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We investigate the possibility that chaos and simple determinism are governing the dynamics of
reversed-field-pinch (RFP) plasmas using data from both numerical simulations and experiment. A large
repertoire of nonlinear-analysis techniques is used to identify low-dimensional chaos. These tools in-
clude phase portraits and Poincaré sections, correlation dimension, the spectrum of Lyapunov ex-
ponents, and short-term predictability. In addition, nonlinear-noise-reduction techniques are applied to
the experimental data in an attempt to extract any underlying deterministic dynamics. Two model sys-
tems are used to simulate the plasma dynamics. These are the DEBS computer code, which models global
RFP dynamics, and the dissipative trapped-electron-mode model, which models drift-wave turbulence.
Data from both simulations show strong indications of low-dimensional chaos and simple determinism.
Experimental data were obtained from the Madison Symmetric Torus RFP and consist of a wide array
of both global and local diagnostic signals. None of the signals shows any indication of low-dimensional
chaos or other simple determinism. Moreover, most of the analysis tools indicate that the experimental
system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccess-
ful at extracting an underlying deterministic system.
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PACS number(s): 52.55.Ez, 52.65.+z, 47.52.+j, 05.45.+b

I. INTRODUCTION

The search for evidence of chaos in plasmas has yield-
ed mixed results. A wide range of chaotic processes has
been reported, including the transition to turbulence and
the formation of magnetic islands [1]. Several groups
have reported chaos and period-doubling behavior in
glow discharges and pulsed machines [2-5]. Low-
dimensional chaos has also been identified with drift-
wave turbulence both in experiment [6] and simulations
[7]. In toroidal, fusion-relevant devices chaos has been
reported in low-frequency magnetic-field oscillations in
the DITE tokamak [8] and in broadband (0-100 kHz)
magnetic-field oscillations in the HBTX1A reversed-field
pinch (RFP) [9]. In the TFTR device low-dimensional
chaos has been reported in density fluctuations, with the
dimension dependent on the wave number [10]. In con-
trast, broadband magnetic and density fluctuations in the
TCA tokamak show no evidence of low-dimensional
chaos [11].

In this paper we examine the possibility that chaos or
other simple determinism governs the dynamics of RFP
discharges using data from both experiment and numeri-
cal simulations. Simulations suggest that chaos should be
present in RFP discharges. However, it eludes all tests
for identification in experimental data. As will be dis-
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cussed, identification is particularly sensitive to the pres-
ence of noise and the stationarity of the system. This is
additionally complicated by the fact that standard linear
filtering techniques are not appropriate to signals gen-
erated by chaotic systems. Thus, although low-
dimensional chaos may govern Madison Symmetric
Torus (MST) discharges, it cannot be identified by the
analysis techniques.

The MST [12] reversed-field pinch provides a particu-
larly good instrument for investigations in nonlinear dy-
namics in fusion plasmas. It is a large toroidal
confinement device with discharges characterized by a
spontaneous reversal of the toroidal magnetic field at the
edge of the plasma. Although most measured quantities
are characterized by broadband frequency spectra, most
of the fluctuation power (ca. 90%) is concentrated in a
few long-wavelength spatial modes. Experimental evi-
dence and numerical simulations suggest that the mecha-
nism behind these tearing mode fluctuations is a three-
wave coupling process, linking two m =1 modes to an
m =2 mode [13]. This corroboration of experiment and
code indicates that the dominant plasma processes can be
modeled as a deterministic system.

The past decade has seen a tremendous effort towards
correlating experimentally observed transport with com-
putational models. Drift-wave models in particular have
shown promise towards explaining the anomalous ion
heat loss in tokamaks. Previous studies of these models
indicate that the dynamics are low dimensional, despite
the large number of interacting modes in the system [7].
The applicability of drift-wave models to RFP transport
is more tenuous. However, the models have sufficiently
general nonlinear dynamics that many of the results
should be relevant to RFP physics.

The paper is organized as follows: Section II reviews
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the techniques to be used in our analysis of the data. Sec-
tion III presents the results from analysis of two numeri-
cal simulations. The DEBS computer code simulates RFP
plasmas and is thought to model correctly the dominant
tearing mode fluctuations. The dissipative trapped-
electron-mode (DTEM) model is designed to model drift-
wave turbulence thought to be a major contributor to
transport in the core of tokamaks. Section IV presents
the results of analysis of experimental data from the
MST. In the final section we discuss the results.

II. ANALYSIS METHODS

To ascertain whether or not low-dimensional chaos
governs RFP discharges, several analysis techniques are
used. These include calculation of the correlation dimen-
sion and the spectrum of Lyapunov exponents and assess-
ing the short-term predictability. Analysis is also per-
formed on surrogate data records to guard against spuri-
ous determinations of low-dimensional chaos. In addi-
tion, nonlinear-noise-reduction techniques are applied to
the experimental data in an attempt to detect a low-
dimensional system in noise corrupted data. The
methods used will be outlined in this section.

In general, one does not have access to all the indepen-
dent variables of the system, and for experimental data, it
may not be clear which variables are independent. Tak-
ens has proven that for dynamical systems, a single vari-
able will capture all the relevant dynamics of the system
subject to certain conditions [14]. Specifically, given a
system whose trajectory F(¢)=(x(t),y(¢),z(t),...) lies
on an attractor there is a differentiable, reversible map-
ping from the manifold containing the attractor to that
containing the attractor in delayed coordinates
X()=(x(t),x(t +7),x(t +27),...,x(t +m7)), so long
as m =2d +1, where d is the dimension containing the
original attractor and m is the dimension of the embed-
ding space. The necessity of 2d +1 components is to en-
sure that the vectors span the embedding space. Values
of m less than 2d +1 often suffice for proper reconstruc-
tion of the system.

Critical in implementing all analysis procedures out-
lined in this section is the proper choice of the time lag 7.
For a finite data record, the time lag must be chosen such
that vector components are independent. Choosing 7 too
small can result in artificially high correlation, and con-
versely, because chaotic systems are characterized by sen-
sitivity to initial conditions, too large a value of 7 leads to
extreme decorrelation. A good criterion is 7 times the
embedding dimension should be 2 to 3 times the
exponential-folding time of the autocorrelation function.
However, all analysis procedures are performed using
several values of 7 to find an optimal value. Typically,
there is a range of window lengths (m —1)7 over which
the quantity being measured can be accurately estimated.
There is an excellent discussion in Albano, Muench, and
Schwartz [15] as this applies to the correlation dimen-
sion.

Furthermore, the data should be sampled frequently
enough so that the autocorrelation time is several time
steps. Infrequent sampling will yield data that are im-

properly correlated; sampling too often will confine the
dynamics to only a portion of the attractor. Best results
for all analysis methods presented here are obtained when
the autocorrelation time is around 10 to 20 time steps.

A. Correlation dimension

We estimate the fractal dimension of the data using the
correlation dimension of Grassberger and Proccacia [16].
It is defined by

log,,C(r)
D, =lim—20=" (1)
r—0 logor
where
Cr)= lim —= 30(r—[x,—x,0), @
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and O(r) is the Heavyside function whose value is one for
r >0, and zero otherwise, and N is the number of points.
The correlation dimension provides a lower bound on the
Hausdorff (fractal) dimension. The two often agree close-
ly, differing by no more than a few percent.

Typically, one computes the correlation integral for
various radii » and plots log,,C (7) vs log,,r. Over some
region in log,yr, known as the scaling region, the
slope is constant, and the value of this slope is taken
as the correlation dimension. The two-point slope
d[log,,C(r)]/d[loger] vs log,yr is more often informa-
tive. This yields a plateau at the value of the correlation
dimension, allowing a better determination of the scaling
region.

Several groups have estimated the number of points re-
quired for a reliable determination of the correlation di-
mension. Estimates range from several hundred [17] to
42¢ [18]. Tsonis provides a more reasonable rule:
N i < 1021044 [19]. We use a criterion based on the
length of the scaling region. For adequate confidence in a
correlation-dimension determination a scaling region
should span at least a decade in r [20].

B. Lyapunov exponents

The Lyapunov exponents measure the average diver-
gence and convergence of orbits in phase space. Nearby
trajectories of chaotic systems will, on average, diverge or
converge exponentially in time. For the one-dimensional
continuous map x (¢)= f,(x,), with two initial conditions
separated by 8x the average separation after a time ¢ is
8x,~b6x,e™. Taking the limit of infinitesimally separated
points and infinite time the characteristic or Lyapunov
exponent A is defined by

df,(x)
dx

= lim LIn
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A=lim + lim In 3)
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A positive largest Lyapunov exponent has become the
standard definition of a chaotic system.

For systems of more than one dimension there is a
spectrum of Lyapunov exponents where each exponent
corresponds to one of the principal axes of an ellipsoid
centered on the trajectory and characterizes the local ex-
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pansion or contraction of the attractor. The orientation
of this ellipsoid changes as the trajectory evolves in time.
The spectrum of Lyapunov exponents is given by

3f (xX)

1
() — 130, L
A= 1lim —In 7Y

t—>w t

= lim —l—ln||J,”‘)||
t— © t

k=12,...,d, 4
where ||J{¥)|| is the kth eigenvalue of the d-dimensional
Jacobian after advancing the system a time ¢ (see [21] for
a thorough discussion).

Any continuous chaotic system must have at least
three dimensions and hence three Lyapunov exponents.
If the system is dissipative their sum must be negative to
reflect the contraction of phase space. The least negative
exponent controls the rate at which perturbed trajectories
approach the inertial manifold [22]. A chaotic system
has a positive largest exponent, and any system continu-
ous in time must have at least one Lyapunov exponent
equal to zero corresponding to the lack of divergence (on
average) tangent to the flow [23]. Thus a three-
dimensional chaotic system has Lyapunov exponents
(+,0,—).

Wolf et al. [22] have developed a method for a calcu-
lating the largest exponent from the time series of a single
variable of the chaotic system. The method follows a
fiducial trajectory of the system and calculates the aver-
age separation of neighboring trajectories as they evolve.
Although the procedure is effective, it is incomplete. A
single Lyapunov exponent can only indicate that a system
is chaotic, but tells nothing about the dimension of the
system. Noise also has a positive largest Lyapunov ex-
ponent. One needs the entire spectrum of exponents to
ascertain whether or not simple determinism exits.

A method proposed by Eckmann et al. [24] and
modified by Briggs [25] computes the spectrum of ex-
ponents by approximating the Jacobian of the local tra-
jectory of the dynamical system. In the method of
Briggs, the time series is embedded in delay space, a
group of nearest neighbors is found, and their trajectory
is fit to a polynomial. This function can then be
differentiated analytically to obtain the Jacobian of the
local dynamics.

Finding the eigenvalues of real, nonsymmetric matrices
is not trivial, and often the eigenvalues are complex,
whereas Lyapunov exponents are real. This is because
the tangent space of the system is not necessarily aligned
with our (arbitrary) coordinate system. Computation of
the Lyapunov exponents is facilitated by QR decomposi-
tion. Any matrix can be written as M=QR, where Q is
an orthogonal matrix and R is upper right triangular
with positive diagonal elements. This is known as the
“skinny” decomposition, and it is unique. Since the
time series to be analyzed is discretized, the Jacobian,
using the chain rule, can be written as J, .,
=[8fi+1/3x]=TJ; 1" - J1=QR(y -~ Rp)R(1). The
effect of the products JQ is to successively orient the
Jacobian matrices along the principal axes of the tangent
space of the attractor. The Lyapunov exponents are then
given by

2293

1 n
= j§1 InR;(;) . &)
Implementation of the algorithm is not difficult on a com-
puter, and several routines exist to do the QR decomposi-
tion [26,27]. Most of the CPU time is spent searching for
nearest neighbors rather than in actual calculation of the
exponent. The Briggs method gives superior results to
the original method proposed by Eckmann and Ruelle,
because in fitting an arbitrary polynomial it includes the
curvature of the local space. This is particularly relevant
in embedding dimensions higher than the spatial dimen-
sion of the attractor.
Kaplan and Yorke [28] have conjectured a general for-
mula that relates the Lyapunov exponents to the fractal
dimension, D,

j
2
Dgy=j+ ——{;1 | =D, , 6
j+1
where Dy is the Kaplan-Yorke or Lyapunov dimension.
The Lyapunov exponents are ordered such that A, > A, |,
and j is the largest index for which ${_,A; >0. The con-
jecture appears to hold rigorously only for homogeneous
attractors. However, it does hold approximately for
many cases.

In calculating the spectrum of exponents, there are
several indications that the system is deterministic and
not random. First, in higher embedding spaces the values
of the exponents will remain reasonably constant, and ad-
ditional exponents will be negative. A direct consequence
of this is that the Kaplan-Yorke dimension statures to a
nearly constant value. In addition, continuous systems
will have an exponent close to zero. Randomness can be
identified by several characteristics. The data fill the
space they are embedded in, as evidenced by the KY di-
mension, and although there are negative exponents, no
convincing zero exponent exists. Negative exponents
reflect the fact that the system is bounded. Moreover, it
is difficult to find sufficient nearest neighbors, even for
rather large radii because random points are sparsely and
evenly distributed in the embedding space.

C. Nonlinear prediction

One goal of identifying and characterizing chaotic
behavior in experimental data is to develop a set of model
equations for the system. A less ambitious goal is simply
to predict the short-term behavior without knowing the
governing equations explicitly. With this goal in mind,
several methods have been developed, all of which use
essentially the same procedure, with more or less sophis-
tication [29-31]. The time series is first embedded in an
appropriate space using the method of time lags. The ini-
tial point for prediction is chosen, and the space is
searched for its nearest neighbors. In the simplest
method, the average of the neighbor’s short-term trajec-
tory becomes the basis for predicting the evolution of the
initial point. The neighbors of this new point are then
found, and the process is repeated. A superior method
fits a linear or higher-order polynomial to the local trajec-
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tory. We use a method similar to one proposed by Farm-
er and Sidorowich [29] except that a generalized polyno-
mial is fit to the local trajectory. The generalized polyno-
mial can be written as

Fl(x)=f10+ Zf”x +2f,2xx+"‘ 5 (7)

where F;(x) is the map of the ith component and the
sums are over all components in the embedding space ( f;;
is an m dimensional vector, f;, is an m X m tensor, etc.).

To measure the predictability we compute the average
deviation of the predicted from the actual values, normal-
ized to the distance propagated:

ly —xl|
predict= y(xi ’ (8)

e
where y is a vector pointing along the predicted orbit and
x points along the actual orbit. Because a single poor
prediction (say, in a sparsely populated region of phase
space) can strongly skew the mean, the median is a better
measure of the average normalized deviation. Predic-
tions are done at successive time steps measured in units
of 7—1 for two reasons. Colored-noise systems, particu-
larly low-pass filtered noise, can give very small predic-
tion errors if the time step is too small. Choosing the
time step equal to 7, however, will result in spurious
correlations because components are shared among suc-
cessive vectors. Hence the choice of —1. Despite this
choice, correlated noise (random systems with short-term
correlation, e.g., colored noise) will show some short-
term predictability. White noise consistently has 100%
error.

D. Surrogate data sets

Once a chaotic system has been identified, one needs to
confirm that the identification is not an artifact of the
analysis procedure. One method for doing so involves
the creation of surrogate data sets. A surrogate set is
similar to the original data, but randomized in some way
to destroy the determinism. The analysis methods should
then be reapplied to this new data set. All tests should
yield negative results, thereby confirming the original as-
sessment of determinism. If there still reman indications
of determinism, one is likely witnessing an artifact of the
analysis method.

The most effective method of creating a surrogate in-
volves using the data from the original system and ran-
domizing the phases of the Fourier components. This
preserves the original power spectrum, but creates a data
set in which small-scale spatial structure is lost. The
methods preserves global quantities of the system: the
power spectrum (obviously), macrostructure in all embed-
dings (similar periodicity and amplitude), and also the au-
tocorrelation time. Yet any simple determinism is des-
troyed.

E. Nonlinear noise reduction

While simple low-pass filtering may be appropriate in
most cases, in general it is an inferior method of noise
reduction. This is because it does not take into account
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the inherent nonlinear dynamics of the system. The
method simply attenuates all signal components greater
than a certain frequency. This may, however, alter the
relevant dynamics of the system while ignoring other
spurious components at lower frequencies. In addition,
linear filtering methods can distort the phase informa-
tion. As discussed in the previous section, this informa-
tion is crucial to the dynamics of chaotic trajectories.

Several similar alternative methods of filtering
specifically aimed at reducing noise in chaotic systems
have been developed [32-38]. The methods make use of
the spatial structure of the underlying attractor and are
similar in implementation to the prediction methods out-
lined in Sec. II C. The time record of a single variable of
the system is embedded using the method of lags. For
each point in the embedding space the nearest neighbors
are found. The average local trajectory of these points is
found, which becomes the functional map of the point be-
ing filtered.

The method as outlined lacks self-consistency, howev-
er. One begins with a single time record and creates from
it an array of time records, one corresponding to each di-
mension of the embedding space. The method for
correcting this distinguishes the various approaches. One
approach simply updates only a few of the components
in the embedded space. For a given point in the em-
bedded space (x(2),x(t+7),x(t +27),...), the filtered
image point is (y(z+A?),y(t+At+7),...,x(t+A:z
+n7),...), where y is the filtered signal. Thus, each new
basis vector consists of some components from the
filtered trajectory and the remaining components from
the original signal. Our investigations indicate that up-
dating only one, the leading component, yields the best
results. The method is iterative, with several iterations
required for best results. It achieves very good results for
sets of ordinary differential equations with modest levels
of additive noise ( < 100%), recovering the original tra-
jectory very nearly. The global deterministic properties
of the system—fractal dimension, Lyapunov spectrum,
and short-term predictability—are only partially
recovered, since some small scale structure is lost. How-
ever, it is sufficient to be able to recognize the system as
low dimensional.

More sophisticated methods to achieve self-consistency
use a window of points and find the best fit trajectory us-
ing a least-squares method [32,37]. Our investigations in-
dicate that results are not much better than the above
method.

III. NUMERICAL SIMULATIONS OF PLASMAS

In this section we present results from two numerical
plasma simulations. The first is a code that models global
RFP dynamics. The second is a model of drift-wave tur-
bulence. Both systems show strong evidence of low-
dimensional chaos.

A. DEBS code

The DEBS code is a three-dimensional magnetohydro-
dynamic (MHD) numerical simulation that with proper
initialization will model reversed-field pinch discharges
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[39-42]. The model has helped considerably in under-
standing tearing mode fluctuations in RFP plasmas. The
agreement between experiment and simulation lends
credibility to the code’s ability to model real plasma pro-
cesses.

Although the code correctly models these phenomena,
there are some limitations. The model is pressureless,
and thus does not include pressure-driven modes. In ad-
dition, to have a reasonable computation time, the model
uses a rather small value for the magnetic Reynolds num-
ber, or Lundquist number S =7, /7 ,. 7, is the resistive
diffusion time, given by 'r,=41ra2/c2'q, where a is the
scale size of the system and 7 is the plasma resistivity.
T4 is the Alfvén time and is equal to a divided by the
Alfvén speed v =B,/ 4mp,, where p, is the density.
Larger values of S increase the computation time
significantly because the system becomes more turbulent
and requires a smaller time-step size to accurately follow
the wave dynamics. In the simulation presented here, the
Lundquist number was 6 X 10°, whereas the experiment is
estimated to be the order of 10°. Despite this low value,
several tens of Cray CPU hours are required for each run
to obtain a time record of sufficient length.

The code solves a reduced set of MHD equations via
the semi-implicit method. This method allows relatively
long time steps to track the relevant nonlinear phenome-
na by modifying the evolution of the destabilizing fast
time-scale Alfvén modes. Details of the method can be
found in the references. The dimensionless equations
solved are

24 =SVXB—nJ ,

o ©)

p%’tf= —SpV-VV +SIXB +vV*V .
The magnetic field B is in units of the characteristic field
strength B, V is the fluid velocity in units of the Alfvén
speed, A is the vector potential, J is the current density,
and p is the mass density in units of p,. Finally, v is the
viscosity coefficient v=v,7, /a2, where v, is the charac-
teristic viscosity. Both the viscosity and the mass density
are assumed to be spatially constant; furthermore, the
mass density is not evolved. The equations are solved in
cylindrical geometry with periodic boundary conditions
in the z direction to mimic a torus.

For the data presented here the equations were solved
for nine toroidal and three poloidal modes with 127 radi-
al mesh points. The system was monitored at regular in-
tervals during which nine quantities were recorded.
These were the parallel electric field Ell’ the average elec-
tric field E,,.=—S{ ¥V XB ), and the Ohmic electric field
Ep=nJ at both the edge and the core, the average
toroidal and poloidal magnetic fluctuations, dB, /dt and
dB, /dt, and toroidal loop voltage V),,,. We obtained
about 20000 data points for each signal covering about
1.65 resistive diffusion times. Direct comparison with
MST discharges is not possible because of the compressed
time scales used in the code. However, by comparing
tearing mode time scales one arrives at a duration corre-
sponding to about 55 ms for a standard MST discharge.
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FIG. 1. Fluctuations of the poloidal magnetic field at the
wall from the DEBS code.

Figure 1 shows the time history of the average poloidal
magnetic field fluctuations. Time is measured in units of
the resistive diffusion time 7,. The trace shows evidence
of flux jumps—bursts of magnetic field energy—which
are also characteristic of MST discharges. The power
spectrum of the signal is broadband, indicating that the
system is not periodic.

The correlation dimensions for dB, /dt and its phase-
randomized surrogate are shown in Fig. 2. The original
signal shows a long plateau region with a value indepen-
dent of embedding dimension. The surrogate shows a
short region of spuriously low dimension, which is similar
to the behavior seen in correlated noise. Most other sig-
nals, including E| and Ep, also have long plateaus of at
least a decade at a dimension between three and four.

The prediction errors for dBp /dt, Eg, and their surro-
gates are plotted in Fig. 3. Both signals show fair predic-
tability, better by a factor of 3 than their corresponding
phase-randomized surrogates. However, an embedding
greater than 18 is required before any evidence of short-
term predictability is seen. This behavior is odd consid-
ering that the dimension of the system is no greater than
5, requiring an embedding of at most 11 to reconstruct
the attractor faithfully. This may be attributable to the
small number of data points.

Table I shows the Lyapunov exponents calculated for
two of the representative quantities. In both cases, the
Kaplan-Yorke dimension asymptotically approaches a
constant value, and the Lyapunov exponents remain rela-
tively constant as the embedding dimension increases.
Both systems show a clear zero exponent.

8 N I
; original surrogate
—e—dim=9 —o—dim=9
§6 —&—dim =10 —©—dim =10
§5
£
B4
s
&3
[
8 2
1
0 L
-2.5 -2 -0.5 0

-15 -1
log1 0 (radius)

FIG. 2. Correlation dimension for dB,/dt from the DEBS
code and its phase-randomized surrogate. The data show a scal-
ing region not present in the surrogate.
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FIG. 3. Prediction error for the DEBS simulation. Predicta-
bility for both dB,/dt and Ej is better by a factor of 3 than
their surrogates.

B. Dissipative trapped-electron-mode (DTEM) model

A topic of intense research in the fusion plasma com-
munity is anomalous particle and energy transport. In
tokamaks, one mechanism possibly responsible for this
transport is the long-wavelength drift-wave turbulence
associated with dissipative trapped ion and electron
modes. The existence of these modes is indicated by
several experiments [43-45], although their link to
confinement is still speculative. The specific model is
probably not directly applicable to RFP physics. Howev-
er, the basic structure of the model provides an instruc-
tive archetype for long-wavelength turbulence in general.
In particular, one of the nonlinearities, the polarization
drift nonlinearity, has a direct correspondence to one of
the MHD nonlinearities. Thus, although the model
[46,47] differs in the details, some of the global
properties—saturation, spectral distribution of energy,
and transport—should be similar to those seen in RFP
devices.

The DTEM model [46,47] possesses two nonlinearities
that govern its behavior. These are the E X B nonlineari-
ty and the polarization-drift nonlinearity. A similar
model used to study 7; turbulence has been investigated
for low-dimensional chaos in [7]. The DTEM model

equation is given by

on oA oA on
—+v*—+yA+D——DLV— Xz-
FY 3 Y D8y2 LVay z-Vi

+pc, Vi Xz-Vp*Via+uV*a=0, (10)
where 7 is the fluctuating ion density, v* is the diamag-
netic drift-wave velocity (cT,/eB)/L, L is a density gra-
dient scale length, y is a long-wavelength collisional
damping coefficient, p is the ion gyroradius evaluated at
the electron temperature, and c, is the ion sound speed.
D is a negative diffusivity describing the destablization of
DTEM modes with D =¢*%*%(1+39)/y,, where y, is
the electron collisional damping coefficient, € is the in-
verse aspect ratio, and 7p=d InT/d Inn is the electron
temperature gradient parameter. Finally, u is the
coefficient of hyperviscosity introduced to model strong
damping at short wavelength. The important nonlinear
terms are the fifth, which is the E X B nonlinearity, and
the sixth, which is the polarization-drift nonlinearity.

The code is purely spectral, meaning all computations
are done in Fourier space. The system is initialized with a
mode spectrum symmetric about the origin and allowed
to evolve until transient behavior has vanished. The mag-
netic field is oriented along the z axis, and the density
gradient is in the x direction. In the jargon of the code, a
13X 13 case contains the modes O though *6 in both the
kx and ky directions, denoted by (ky,kx). For the work
presented here the system was driven with a linear term
(the fourth term) at long wavelengths. The intermediate-
wavelength range of no damping or driving is known as
the inertial range. Nondriven/nondamped systems were
examined and appear also to be chaotic; however, we will
concentrate here on the more physical model. Several
cases were examined, including 13X13, 21X21, and
29X29. We present her the results for the 21 X21 case,
which are representative. The data analyzed include the
fluctuating energy from each of the modes in the inertial
and damped regimes and the total fluctuating energy and
enstrophy (mean-squared vorticity). Results presented
below indicate low-dimensional chaos and simple deter-
minism in most cases examined with a dimension depen-
dent on the regime.

TABLE 1. Lyapunov exponents and Kaplan-Yorke dimension for two of the quantities analyzed

from DEBS code.

System 1037 (units of ,) Dgy Lyapunov exponents
dB,/dt 0.96 5.31 0.3738+0.0123 0.1247+0.0091 0.0129+0.0099
—0.0535+0.0112 —0.2184+0.0177 —0.7796+0.0343
0.88 5.85 0.3638+0.0106 0.134110.0084 0.0113+0.0085
—0.0535+0.0095 —0.1520+0.0108 —0.3555+0.0146
—0.9002+0.0288
E,. 0.96 6.30 0.3569+0.0111 0.1537%0.0092 0.0262+0.0083
—0.003310.0033 —0.0760+0.0113 —0.2296+0.0142
—0.7577+0.0265
0.80 6.82 0.3680+0.0103 0.1951+0.0086 0.0404+0.0076

—0.0091+0.0082
—0.3791+0.0144

—0.0840+0.0094
—0.9597+0.0288

—0.1988+0.0109
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FIG. 4. Energy of the (0,8) mode of a 21X 21 mode system in
the DTEM model. This mode is in the damped regime.

Figure 4 shows a typical time trace of the (0,8) mode
energy. This mode is part of the damped regime. Figure
5 shows the correlation dimension for the (0,6) mode,
part of the inertial range, and its phase-randomized sur-
rogate. There is a plateau region at a dimension near 6
that is not evident in the surrogate plot. The divot seen in
the surrogate plot near a dimension of 7 is typical of the
spurious plateau seen with correlated noise. Modes in
the damped regime also indicate low-dimensional dynam-
ics, with a dimension near 9. The measured dimension of
the inertial range is typically lower than that of the
damped regime; however, no strong dependence with
mode number is seen for modes in the same regime. This
behavior is not unreasonable and is consistent with the
results reported in [7]: the regime in which the linear
terms dominate (damping regime) shows a higher dimen-
sion than does the regime in which nonlinear terms dom-
inate (inertial range).

Figure 6 demonstrates the short-term predictability of
the signals. Plotted are the prediction errors from the
(0,6) mode, the (0,8) mode and the total energy along with
the error of their phase-randomized surrogates. The
short-term predictability of the (0,8) mode is especially
good: at least an order of magnitude better than its sur-
rogate. The predictability of the energy is also good,
though not quite as dramatic as the (0,8) mode. The
predictability of the (0,6) mode is very poor, though,
showing a large prediction error comparable with its
surrogate’s.

One should expect a system to have a single dimension
characterizing its topological structure. We can offer
some speculation as to why different modes show
different dimensions and predictability. The DTEM

12 —

original surrogate
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FIG. 5. Correlation dimension of the (0,6) mode of DTEM
model. There is a clear scaling region for the original signal at a
dimension between 8 and 9 not evident in the surrogate.
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FIG. 6. Prediction error for the (0,6), (0,8) modes and total
energy of the 21X21 mode spectrum. Predictability is good for
both the (0,8) mode and the total energy, though poor for the
(0,6) mode.

model has two very different regimes, the inertial range
and damped regime, which govern the dynamics of the
system. In the inertial range the only dissipation is
through the nonlinear coupling to the other modes, while
the damping regime contains a dominant linear damping
term. The dynamics of the damping regime are largely
independent of the inertial range; the reverse, however, is
not true. Thus, it may not be unreasonable that the two
regimes have different dimensions when examining the
large-scale structure. At very small scales this difference
should disappear, reflecting the fact that it is a coupled
system. However, the number of points required and
computational constraints restrict the ability to explore
this limit of infinitesimal scale. Because the inertial range
is very nearly Hamiltonian, trajectories are not strongly
drawn to the attractor. Through the interaction with
other modes, modes in this regime may experience per-
turbations from the inertial manifold of the attractor, and
cannot quickly return to the manifold. In the damped re-
gime, the dominant linear term ensures that the trajecto-
ry remains close to the inertial manifold, accounting for
its superior predictability.

Table II shows the Lyapunov exponents for the (0,6)
and (0,8) modes in several embedding dimensions. Both
systems have positive exponents, indicating that the
modes are chaotic. The (0,8) mode has a higher Kaplan-
Yorke dimension before it saturates, as expected. The ex-
ponents are very stable from one embedding to the next,
remaining at approximately the same value. This is a
good indication that the values are probably very nearly
correct. In addition, both show at least one and possibly
two zero values.

IV. EXPERIMENTAL DATA
FROM THE MADISON SYMMETRIC TORUS

To ascertain whether or not simple determinism
governs discharges in the Madison Symmetric Torus a
wide range of signals was analyzed comprising both glo-
bal and local measurements. Global signals included
fluctuations in the average toroidal magnetic field at the
wall, dB,,, /dt, fluctuations in the plasma current, dI, » /dt,
chord averaged density fluctuations, both optical and soft
x-ray radiation, and toroidal and poloidal gap voltages
V,, and V,,. Local signals included local poloidal and
toroidal magnetic field fluctuations, ion saturation
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TABLE II. Lyapunov exponents and Kaplan-Yorke dimension for two modes of the DTEM model.

Time units are proportional to 1/v*.

System T Dgy Lyapunov exponents

Mode (0,6) 0.18 8.10 1.7775+0.0427 1.0174+0.0315 0.5018+0.0276
0.0950+0.0260 —0.022240.0222 —0.4130x0.0335
—0.921840.0396 —1.65751+0.0564 —3.8867+0.1088
0.16 8.55 1.71481+0.0377 0.9704+0.0301 0.4574+0.0261
0.0757+0.0235 —0.0525+0.0268 —0.2167+0.0290
—0.6746+0.0337 —1.194510.0430 —1.9802+0.0594

—4.4591+0.1159
Mode (0,8) 0.05 9.09 8.8462+0.1415 4.9430+0.1087 2.528140.0860
1.15181+0.0841 0.0490+0.0490 —0.3610+0.0996
—1.2486+0.1249 —3.9239+0.2864 —9.2991+0.5115

—29.022+1.073

0.04 9.63 8.9888+0.1169 5.7238+0.1030 3.312240.0894

1.3845+0.0872
—1.9071+0.1354
—10.868+0.250

0.1431+0.0976
—3.7892+0.1629
—23.434+0.0398

—0.4498+0.1183
—6.5160+0.1955

current J,,, and plasma potential fluctuations. We
present here a representative sample drawn from both
groups.

The data were taken during the 40-ms flattop period of
the MST discharge, which is the period over which the
system is most nearly stationary. The global magnetic
fields of a typical low current discharge (~290 kA) are
shown in Fig. 7. Most signals were digitized at either 250
or 500 kHz, resulting in 10000 to 20000 points. The
power spectra of all signals are broadband, with
significant power in most up to 100 kHz. The autocorre-
lation times are extremely short, on the order of two to
three times steps for all signals except J,,. dB,, /dt is
plotted in Fig. 8. Evident in all signals are the flux
jumps, bursts of magnetic field energy, which are charac-
teristic of the MST discharges.

Figure 9 shows a comparison of the correlation dimen-
sion of dB,,/dt and its phase-randomized surrogate.
There is no saturation to a plateau with increasing
embedding for any signal, indicating that there is no evi-

30 40 50 60 70 80 90
time (ms)
FIG. 7. Magnetic fields for a typical MST discharge. The
data presented here were analyzed during the flattop period
about 17-57 ms.

dence for low-dimensional chaos or simple determinism
in the unprocessed signals from MST. The curves of the
original and surrogate data are indistinguishable,
confirming that dB,, /dt is not a low-dimensional chaotic
process. Figure 10 depicts the prediction error for the
MST signals. None of the signals are predictable in the
short term. The steep rise from a modestly high value
(20-30 %) to saturation at 100% within two to three
time steps is typical of correlated noise.

Table III presents the calculated Lyapunov exponents
for the data. With each increase in embedding, the
Kaplan-Yorke (KY) dimension increases significantly, al-
though it does not equal the embedding dimension.
Several of the signals, J,,, dB, /dt, and dBp /dt, do show
credible zero exponents, which would indicate that the
processes are continuous in time rather than random fluc-
tuations. dB,, /dt and dI,/dt do not show a zero ex-
ponent. Because the KY dimension never saturates, the
negative Lyapunov exponents cannot be trusted, despite
the fact that some of the larger values appear relatively
stationary. The positive values may be correct and reflect
the space-filling property of the high-dimensional system.

In addition to time-series analysis, MST discharges
were analyzed spatially using a set of magnetic pickup
coils distributed toroidally around the torus. Rather
than using time-delay embeddings to reconstruct the

o

(=)

fdt (arbitrary)

.dBlw

50 60 70 80 90
time (ms)

5 L
0 10 20 30 40

FIG. 8. Fluctuations in the toroidal magnetic field at the wall
in the MST.
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FIG. 9. Comparison of the correlation dimension of dB,, /dt
in MST with its surrogate data set. Both show very similar
behavior, indicating that dB,,/dt is not governed by a low-
dimensional chaotic process.
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FIG. 10. Prediction error for MST signals. None show any
short-term predictability beyond that of correlated noise.

TABLE III. Lyapunov exponents for the MST signals, measured in us™

Kaplan-Yorke dimensions.
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phase space, vectors were created by using signals from
separate coils as individual vector components. The pur-
pose was to address the issue of stationarity by analyzing
data from a very short time period and still have a
sufficient number of vectors for adequate analysis. The
correlation integral was computed using 2000 of these
“spatial” vectors over a duration of 4 ms of the discharge
in embeddings up to 9. The number of coils corresponds
to the embedding dimension. The results are consistent
with the time series analysis. No evidence for simple
determinism was seen in MST discharges.

Although there is no evidence for simple determinism
in the raw data, the possibility remains that the signals
are noise corrupted. Nonlinear noise reduction was ap-
plied to all signals in an attempt to extract an underlying
low-dimensional system. Figure 11 shows the effect of
the filter on dB,,/dt after six iterations. Qualitatively,
the two signals do not differ significantly from one anoth-
er. The nonlinear-noise-reduction method is most
effective if the time scale of the noise is significantly
shorter than the time scale of the underlying dynamical
system. These results indicate that this is not the case for
MST signals.

The correlation dimension for dB,,/dt after noise
reduction is plotted in Fig. 12. There is still no evidence
of low-dimensional chaos in this or any of the data. Fig-
ure 13 shows the prediction error for the MST signals
after nonlinear noise reduction. They actually show
poorer predictive behavior than before filtering.

!, and corresponding

Signal T (us) Dgy Lyapunov exponents

dB,, /dt 2 4.02 0.1570+0.0011 0.0691+0.0012 —0.03421+0.0018
—0.1790+0.0029 —0.54800.0049

6.15 0.118610.0008 0.0701+0.0008 0.028810.0009

—0.01621+0.0012 —0.0569+0.0017 —0.113410.0028
—0.2057+0.0029 —0.477610.0043

dI,/dt 2 4.11 0.1589+0.0011 0.0670+0.0012 —0.0205+0.0016
—0.147210.0026 —0.506810.0046

6.24 0.1227+0.0009 0.0726+0.0008 0.0296+0.0009

0.0093+0.0011 —0.053610.0016 —0.1100+0.0023
—0.2157+0.0030 —0.498710.0045

Jsat 10 4.09 0.043210.0021 0.0159+0.0021 —0.0081+0.0024
—0.041110.0032 —0.104710.0059

5.07 0.0509+0.0023 0.0232+0.0018 0.0019+0.0019

—0.0181+0.0024 —0.0481+0.0035 —0.142710.0073

dB, /dt 4 4.04 0.0670+0.0009 0.0257+0.0009 —0.0149+0.0011
—0.0636+0.0015 —0.17311+0.0028

6.66 0.0567+0.0009 0.0342+0.0007 0.0147+0.0006

—0.0009-0.0007 —0.017410.0008 —0.0399+0.0010
—0.0723+0.0014 —0.1751+0.0028

dB, /dt 4 4.19 0.0698+0.0010 0.0317+0.0009 —0.0102+0.0011
—0.0599+0.0016 —0.164510.0028

6.77 0.0581+0.0009 0.0350+0.0007 0.0169+0.0006

0.0005+0.0005 —0.0173+0.0008 —0.0377+0.0009

—0.0718+0.0014

—0.1708+0.0027
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B, /dt filtered (+3 offset)

(arbitrary)

g, /dt
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FIG. 11. Eﬁ’eét of nonlinear noise reduction on dB,, /dt. The
original and noise reduced signal are nearly identical.

V. CONCLUSIONS

A. Summary

In this paper we examine the possibility that low-
dimensional chaos and simple determinism govern the
dynamics of RFP plasma discharges using both experi-
mental and numerical simulation data. In addition,
several quantities have been measured to characterize ful-
ly the nonlinear dynamics.

Data from both numerical simulations show strong evi-
dence for low-dimensional chaos. The DEBS code, which
models RFP discharges, shows a correlation dimension
between 3 and 4 in both magnetic and electric field fluc-
tuations. The spectrum of Lyapunov exponents gives a
correspondingly low value for the Kaplan-Yorke dimen-
sion. Most signals indicate simple determinism with
good short-term predictability. Mode energies of the
DTEM model, which simulates long-wavelength drift-
wave turbulence, also have a low correlation dimension,
with a value near 6 for modes in the damped regime and
near 9 for modes in the inertial range. Predictability is
good for all cases, though better for modes in the damped
regime than for those in the inertial range. The measured
Lyapunov exponents corroborate these findings.

Many local and global signals from the Madison Sym-
metric Torus were analyzed. Despite concerted effort, in-
cluding the application of linear and nonlinear filtering
techniques, no evidence of low-dimensional chaos or sim-
ple determinism is found. There is no clear scaling region
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FIG. 12. Correlation dimension of dB,, /dt from the MST
signals after processing with the nonlinear-noise-reduction
method. There are still no indications of low-dimensional
chaos.
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FIG. 13. Prediction error for MST signals after processing
with the nonlinear filter. Predictability has deteriorated in most
signals relative to the unfiltered case (cf. Fig. 10).

for the correlation integral, nor does the Kaplan-Yorke
dimension saturate. All data have poor short-term pred-
ictability.

B. Discussion

The fact that the experimental data from the MST
show no simple determinism must be contrasted with the
positive results of both the numerical simulations and
previous results from other experiments. The discrepan-
cy between code and experiment has several likely ori-
gins. The DEBS code, although it seems to model some
RFP processes well, contains several crucial
simplifications. The model lacks temperature and pres-
sure effects. Another simplification is the small number
of modes. The 27 modes (9 toroidal by 3 poloidal) used in
the DEBS code are probability far too few to model the
highly turbulent system of the experiment. The different
Lundquist numbers also probably contributes to the
difference between the experiment and simulation since
the nonlinear interaction among the modes increases with
Lundquist number. Finally, in order to efficiently model
the long-wavelength tearing modes of the plasma, the
code does not treat fast fluctuations correctly. The
broadband nature of the experimental data indicates that
these high-frequency oscillations may be important to the
system dynamics. One could reasonably expect that the
dimension should increase significantly if some or all of
these simplifications were rectified in the model.

That low-dimensional chaos is seen in the DTEM mod-
el and not in the experimental data from MST may not be
too disconcerting since drift-wave turbulence is believed
not to be significant in RFP plasmas. Yet the model is in
many ways general enough that one might expect to see
similar results despite this difference. The code suggests
that one should see simple determinism in individual
mode amplitudes. However, analysis of individual mode
amplitudes from magnetic fluctuations in MST yielded
negative results. The simulation models only one of
several processes occurring simultaneously in a real plas-
ma. This omission could account for the difference.

There may be several obstacles that hinder the
identification of low-dimensional dynamics in the experi-
ment. Apparent from the signals is that the magnetic
flux jumps are a dominant feature. Yet the data records,
due to the discharge length, contain only a few flux
jumps. Typically, one requires several hundred cycle
times of the “dominant” period of the system for proper
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estimation of the dimension. A related problem is that, if
the system is high dimensional, many more points are
needed to estimate that dimension.

A second, and probably more important, concern is the
issue of stationarity. Even a very small random fluctua-
tion in one of the system parameters can make the dimen-
sion immeasurable. One possible such process is the
influx of impurity ions into the plasma. Nonrandom
(deterministic) perturbations can increase the dimension
by at most 1 for each fluctuating quantity. However, if
several presumably stationary parameters (e.g., loop volt-
age or primary current) fluctuate this may put impracti-
cal limits on the number of points required to estimate
the dimension.

On the basis of our analysis we must conclude that the
dynamics of the RFP is probably high dimensional.
When analyzing a system, even if all parameters—
embedding delay time, embedding dimension, number of

points, etc.—are not optimally determined there is at
least some indication of a plateau in the correlation di-
mension plots. The data from the MST show not the
slightest hint of a plateau, even for embeddings up to 30.
The behavior of the correlation plots is very similar to
high dimensional or random data. We estimate that the
dimension is probably greater than 15, using the criterion
in [19] with 20000 points and a minimum plateau length
of 0.2 decades in 7. Our results make us skeptical of pre-
viously reported claims of low dimensionality in tur-
bulent magnetoplasmas.
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