), for the test particle, the operators

B; =[(my;) '(8/Vv y)'~ ](QJ sinco )(e .P;)
erg— , B=(e I r/mcy')sin(lz)k.

Bq' (B2)

Xcos(K q, )

B,o = —(Sc /Vv y)' (QJO sincoo )

Xsin(K q, )
00

(Al 1)

(A12)

Evaluating the various commutators and substituting
them in the series (Al}, we can sum the series and write it
as

(e I v/mcy ) sin[lz+Mlr(k P)]k

In the above, v =v +co &/y wherein the co»/y comes
from A, which one gets by expanding (P —e A/c) for
the beam particles under the RPA [5].

—(Aclr)sin[lz+Aclr(k P)]P
Bq

(B3)

On integrating over A, and substituting the limits, we get
(Bl) as

e =exp (e I/mc y k P)Icos[lz cl(k P)r—] cosIz—]k.

+[e /mc y (k P) ]{sin[lz—cl(k P)~]—sinlz+clr(k P)coslz]k crP-
Bq Bq

(B4)

A similar procedure is adopted for the field operators. As they are expressed in terms of canonical variables, we have

e ' =exp (m co,y/I k P)[cos(lz IP3r/my) —coslz]k. —

+ (m 2co2»y /13P3 ) [sin(lz IP3r/m y )—sinlz+(IP3—r/m y )coslz] k 0' —(Pr/m y ) ~

Bq
(&5)

where P is a dyadic

P == d
and k.%= (P/y) .

dP y 3

APPENDIX C

In this appendix, we shall evaluate the response function given in (15). We shall substitute the operators and perform
the photon variable integration. As e& and e are the polarization vectors for the transverse and longitudinal modes, we
shall evaluate these two separately. We add the —A, part and after summing over the particle index i, giving a factor 1V,

which along with V ' gives the concentration c in thermodynamic limit; we get e c/m, which can be written as
(cop&/4m). We then have
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COp)C„=+2 sinvi. (t„+2 t—„+,) dP dq (ei P)cos(Ki —Ki q+Pi)ei"
Bq

—Xt„+2+(ei P)(e&, P)sin(K&. —Ki q+P&)Ki. . e "+'p;(0),'
aP

(Cl)

where P and P& have been obtained by the action of the shift operators given in (B5) on P and q. These are

P=P+k(m co,y, /I P&)Ic os(lz IPir—/m ) —coslz I,

+(K3i.m co~&y /I P&)Isin(lz !P&—w/my) —sinlz+(IP&r/my;)coslzI,2 2 2 3 2 (C2)

where ~=t„+,—t„+2.Similarly

Np)8 =+ 2 sinv (t„+2 t„+i)—fdP f dq (e P)cos(K, —K q+P }e
m V;~~. Bq

+(e P}(e P)sin(K, —K q+P )K 'e "+'p;(0), (C3)
P

polarizationtransverse

where P is the same as in (C2) while P is the same as in
(C2) with Ki. being replaced by K

We shall now substitute the initial state as given in (17)
and perform the integration over P and q. As the initial
state is only a function of z, x and y integrations are trivi-
al, giving the conservation of wave-vector components as
K, =K& and K, =Ki . We now set Kz =Ki+kp,

1 A2 2

where p is a wave number which has been introduced be-
cause of the motion in the Z direction. This modifies the
polarization vectors.

The modified 1S

ei =e„—i(ei /Ki )p, which makes Ki ei =Ki e&=0.
3 1

Thus a new polarization in the radiation component ap-
pears because of the motion of the beam in the Z direc-
tion. With regard to the longitudinal component, since
e XK =0, e and K are parallel to each other and
hence e =K /~K ~

or the polarization vector is the unit
vector in the direction of K . With regard to the new
wave vector K, we have e =e +kp/~K ~

=K~ /~K
which will set e .XK .=0. After a partial integration
with respect to P and q and having done the x and y in-
tegrations trivially, we have

2
pl

Ci = —2 sinvi ( t„+t t„+i}-
pal r.vg

X f dz fdP sin(pz+P&} ~ e&3pQ P, (e&3p/K&.—)+(ei P) K&"2 2 an
aP

—(ei P) ei.
Bq

2 BrKi" (ei P)(ei P) .
rl

+cos(pz+P, . ) ' — ei, (ei P)+(e&.P)(e„.P) Ki, - e "
p, (0). . —2,. ar

r;

and
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C = —2
COpl

sinv (t„+2—t„+3)
my;v ~

X fdz JdP sin(pz+P ) . 0 1+ p+QK3 1+
2

+(K P) 1 —
2

K3 p 2
p

2

K3 P
+pP 1+ ",' (K P) K"

q

K

(k P)(K "P)
t)q E'

K P
+ K" (K "P)

K~

+cos(pz+P )
2

r

(K P) K"
K

(K P)(K "P) gy

K
(CS)

where

Q=(m to»y; /I P3)[cos(lz 1P3r—/my ) coslz—] .

We shall sum over the polarization vector in the transverse component using the relation

(K„xa)~ (K,xb)
(e, a)(e, b)=

K~

where a and b are two arbitrary vectors. In the present case

(K~ Xk)

(C6)

where p, is the cosine of the polar angle made by K&. We shall retain only the isotropic part in (C4) and (CS) by averag-
ing over the angles of the propagation vector. We get (1—p2) in (C4) and (1+Jtt ) in (CS), which when averaged would
give factors such as (8tr/3) and (16tr/3}, respectively. We then have (C4} and (CS) after carrying out all the integra-
tions and going over to the Laplace transform and taking the asymptotic limit in time as

CO

(C7)
Z —v~Ã

2'=
z —.-'. '

CT

COpl

where to is the renormalized plasma frequency given by

4' ~pl 2n+ 1 g2 r2 P9 —N l
3'Yo N g 2n

'4 —1/2

(C8)

(C9)

In the above ton, is the frequency IPo/my =1V,/y, where V, is the Z component of the velocity of the beam particles.
In evaluating (C7) and (C8) we have only retained the dominant part and not the higher harmonics in the expansion of

n+2cos(2nlz+P). These terms have come from the term e "+'p;(0). We also get p = (2n + 1 }l.
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