
PHYSICAL REVIEW E VOLUME 49, NUMBER 3 MARCH 1994

Kinetic theory of runaway air breakdown

R. A. Roussel-Dupre
Space Sciences and Technology Division, Los Alamos ¹tional Laboratory, Los Alamos, ¹m Mexico 87545

A. U. Gurevich
P N. L. ebedev Institute ofPhysics, Moscow 117924, Russia

T. Tunnell
EG&6 Energy Measurements, Inc., Los Alamos, New Mexico 87544

G. M. Milikh
Department ofAstronomy, University ofMaryland, College Park, Maryland 29742

(Received 19 July 1993)

The kinetic theory for an air breakdown mechanism advanced in a previous paper [Phys. Lett. A 165,
463 (1992)] is developed. The relevant form of the Boltzmann equation is derived and the particle orbits
in both velocity space and configuration space are computed. A numerical solution of the Boltzmann

equation, assuming a spatially uniform electric field, is obtained and the temporal evolution of the elec-

tron velocity distribution function is described. The results of our analysis are used to estimate the mag-

nitude of potential I-ray emissions from discharges in thunderstorms.

PACS number(s): 51.50.+v, 52.80.Mg, 52.25.Dg, 52.60.+h

I. INTRODUCTION

In a previous paper [1] (hereafter, paper I) we de-
scribed a mechanism for air breakdown in which high-
energy electrons in the range of hundreds of keV are ac-
celerated by thunderstorm electric fields to relativistic en-
ergies (approximating "runaway"), producing secondary
electrons (in the ranges of tens and hundreds of keV)
which in turn runaway in energy and create additional
secondaries. This process leads to an avalanche of the
high-energy electron population, resulting in the forma-
tion of an electron beam, and requires large scale lengths
to develop (hundreds of meters) at atmospheric pressure.
In the presence of thunderstorm electric fields, the beam
propagates through the atmosphere over hundreds of me-
ters to kilometer scale lengths, and ultimately deposits a
significant amount of charge outside the region where the
threshold for initiation of this mechanism is exceeded.
While runaway breakdown has obvious implications for
lightning initiation, it is clear that this process is a funda-
mental plasma effect that could have its manifestation in
many different natural phenomena. Because of the large
scale lengths necessary to produce an observable effect,
however, laboratory breakdown experiments to date have
not identified the presence of this mechanism. Indeed, it
will be necessary to perform experiments under very
specific conditions (e.g., at high atmospheric pressures) in
order to study this process in the laboratory. In the ab-
sence of such experiments, it is instructive to examine
runaway breakdown in the context of speculations ad-
vanced concerning the production of high-energy secon-
dary electrons in thunderstorms, and to mention the re-
cent x-ray measurements which clearly suggest that this
mechanism is at work in thunderstorms.

The notion that secondary electrons generated by cos-
mic rays could be accelerated over large distances (kilom-
eters) by thunderstorm electric fields was first proposed
by Wilson [2,3) in 1924. Since that time a number of ex-
periments have been performed to look for the presence
of high-energy electrons in the electrical discharges of
thunderstorms, either by detecting them directly or by
measuring the corresponding bremsstrahlung radiation
emitted by these electrons. The early results were
conflicting; however, in the last 25 years there have been
a number of intriguing developments. In 1967 Shaw [4]
reported a general increase in count rates associated with
nearby thunderstorm activity as measured by a scintilla-
tion counter fielded on Mt. Lemmon, Arizona. In 1979,
Whitmire [5] attributed the enhanced radiation measured

by dosimeters placed on a 500-m tower to x rays pro-
duced by lightning. More recently, Parks et al. [6]
(1981) and McCarthy and Parks [7] (1985) have flown x-

ray spectrometers through thunderstorms and observed
sharp increases in the x-ray flux from 3 to 110 keV prior
to lightning strokes. Noting that a substantial population
of cosmic ray secondary electrons could be maintained by
thunderstorm electric fields, McCarthy and Parks [8] in-

vestigated the possibility that bremsstrahlung emission
associated with these high-energy electrons could be the
source of the enhanced x-ray flux. They concluded, how-
ever, that, under the most favorable conditions, this
mechanism could not account for the measured level of x
rays. A review of this subject was provided by O'Angelo
[9] (1987), who also reported observing a pronounced in-
crease in the number of electron tracks in a diffusion
cloud chamber coincident with nearby lightning flashes.

In this paper the kinetic theory for the air breakdown
mechanism advanced in paper I is developed. The
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relevant form of the Boltzmann equation is derived in
Sec. II, while the particle orbits in both velocity space
and configuration space are obtained in Sec. III. A nu-
merical solution of the Boltzmann equation, assuming a
spatially uniform electric field, is presented in Sec. IV. In
Sec. V, the results of our analysis are used to estimate the
magnitude of potential x-ray emissions. It is shown that
details of the electron beam formation and charge deposi-
tion could well account for the observed x-ray Auxes mea-
sured by Shaw and McCarthy and Parks. Concluding re-
marks are provided in Sec. VI.

II. BOLTZMANN EQUATION

The Boltzmann equation for the electron velocity dis-
tribution function at high energies with a uniform, exter-
nally applied electric field can be written

where f is the distribution function, p is the magnitude of
the electron momentum, p is the cosine of the angle be-
tween the electric field and the momentum vector (see
Fig. 1), E is the magnitude of the applied electric field,
and d,f/dt is the Boltzmann collision integral for
electron-air interactions. At high energies (e) 10 keV),
electron-air interactions are primarily Coulomb in na-
ture, and the electrons undergo small deflections in both
velocity space and configuration space. In this limit, the
collision integral can be written

4mZe Nm y2

mc y
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mc2($2 1)1/2(p 1)1/2
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where Z( = 14.5) is the mean molecular charge for air,
I =80.5 eV for air, e is the electron charge, c is the speed
of light, m is the electron mass, N is the molecular den-
sity, y=(1/+1 —P ), P=v/c, v is the electron speed,
s [=(y —1)mc ] is the electron kinetic energy, o(s', e, g)
is the doubly differential ionization cross section for the
production of secondary electrons of energy
s ~ [(s' —e, )/2], e, ( =15 eV) is equal to the mean thresh-
old energy for ionization in air, and we are integrating
over all incident electrons of energy e' greater than eL
and over all solid angles d Q into which the incident elec-
tron is scattered. A plot of the dynamical friction force
(normalized to its minimum value) as a function of energy
c, is provided in Fig. 2. Note that a minimum exists at
c;„=1.4 MeV corresponding to y;„=3.8. The second
term on the right-hand side of Eq. (2) describes the angle
scattering of fast electrons by the electrons and the nu-
cleus of air molecules. The form of this term is based on
an analysis employed by Longmire and Longley [11](and
references therein) in which the effective nuclear charge
seen by the fast electron decreases with decreasing elec-
tron energy as screening becomes more important. The
last term in Eq. (2) describes the generation of secondary
electrons resulting from the ionization of air molecules by
the fast electrons.

The doubly differential ionization cross section is de-

—+1 Fz
D

&2 j+N 13c f dQ I ds'
2

Xf (e',p')0(s', s, g), (2)

where FD is the dynamical friction force first obtained by
Bethe [10];namely,
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FIG. 1. Configuration-space geometry. The applied electric
field is assumed to be in the z direction. An electron with
momentum P is directed at an angle 0 to the field.

F (Mev)

FIG. 2. Scaled dynamical friction. The magnitude of the
dynamical friction force is plotted as a function of the electron
energy.
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(4)

with s' equal to the energy of the incident electron, e,

equal to the energy of the secondary electron, g equal to
the angle between the incident electron and the scattered
secondary electron [see Figs. 3(a} and 3(b) for a sketch of
the collision geometry], and where po is given by

2
~ 1/2

s(s'+2mc }Po=
s'(s+2mc )

as required by energy and momentum conservation, as-

rived from the work of Moiler [12,13], which assumes
that the dominant ionization mechanism involves
Coulomb interactions between a pair offree electrons. In
the case of collisions with air molecules the electron can
be considered free if it is ejected with an energy that is
large compared to its binding energy, which is the situa-
tion of interest in our analysis. The cross section is writ-
ten
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where the center-of-mass solid angle dQ was expanded
into integrals over the component angular coordinates a
and p& [=cosf, see Fig. 3(a)] and where QM(s, s') is
de6ned to be

1 1 (2e'+mc )mc

s(e —s) (e'+mc )

1 1

(c' —s) (e'+mc2)2

Given the coordinate system specified in Fig. 3(b), it is
possible to express p' in terms of the three independent
variables p, p&, and a; namely,

suming that the recoil of the molecule can be neglected
(see Bethe and Ashkin [12]). Note that the term
5(cosg —po) in Eq. (4) directly incorporates the conserva-
tion law Eq. (5). Substituting Eq. (4) into Eq. (2) yields

r

E =8 —8, —8,s t

(b) z
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The latter result together with the term 5(p&—po) in Eq.
(6) permits direct integration over angles g and a. Equa-
tions (6) and (8) are further simplified by requiring azimu-
thal symmetry about the applied electric field. In this
case we need only consider collisions occurring in a plane
[e.g., the y-z plane in the lab frame, see Fig. (3b)]. In the
center-of-mass frame we choose the plane defined by
a=a/2. Substituting the latter result into Eq. (8), and
integrating over a and p& in Eq. (6), we find

'~

d,f 1 B(p FDf) +
Bt p2 Bp
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FIG. 3. Ionizing collision geometry. In (a) an incident elec-
tron of energy c' collides with an air molecule and scatters with
energy c,. A secondary electron of energy c is produced at an
angle g relative to the incident electron. The azimuthal angle a
is measured in the plane perpendicular to that containing the in-
cident and scattered electrons. Conservation of energy requires
that c,,=c'—c,—a, where c, is the ionization energy. The
equivalent collision geometry in the lab frame is depicted in (b).
The Z axis corresponds to the direction of the applied electric
field.

t2 &2

mc 'L y —1 y' —1

X-,'[f (s' u'+)+f (s',p'-)],
where IJ&=p~+(I —pc)'~ (1—p~)'~ . If we further as-
sume that e«s', mc, then p&~0 [see Eq. (5)] and

p~ —+2(1—p )' . The latter approximations were used
in our calculations.

In order to better comprehend the origin of the right-
hand side of Eq. (2), it is necessary to elaborate on the
derivation. The general form of the collision integral (not
given here) is composed of two parts. One is a source
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term that accounts for those collisions that populate a
small volume element in velocity space around c. and p,
while the second corresponds to a sink term that ac-
counts for collisions that depopulate this region. The net
result (sum of source and sink terms) of small deflections
caused by elastic, inelastic, and ionizing collisions is con-
tained in the first two terms on the right-hand side of Eq.
(2}, while the production of secondary electrons is con-
tained in the third term. We note that the former two
terms are consistent with a Fokker-Planck treatment
where energy diffusion in velocity space is neglected but
angular diffusion is included. The Fokker-Planck equa-
tion itself is derivable from the full Boltzmann collision
integral (see, e.g., Chapman and Cowling [14]}in the limit
of small deflections. The first term on the right-hand side
of Eq. (2) considers energy loss resulting from interac-
tions with electrons surrounding air atoms, while the
second term considers angle scattering resulting from
electron and nuclear interactions. The detailed form of
the scattering term is based on an analysis of Compton
electron scattering by Longmire and Longley [11]. In the
case of ionizing collisions, the dynamical friction term in-
corporates the effect of populating or depopulating the
local region of velocity space of interest as a result of en-
ergy loss by the primary electron, assuming that it loses
only a small fraction of its initial energy and experiences
only small deviations from its initial trajectory. On the
other hand, the third term on the right-hand side of Eq.
(2) includes the contribution of ionizing collisions in
which the secondary electron populates the region in ve-

locity space of interest. The secondary electron in this
context is defined to be the electron with the lower energy
after collision, and the appropriate ionization cross sec-
tion is given by Eq. (4) with the lower limit on the in-
tegral given by cL =2@,+c,. We note that this third col-
lision term in Eq. (2) is crucial to our analysis, as it ac-
counts for the contribution of the runaway electrons to
the population of low-energy electrons.

Finally, we note that the collision terms given by Eq.
(2) are all proportional to the neutral density, as expected
for electron-air interactions. Dividing Eq. (I) through by
the neutral density leads to a parameterization of the
solution for the electron distribution function in terms of
the atmospheric pressure, i.e., time will scale as Pt and
the applied field as E/P, where P is the atmospheric pres-
sure. The results presented below were obtained for an
altitude of 5 km (N = 1.32 X 10' cm, P =372 Torr)
for direct comparison with thunderstorm parameters, but
can be scaled in this way to any altitude (moving to
higher pressure will lead to shorter time scales, while
higher equivalent fields will be necessary to obtain the
same distribution functions). This same scaling is used to
describe swarm experiments.

III. PARTICLE ORBITS

The orbit equations are obtained by first recasting Eqs.
(1) and (9) in the form

2FI,
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The fourth term on the left-hand side of Eq. (10) corre-
sponds to the effect of the dynamical friction force in
slowing down high-energy electrons along their trajecto-
ry. Because a particle orbit represents the motion of a
single electron through phase space, we are not con-
cerned with the production and loss of electrons resulting
from collisions, i.e., we ignore the first, second, and
fourth terms on the right-hand side of Eq. (10). The third
term on the right-hand side is also ignored because it in-
volves scattering which simply allows particles to jump
from orbit to orbit. Thus the orbit equations are derived
by setting the total differential of the distribution func-
tion equal to the left-hand side of Eq. (10) and matching
coef5cients of the derivatives with the result:

dp, —eE(l —p )

dt p
(12)

21n
mc +(y —1)(y —1)

y2 —
O

a50(1 —p )
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Taking the ratio of Eqs. (11) to (12) and expressing
momentum in terms of y yields the equation

and where
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and 5O= e—E/F;„with F,=4mZe N a/mc . In the
nonrelativistic limit Eq. (13) reduces identically to Eq.
(12}of paper I with 50 and a defined in the same way.

The threshold electric field needed to maintain a popu-
lation of high-energy electrons and initiate the avalanche
process is defined to be E,=F;„/e(note that E, is re-
ferred to as the critical field E, in paper I). Normalizing

out the molecular density (or air pressure P) we have
E, /P =2.87 Vcm 'Torr '. For comparison, the
threshold electric field for air breakdown caused by the
acceleration of thermal electrons with initial energy
=0.03 eV is E;/P =30 Vcm 'Torr ', a factor of 10
greater.

In the low-energy limit, i.e., y &y;„the natural log
term is assumed to be a constant over the energy range of
interest, and it is then possible to obtain an analytic form
for the solution to Eq. (13);namely,

1+@;
(y,'—l)(1—p';)

1—p;2

(1 z) 1+
1 —p

where y; and p; are the initial y and p values, and

mc Q(y; —1)(y;—1)
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dp

(14)

a 50

ln[b (y; —1)]+
91

(15)

In the high-energy limit, it is not possible to assume that the natural log term is a constant. Nevertheless, an analytic
form can be found for the solution to Eq. (13}assuming y »1. The result can be written

l1 ~1
z 1 1+@ ' 1 Pi 1 1 —p,

b 1 —p 1+@,. 'Q1 1 +1M

where b =(mc /~2I} ~3, and g&=3/4a50.
The equivalent relativistic separatix or runaway line as

defined by Eq. (13}of paper I for the nonrelativistic case
is obtained by calculating the values of y, and p; from
Eq. (14) for which y & y;„andp =—1. We find

1/1+ g

ps 1 2
1 —ri yg~ —1

where ri was defined previously. The importance of the
separatrix is that it separates velocity space into two re-
gimes. Those electrons injected at an angle 8, to the ap-
plied electric field with an energy greater than s,
[=(y,—1)mc ] possess trajectories that take them ulti-
mately to infinite energies while those with energies
below c, possess trajectories leading to zero energy. A
plot of e, /mc vs p,, for 50=2 is provided in Fig. 4. A
direct comparison with Fig. 2 of paper I (which has an
ordinate equal to 2s, /mc in the nonrelativistic regime)
indicates that relativistic effects for 5o 2 are important.
In the vicinity of p, =O, the threshold energy for runa-
way for 50=2 is larger by a factor of approximately 1.35
compared to the results obtained in paper I. Plots of
e, /mc vs 5O for p, =0 and —1 are given in Figs. 5(a) and
5(b), respectively. The former plot identifies the
minimum energy necessary for electrons injected perpen-
dicular to the electric field to runaway in energy. These

I I I I I I I I I

0.& 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Vs

FIG. 4. Relativistic separatrix for 50=2. The minimum ini-
tial electron energy needed for runaway for 50=2 is plotted as a
function of the initial electron direction of motion relative to
the applied electric field. The parameter pz is defined to be the
cosine of the angle between the initial momentum of the elec-
tron and the electric field.

0.0 0.1

electrons in principle play an important role in defining
the avalanche rate, as is shown in paper I, because they
are produced by the primary population of runaway elec-
trons moving as a beam antiparallel to the electric field,
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and because they ultimately accelerate into the direction
of the beam and thereby add to the beam population.
However, the detailed kinetic results presented below in-
dicate that transport across the separatrix is important,
and that it is the minimum runaway energy associated
with those electrons that are moving antiparallel to the
electric field [see Fig. 5(b)] that, for example, defines the
ionization rate.

To further illustrate certain aspects of "runaway" and
particle collimation in configuration space, we have com-
puted electron trajectories in both velocity space and
configuration space. The results are contained in a more
detailed report [15],where plots for a range of initial en-
ergies and angles are provided. The important charac-
teristics of the particle trajectories can be summarized as
follows. For those particles with initial energy below the
separatrix (e, =110 keV for p= —1,50=2) we find that
the orbits move toward p= —1 but that the electrons
simply lose energy monotonically. For those electrons
with initial energy greater than e, and moving counter to
the field, the orbits are such that they accelerate and
eventually turn into a direction approaching p= —1.

Those electrons moving along the field decelerate initial-
ly; however, if their energy is suSciently high these elec-
trons eventually turn into a direction counter to the field,
while at lower energies they simply continue to lose ener-

gy and leave the energy regime of interest.
The temporal variation of y and p along the particle

trajectories can be found simply by integrating Eq. (12).
Plots of y —1 vs t and p vs t for a range of initial energies
and p values are provided in the aforementioned report
[15]. We find that for initial energies below the threshold
((110 keV) and all corresponding initial p values that
the particle energies decrease iaonotonically with time.
Above the threshold () 110keV) some or all of the orbits
show increasing energy as a function of time.

Assuming that the applied field points along the z
direction of a cylindrical coordinate system in
configuration space, the electron trajectories can be com-
puted from the results obtained above and the additional
equations

dz y —1

dt yi (17}

dp (y —1)(1—p, )

dt y'

Plots of particle trajectories for an initial energy corre-
sponding to e, =0.5 MeV and five initial p values corre-
sponding to p;= —0.8, —0.4, 0.0, 0.4, and 0.8 with
50=2.0 are contained in the more detailed report [15].
We find that for this initial energy and p 0.0, the parti-
cles turn rapidly into the direction of the electric field,
i.e., within 9 m or 30ns.

IV. SOLUTION OF BOLTZMANN EQUATION

A. Numerical technique

5p
1P'

The temporal evolution of the electron distribution is
obtained by solving Eq. (10} numerically on a two-
dimensional mesh of ln(e} and p, . Our numerical treat-
ment evolves around a Taylor-series expansion of the dis-
tribution function in time written as

B2 btf(t+bt, y, p)=f(t, y,p}+ bt+ +
t}t Qt2 2

(19)

The Boltzmann equation defines a time derivative opera-
tor L which allows us to rewrite Eq. (19) as

IO
K

100

FIG. S. Minimum energy for runaway. The minimum ener-

gy necessary for an electron whose initial momentum is perpen-
dicular (a) or antiparallel (b) to the electric field to runaway in

energy is plotted as a function of 50.

f (t+&t, y, p)= f (t, y, p)+L(f)&t
ht+L [L (f}] +

2

where

(20}
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—+1 FZ
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4mcy+y —1 dP dP
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and where we have made use of the fact that L is in-
dependent of time. A fourth-order finite difference ap-
proximation is used to evaluate the s and p, derivatives,
while a trapezoidal approximation is used for the in-
tegral. Although the Taylor-series expansion can be easi-
ly taken to any order, our calculations are generally car-
ried to order 2. Given an appropriate velocity-space
mesh that is capable of resolving the dynamical friction
force and the ionization cross section, the time step b, t is
then chosen in such a way as to insure that the Courant
condition is satisfied over the entire grid. We note that
this numerical technique for solving the Boltzmann equa-
tion has been used previously in the modeling of swarm
experiments.

The energy of the lower boundary [sia=(yia —1)mc ]
is chosen to be greater than or equal to 10 keV, so that
the approximations inherent to the derivation of the
dynamical friction force are valid, and less than the lower
energy at which the dynamical friction force equals the
force exerted by the applied field. The value at the upper
boundary [sUs=(yUa —1)mc ] is chosen large enough
for the value of the distribution function to fall off to
zero. The distribution function at the lower-energy
boundary is found by solving the Boltzmann equation in
the same way as outlined above, except that the s deriva-
tive is set equal to the derivative calculated at the mid-

point between the boundary point and the next energy
value. A similar technique is used to calculate the distri-
bution function at p= 1 and —1, for all s. These bound-

ary conditions permit particles to fiow by deceleration
(acceleration) below (above) the lower (upper) energy
boundary, and for particles to be produced at the lower
boundary by ionization.

B. Results

function settles into a self-similar solution (last three
plots) where the shape remains approximately constant
while the number density continues to grow. The shape
of the distribution function at late times is determined
effe'ctively by the competition between the electric-field
force and the dynamical friction, and by the production
of secondary electrons. Above the threshold energy
[s,( —1,2)= 110 keV] electrons accelerate and avalanche.
Just below the threshold electrons are decelerating out of
that energy range faster than they are produced by ion-
ization, and there is a decrease in the electron population.
At still lower energies the secondary production rate
dominates and the distribution function increases in mag-
nitude. The peak in the distribution function at a 90' an-
gle to the electric field at low energies [s (s, ( —1,2)] is
caused by the fact that the avalanching electrons are
confined to move along the electric field, and are ejecting
secondary electrons at 90' to their direction of motion.

A unique population of electrons which we refer to as
the "beam" is carved out of the distribution function by
requiring that their energies lie above the instantaneous
threshold defined by

—eEp~F& . (22)

Electrons with energy above this threshold accelerate and
turn into the direction antiparallel to the applied electric
field. Scattering has the effect of smoothing out or
diffusing the sharp boundaries defined by this condition.
Plots of the beam distribution obtained in this way are
provided in Figs. 7(a)-7(f) for the same times as present-
ed in Figs. 6(a)-6(f). A more quantitative picture is at-
tained by plotting the beam distribution function vs ener-

gy for several values of p [see Figs. 8(a)-8(f)]. Note that
the bump on the tail of the distribution represents the
remnants of the initial Maxwellian distribution function

Results were obtained for three cases corresponding to
three values of the parameter 50 ( =E/E, )=2, 5, and 8.
The relevant computational parameters used in our cal-
culations for all cases are listed in Table I. The initial
distribution function was taken in each case to be isotro-
pic and a Gaussian in energy with a mean energy of

=2 MeV and a full width at half maximum (FWHM)
=277 keU. Three-dimensiona1 plots of the distribution

function as a function of log&os and p are shown for six
difFerent times in Figs. 6(a)—6(f) for 50=2. After an ini-
tial transient phase (first three plots) the distribution

Case

Altitude (km)t,„(ns)
ht (ns)

~,-„(MeV)
c (MeV)
5 ln(c)
Lp

SO=2.0

5.0
150

0.00005
0.01

50
0.08517
0.033

So=5.0

5.0
75.0
0.00005
0.01

50
0.08517
0.033

TABLE I. Computational parameters.

So=8.0

5.0
37.5
0.00002
0.005

100
0.09903
0.033
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FICi. 7. Time history of the beam distribution function. The amplitude of the beam distribution function obtained for 60=2 is
plotted as a function of log]oc and p, for various times including (a) t =0.0, (b) t = 1.0, (c) t = 1.5, (d) t =20, (e) t =50, and (f) t = 150
ns.
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which possessed an initial mean energy of 2 MeV.
Plots of the electron density, mean kinetic energy, and

energy spread obtained by taking appropriate moments

of the distribution function as a function of time are

given in Figs. 9(a)—9(c) for the overall distribution func-
tion, and in Figs. 9(d) —9(f) for the beam. The energy
spread is defined to be the standard deviation of the dis-
tribution function times a factor equal to &ln2. For a
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Gaussian distribution the energy spread would be
equivalent to the FWHM. From Figs. 9(a) and 9(d) we
see that the electron density for both the overall distribu-
tion and the beam avalanches after an initial transient
phase with an average e-folding time of 27 ns. The mean
kinetic energy for the overall distribution [Fig. 9(b)] de-

cays from the initial 2-MeV value to a nearly steady-state
value of approximately 0.61 MeU. Similarly, the mean en-

ergy of the beam reaches a nearly constant value of 0.95
MeV. The energy spread for both distributions [Figs. 9(c)
and 9(f)] increases from the initial value of 277 keV to
maximum values of 1.75 (overall) and 2.05 MeV (beam)
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pIG. 9. Moments of the overall and beam distribution functions. The overall electron density, mean kinetic energy, and kinetic-
energy spread are plotted as a function of time in (a), (b), and (c), respectively. The beam electron density, mean kinetic energy, and
kinetic-energy spread are plotted as a function of time in (d), (e), and (f), respectively.
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and subsequently decreases, as the population of low-

energy secondaries continues to rise, reaching steady-
state values of 1.18 (overall) and 1.45 MeV (beam). We
note that the energy moments reported here for the
overall distribution function are dependent on the energy
chosen for the lower boundary. If the range of our calcu-
lations were extended to lower energies, we would obtain
lower mean energies for the overall distribution function.
A summary of the steady-state moments discussed above
is provided in Table II.

Similar results were obtained for 50=5 and 8. Plots for
these cases are not provided; however, a summary of the
steady-state results is presented in Table II. The behavior
of the distribution function with increasing field strength
is tied strongly to the corresponding decrease in thresh-
old energy for beam formation. The latter values for
50=5 and 8 are e, (

—1,50)=30.0 and 16.2 keV, respec-
tively. As the threshold energy decreases the beam elec-
trons occupy a larger regime in phase space (both in an-

gle and energy), and the ionization rate increases because
the secondary production rate varies as 1/s [cf. Eq. (2)].
For the range of field strengths discussed in this paper t,
is proportional to s", ( —1,50), where x has a mean value of
approximately 1.2. In the nonrelativistic regime
(e, ((mc, or 50)2), x equals 1.43. For values of 50
below 1.5 the ionization rate is controlled primarily by
the acceleration of electrons into and out of the phase
space occupied by the electron beam and as a result the
ionization rate decreases substantially relative to that
predicted by the latter proportionality. When 50 is in-

creased from 2 to 5 we see an increase in both the mean
energy and energy spread of the beam distribution func-
tion. This e8ect results not only from the fact that at
higher fields the beam electrons occupy a larger energy
range, but also because the electrons can accelerate to
higher energies on the same time scale as a production of
the low-energy population proceeds. At higher field

strengths (50=8) the production rate of low-energy elec-
trons proceeds at a faster rate than does acceleration to
higher energy, and the mean energy and energy spread of
the distribution function decreases. The details of these
effects can be seen in the plots of the self-similar beam
distribution functions shown for the three values of 50 in

Figs. 10(a)—10(c).
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TABLE II. Steady-state moments of overall and beam distri-
bution functions.

Case

t; (ns)
e (MeV)

(M V)

50=2.0

Overall
27
0.61
1.18

5o= 5.0

Distribution
7.0
1.0
1.8

5o= 8.0

2.9
0.68
1.3
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t; (ns)
(MeV)
(M V)

Beam
27
0.95
1.45

Distribution
7.0
1.2
1.9

2.9
0.82
1.4

FIG. 10. Self-similar beam distribution function. The self-

similar beam distribution function is plotted as a function of
electron energy for five angles measured relative to the applied
electric field and for three values of the field, including (a) 50=2,
(b) 50=5, and (c) 50=8.
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V. X-RAY EMISSIONS

The doubly difFerential cross section for bremsstrah-

1ung emission by a relativistic electron moving through
air was initially derived by Bethe and Heitler [16],and is

given by [17,18]
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FIG. 11. Bremsstrahlung emission. The
specific intensity calculated for 5o=2 and nor-
malized to a distance of 1 km is plotted in (a)

n energyas a function of the log of the photon ener
and the emission angle measured relative to
the applied field. The specific intensity calcu-
lated for 50=2 and normalized to a distance of
1 km is plotted in (b) as a function of the emis-
sion angle for five photon energies. Atmos-
pheric attenuation is not included in these cal-
culations.
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%ith these results, the specific intensity at a distance R
from the source and an angle 8' relative to the applied
electric field can then be approximated as

where v is the frequency of the emitted radiation, h is
Planck's constant, Eo is the total energy of the incident
electron with corresponding momentum po E
(=ED—hv) is the energy of the scattered electron with

corresponding momentum p, (=me, Po and yo are
determined from Eo, and g is the angle between the in-

cident particle momentum and the emitted photon. The
specific emissivity (number of photons radiated per unit
volume per unit frequency per steradian per second) is
then obtained by integrating over the electron distribu-
tion function; namely,

and exponentiating in magnitude with an ionization time
of 27 ns, we obtain a multiplication factor equal to
7.75 X 10' for extrapolation of the results in Fig. 11.The
absorption scale length for 100-keV photons in sea-level
air is approximately 150 m [21],so that the peak intensity
observed at 1 km from the breakdown region is
approximately I,oo „,v (at 1 km) =4.9 X 10
photons/cm /s/sr/eV. Assuming a geometrical factor of
40 cm sr, the intensity of x rays in a 16-keV energy bin
around 100 keV at 1 km from our electron beam source
with 5O

=2 would be approximately I,oo „,v (at 1 km)
=2.6X10 photons/event, and at 2 km from the source
I,oo k,v (at 2 km) = 8 photons/event. For photon-
counting systems with sufficient time resolution ( & 1 ps),
a single strong event of this type occurring within 1 km
of the detector would more than account for the
enhanced count rates observed in thunderstorms [6—8].
It is also possible, however, for 1000 much weaker events
occurring within 1 km of the detector per second and
driven by thunderstorm fields such that 50=1.5 over a 1-

km-diameter region with a range of 300 m to account for
the observed count rates. These results of course are
strongly dependent on the duration of the discharge and
on the attenuation length (inversely proportional to at-
mospheric pressure~ of the x-ray photons. The only
remaining issue in this regard is a more precise
identification of the x-ray source. Simultaneous triggered
and gated, high-time-resolution ( & 15 ps) measurements
of x-ray, optical, and rf emissions would provide the
necessary data for association of the x-ray source with a
specific lightning mechanism.

e,V,I„(R,8') =
R

(25) VI. CONCLUSIONS

where V, is the volume of the source region. A three-
dimensional plot of the specific intensity calculated for
50=2 and normalized to a distance of 1 km as a function
of the photon energy and emission angle measured rela-
tive to the electric-field direction is shown in Fig. 11(a).
Two-dimensional plots of the intensity vs angle for
several photon energies are provided in Fig. 11(b). The
relativistic effects that cause forward peaking of the radi-
ation field are readily discernible at high photon energies
(e.g., 1 MeV), where the electrons responsible for this
emission have high energies ( & 1 MeV) and are confined
to a narrow angular range around the direction antiparal-
lel to the electric field. At low energies the angular
dependence becomes less forward peaked, in part because
the electron distribution function is broader in angle with
a maximum at 90 to the electric field.

The results presented in Figs. 11(a) and 11(b) were
determined for a time equal to 150 ns after initiation of
the kinetic calculations. For comparison with measure-
ments of x rays in thunderstorms we extrapolate these re-
sults to a time rb ( = 1.2 ps) corresponding to a mean rise
time and duration for strong breakdown events associat-
ed with thunderstorm discharges as observed for example
from broad-band radio frequency measurements [19,20].
Assuming that the distribution function is self-similar

The single-particle analysis adopted in paper I was

based on orbit calculations and a simplified one-particle
expression for secondary electron production. A more
detailed analysis based on the exact kinetic theory was

needed. The kinetic results presented in this paper have

yielded some insights into the details of the runaway
breakdown mechanism. First, it is clear that the kinetic
effects associated with electron transport in velocity
space around the separatrix play an essential role in

defining the avalanche rate. In particular, the critical en-

ergy which marks the transition to the runaway regime
and defines the avalanche rate is found to be E, (

—1,5O).
In addition, we find that angle scattering across the
separatrix can also be important. Second, the detailed
shape of the distribution function yields a more quantita-
tive picture for the extent of the runaway electron beam
in both energy and angle, and provides a basis for es-

timating the spatial dimensions of the electron beam as a
function of time. The latter information was used to esti-
mate the x-ray Aux expected from thunderstorm
discharges. The results indicate that runaway breakdown
can easily account for the x-ray observations of
McCarthy and Parks [7,8]. Future publications will ad-
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dress the relevance of the runaway mechanism to lightn-
ing intiation.

Finally, we hope that the theoretical results presented
in this paper and paper I will provide incentive for fur-
ther examination of lightning discharges as a whole
occurring both on earth and in other planetary systems,
and that corroborating laboratory measurements of this
alternative breakdown mechanism will be performed in
the near future.
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