
PHYSICAL REVIEW E VOLUME 49, NUMBER 3 MARCH 1994

Phase-field model of eutectic growth
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A phase-6eld model which describes the solidi6cation of a binary eutectic alloy with a simple
symmetric phase diagram is introduced and the sharp-interface limit of this model is explored both
analytically and numerically.

PACS number(s): 61.50.Cj, 05.70.La, 64.70.Dv, 81.30.Fb

I. INTRODUCTION A. Free energy

In recent years, there has been a revival in the idea
of using phase-field models as a numerical tool to study
the formation of solidification patterns. These mod-
els circ»mvent the complications associated with sharp-
interface formulations and have the advantage of han-
dling naturally complex geometries. So far, phase-field
models have been introduced to describe the solidifica-
tion of pure materials [1—5] and two-phase binary alloys

[6, 7], the dendritic growth of a pure substance haviag
beea the main focus of numerical studies [8, 9). The aim
of this paper is to extend the phase-field approach to
model the solidification of eutectic binary alloys. Due
to the presence of triple points (three-phase junctions),
modeling this system has remained a difFicult aumeri-
cal challenge despite some successes with random-walk-
based algorithms [10, 11]. A phase-field approach seems
worth exploring for this problem since it handles auto-
matically the motion of these points.

We construct the simplest possible model correspond-
ing to an alloy with a symmetric phase diagram and with
solid phases of identical physical properties. More elab-
orate models for specific alloys with different phase dia-
grams could, in principle, be constructed as an extensioa
of the one considered here. We thea perform a math-
ematical reduction of the phase-field equations to the
classic sharp interface formulation of eutectic growth in
the limit where the interface is assumed to be in local
thermodynamic equilibrium (LTE) and the kinetic un-
dercooling can be neglected. In fact, we show that for
a specific choice of scaling of parameters of the model,
this assumption is always valid ia the limit where the
scale of the eutectic pattern is large compared to the
width of the rough solid-liquid interface. This permits
a direct comparison of the two formulations, phase-field
and sharp interface, which is conducted in the context of
steady-state lamellar eutectic growth.

II. MODEL

In this section, the model is first presented for isother-
mal solidification conditions. Direct extensions to non-
isothermal conditions and directional solidification are
described at the end of this section.

A phase-Beld formulation of eutectic growth requires
a minim»m of two order parameters: a nonconserved or-
der parameter, denoted here by u(r, t), to distinguish be-
tween solid and liquid, and the alloy compositioa C(r, t).
It is useful to define the composition field c(r, t)
C@ —C(r, t) which measures the departure from the eu-
tectic composition C@. The first necessary step is to con-
struct a free energy-functional E(u, c, T) for the system
which can be chosen to have the general form:

if(u, c,T),

where T is the temperature and f (u, c, T) represents the
bulk free eaergy. To select the form of the latter we sim-

ply expand f(u, c, T) in a power series in u and c and
only retain the lowest-order coupling between u and c
which is consistent with the symmetries imposed by the
phase diagram and the nature of the phases. A sym-
metric phase diagram imposes f (u, c, T) to be iavariant
under the transformation c -+ —c, which in turn imposes
that the lowest-order coupling between u and c be pro-
portional to c . In addition, the requirement that the
free energies of the solid and liquid phases have different
composition dependeace (i.e., a double-well function for
the solid and a single-well function for the liquid) imposes
that the same coupling term must also be odd in u and,
hence, proportional to uc . With this in mind, we obtaia
the simple form

u' u4 c4 uc'
f(u, c, T) = ——+ —+ —+ —[T —TE + b,T'] u,

2 4 4 2

(2)

where AT' is a constant undercooling parameter which
is uniquely determined by the condition that all three
phases have the same bulk &ee energy at the eutectic
temperature T = T@. This undercooling difFers &om the
undercooling AT = T@ —T which is the main control
parameter for isothermal growth. For simplicity, both f
and T are chosen to be dimensionless here. This avoids
having to carry extra dimensional constants which can
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FIG. 1. Free-energy surface of the model at the eutectic
temperature f(u, c, T~).
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where M(u) is a mobility which is necessary to introduce
in order to account for the fact that impurity diffusion is
much faster in a liquid than in a solid. Although different
functional forms of M(u) are possible, we have chosen
here the simple form

always be scaled out in the sharp interface limit. A plot
of f(u, c, T) at T = T@ is shown in Fig. 1. The phase-
Geld model is then defined by the equations of motion

solid and liquid, u must be stationary which imposes the
constraint

Of(uc T) s c'
Ou 2

[T——T~ + AT' ]

This cubic equation has three roots. The lowest root
corresponds to the solid and the largest root to the liq-
uid. These roots define two functions, us(c, T) ( 0 and

ul, (c, T) ) 0. The composition-dependent bulk free en-

ergies are then defined by the relation

f„(c,T)—:f (u (c, T), c,T); v = S, I
where f~(c, T) and fL, (c, T) are, respectively, a double-
well function and a single-well function of c (as can be
seen in Fig. 1 by looking at constant u sections of the
free-energy surface). This structure imposes that there
exists, in general, two common tangents between fg(c, T)
and fl, (c, T) which define four compositions denoted by
c"(T) where the subscript (v = 8, 1) refers to the solid
and liquid phases and the superscript (p = n, P) to the
n and P phases. The symmetry of the present phase di-

agram imposes that c (T) = c~(T). —These functions
define the (n,P) solidus and liquidus of the phase dia-
gram shown in Fig. 2. The latter become metastable
for T ( TE (as indicated by the dashed lines). For
T & TE, the equilibrium compositions in the thermo-
dynamically stable solid n and P phases, corresponding
to the two legs of the phase diagram, are defined by
the common tangent of the two wells of fg(c, T). Fi-

nally, the constraint cl(T@) = c&(T@) fixes the value
of the constant AT'. For what follows, it is useful to
define the constants c = cg(Ta), cp = c&(T@), and

cz = cl.(T@) = cL (T@), to denote the equilibrium com-
positions of the three phases (solid n, solid P, and liquid),
at T=TE and

M(u)
E - 2

u —ug

L S.
c~(T)

dT
v=o. , P

With this choice, M(u) is unity in the liquid and vanishes
in the solid to leading order in 6T; uL and u&, to be
defined below, denote the stationary values of u in the
liquid and solid at T = TE.

Two formal connections to previous models are worth
mentioning. First, if c is treated as a constant, Eq. (3)
reduces to the standard phase-Geld model of a pure sub-
stance [2]. Second, aside from the specific choice of mo-

bility, Eq. (4) reduces to the Cahn-Hilliard [12] equa-
tion in the solid where u approaches a negative constant
(u = up (0).

to denote the slope of the equilibrium liquidus. In
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B. Phase diagram

To construct the phase diagram corresponding to our
model, we first define the "composition-dependent" bulk
free energies, fg(c, T) and fl, (c, T), for the solid and the
liquid, respectively. We then apply the standard common
tangent construction to calculate the equilibrium compo-
sitions in the three phases as a function of temperature.
The bulk &ee energies are defined as follows. In the bulk

IW
I

I
I IL

I

s I i II I I I I I I i a s I-0.
-1.5 -1.0 -0.5 0.0 0.5 I .0 1.5

C -C

FIG. 2. Equilibrium phase diagram of the model.
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TABLE I. Parameters used to construct the phase dia-
gram. See text for details.

AT'
E
S
E
L

c~
Cp

cg
mL,

0.140
—1.175
1.064

—1.084
1.084

0
0.515

terms of the above, the constants appearing in the def-
inition of the mobility [Eq. (5)] are defined by u„
u„(c@,TE)(v = S, L) with ug having the same value in
both the solid n and I9 phases. Nnxxxerical values of the
parameters are summarized in Table I.

One limitation of the present model, already apparent
in Fig. 2, is that the solidus and liquidus do not intersect
at some higher temperature TM which should, in princi-
ple, correspond to the melting temperature of the pure
material. Hence, this model cannot be used to describe
the evolution of solidification microstructures all the way
to the dilute limit. Nonetheless, it permits the investiga-
tion of a range of off-eutectic composition (for which it
is mainly intended).

C. Sharp-interface limit

To reduce the phase-field Eqs. (3) and (4) to the clas-
sical free-boundary formulation of eutectic growth, we
restrict our attention to a limit in which the interface is
assumed to be in LTE. Simple scaling arguments can be
used to show that this is indeed the right limit to consider
for eutectic growth with the choice of parameter scaling

(, and 7„x;.To simplify the discussion, let us
consider the case where („=(c = ( and ~„=7, = 7.. We
also write an expression for the solute difFusivity in the
liquid which we need below. The latter can be obtained
from Eq. (4) which becomes a simple diffusion equation
away from the interface where concentration gradients
are weak. It takes the form

(2M(u) 82f (~ E
T Bc 7

(9)

where the second equality on the right-hand side of Eq.
(9) is strictly valid for b,T « 1. We note in passing that
the above difFusivity has a weak quadratic dependence
on c which could, in principle, be removed by choosing a
more complex form of mobility which depends on both u
and c. In the neighborhood of the eutectic composition,
it takes on the nearly constant value Dx, = ux, ( /x .

We are looking for a condition which tells us when the
interface can be assumed to be in LTE or, equivalently,
when the kinetic undercooling AT~ is small compared
to AT. On purely dimensional grounds, it is easy to see
froxn Eqs. (3) and (4) that the former must scale as

8T
(1O)

condition is then obtained by realizing that, for a eutec-
tic interface, the maximxxm growth rate (which sets the
velocity scale in the problem) must behave as

for sxnall b,T. Equation (11) is essentially the classic
result of the Jackson-Hunt [13] analysis transcribed in
terms of the present parameters. It follows immediately
that the interface can be assumed to be in LTE when
AT~ &( b,T which, using Eqs. (9)—(ll), implies that
b,T &( 1. This, in turn, implies that the eutectic spac-
ing A (/hT corresponding to the maximum growth
rat- which in turn sets the scale of the microstructure-
satisfies the condition

2

+ ( 7xxpv) + f(upvicpv~ T@) fXX
2 E

2
(13)

where fg denotes the equilibrium bulk free energy which
is equal in all three phases at the eutectic temperature
and u„„andc„„arethe one-dimensional stationary pro-
files connecting the p, and v phase. Following Eqs. (3)
and (4), these profiles can be obtained nxxmerically by
solving the system of two coupled one-dimensional ordi-
nary differential equations,

2

dz2
2

2 d C~~
Cc v 2 c&v + upvcvv&dx

(14)

(15)

subject to the boundary condition that u„„andc„„ap-
proach their stationary equilibrium values in the p and v
phase for z —+ —oo and x ~ +oo, respectively. Numeri-
cal values of p„„calculatedusing Eqs. (13)—(15) for the
special case where („=(, = ( are given in Table II. The
requirement that the T be stationary under an arbitrary
deformation of the interface leads to the Gibbs-Thomson
conditions

ml. c = AT —I'e, aL interface

mx, c = AT + I' e, PL inte—rface
(16)
(17)

(12)

The interesting point here is that this last condition is ex-
actly what defines the sharp-interface limit of the phase-
field model. We therefore arrive at the conclusion that
for t,', („and 7 7 the approxixnation of LTE is
always valid in the sharp-interface limit of the present
model where the eutectic interface is curved on a scale
larger than its width (. Following this choice of scaling,
the only additional parameters which need to be calcu-
lated to coxnpletely specify the sharp-interface limit of
the model are the three surface energies p x, = pxxx, and

p p at the eutectic point. With our present parametriza-
tion, these have unit of length and are defined by the
relation

(2 2
fpv cp&

2

where v is the growth rate of the interface. The desired where e « g and



w i/(
~-sl&
I'/(

0
DL,v/(.

1.47
1 ~ 10

0.656
22

1.064

Strictly valid for c « 1 [see Eq. (9)].

TABLE II ~ Parameters used for the sharp-interface limit
of the model. See text for details. Values are for (, = („=(.

Ou Ou bT
7.„—= r„V——
"Ot "

Oz bu'
Bc Oc ( hP )

7-, —= ~. V —+ ~ ~ M(u) ~Bt Oz ( hc )

(25)

(26)

ent which is fixed in the laboratory kame and moving at
velocity V in the kame of the sample being pulled. Di-
rectional solidification is therefore simply described by
transforming the phase-Geld equations to this moving
frame. Equations (3) and (4) become

QvLI = @ @, V=Qp.
uL —ug

Mass conservation at the interface requires that

(18)
l9c Bc

V —+ DL Ae)
Bz

and the Gibs-Thomson conditions become

(27)

where T in Eq. (2) is now given by Eq. (24). Corre-
spondingly, in the sharp-interface limit, the diffusion Eq.
(20) is transformed to

cv„=Dl n ~c, v = np
where v„denotes the normal velocity of the interface.
Diffusion in the liquid is governed by Eq. (4) which,
away from the boundary, reduces to the usual diffusion
equation

Oe—= DLae.
Ot

(20)

Finally, the condition of mechanical equilibrium at the
interface requires that

P

& Lt L+'9LtnL+& Pt P = 0

where t„„denotesthe tangent vector to the p —v interface
pointing outwards from the triple point. Equations (16)—
(21) together with the boundary condition

for (22)

completely define the sharp-interface limit, r (& (, of
the model.

ml, c= —G( —I'r,
mL, c= G(+ I'r,

a-L interface

P Iinterf-ace
(28)

(29)

where ( denotes the vertical displacement of the interface
parallel to the z axis (( = 0 corresponding to an interface
at the eutectic temperature).

III. NUMERICAL SIMULATIONS

In this section we present the results of numerical sim-
ulations of the phase-field equations. These simulations
are mainly intended to demonstrate that the model actu-
ally produces eutectic structures which are in good agree-
ment with those expected &om the sharp-interface limit
derived above.

For this purpose, we consider a spatially periodic
steady-state lamellar structure formed by directional so-
lidification of an alloy of exactly eutectic composition
(c = cE = 0). For this structure, the Jackson-Hunt
theory [13] leads to the prediction

D. Extension to nonisothermal conditions
2P ml. [cp —c ]

4I' sin 8
(30)

The present model can be straightforwardly extended
to describe nonisothermal solidification conditions by
supplementing Eqs. (3) and (4) with the equation for
the temperature Geld

where A is the lamellar spacing, AT = TE —Tl is the
interfacial undercooling, TI is the interface temperature
which can be assumed to be constant for suKciently small
G, P = 0.03383 is a numerical constant, and

L Ou

L SuE —uE Ot
' (23) n ~ —i '7~P

0 = sin
2+v L

v=cr, p

where L is the latent heat of melting assumed to be equal
for both n and P phases, and DT is the thermal diffusivity
assumed to be equal in all three phases.

In practice, one of the most often encountered non-
isothermal condition is directional solidification where a
sample is pulled in a temperature gradient at a constant
speed V. Since DT )) DL, latent heat di8'usion is neg-
ligible at low enough velocity and the temperature field
can be assumed to have the usual form

T = TE+Gz,

where z is a coordinate parallel to the temperature gradi-

is the angle between a horizontal 2: axis, which lies par-
allel to the eutectic front, and an axis tangent to the
solid-liquid interface at the triple point.

Numerical simulations of Eqs. (25) and (26) were per-
formed on a two-dimensional lattice of sides L = N h
and L = N, h with periodic and no Qux boundary con-
ditions in the horizontal and vertical directions, respec-
tively. The origin of the z axis was chosen such that
Eq. (24) takes the form T = T@ + G(z —I,/2) with
z = jh (j = [1,%,]). For simplicity, the parameters

I,', = („=( and r„=v, = 7 were chosen. The value

G = 2.85 x 10 s ( i was used in all simulations. A fi-
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nite difFerence representation of spatial derivatives with
h = ( was used in conjunction with a simple Euler time-

stepping scheme with At = 0.015 r. These values of h
and b,t were found to provide a good compromise be-
tween m~merical accuracy which requires h to be small
and computational eKciency which requires At to be
large. In particular, since numerical stabihty imposes
the condition At ( A h, where A is a constant of or-
der unity, smaller values of h were found to require too
small a value of b,t to allow a systematic numerical study.
In addition, larger values of h led to grid anisotropies
that were too large, the number of points necessary to
resolve the spatially diffuse interfacial region being insuf-
ficient. We also explored the possibility of using an im-

plicit scheme, which allows to take larger time steps for a
given h, but the extra computational cost involved with
this scheme did not seem to outweigh the numerical effi-

ciency of the explicit scheme which lends itself naturally
to parallel programming on the Gray 2 supercomputer
used in this investigation.

The stationary interface profile resulting from a sim-

ulation on a 160 x 160 lattice with V = 0 is shown in
Fig. 3 on a one-to-one scale. The solid-liquid and a-
P interfaces are represented, respectively, by the u = 0
and (c = 0, u ( 0) contours. They correspond to the
expected stationary shape of a lamellar structure con-
sisting of two circular arcs which join the a-P interfaces
at triple points. The measured angle at the triple point
has a value 8 18' 6 2' which is in relatively good quan-
titative agreement with the value 8 = 22' predicted by
Eq. (31) in the sharp-interface limit with the values of
Table II.

A series of simulations intended to measure the b,T(A)
curve was performed for a p»thug speed V = 0.01 (/r.
The lamellar spacing A = N h was varied between be-
tween 18 and 80 (, with the vertical dimension of the
lattice I, = 100 ( held fixed. Simulations were ran
long enough for the interface to reach a steady state.
The undercooling was measured using the relationship
b T(A) = —G( where $ denotes the average vertical po-
sition of the solid-liquid interface. As shown in Fig. 4,
the measured b,T(A) curve was found to be in relatively
good quantitative agreement with the curve predicted by
the Jackson-Hunt theory [Eq. (30)] using the parameters
of Tables I and II. The interface shapes corresponding to
three different wavelengths along this curve are displayed
in Fig. 5.

It should be noted that the quantitative discrepancy
between. the two curves in Fig. 4 may be due both to
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FIG. 4. Undercooling vs vravelength curve: Jackson-Hunt
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the limitation of the Jackson-Hunt theory which only be-
comes exact in the limit of very small angle (8 ~ 0), and
to the fact that the sharp-interface limit is likely not to
be completely reached. with the lattice sizes employed
here. To highlight the difficulty encountered in studying
larger lattices, it is useful to give an estimation of the re-

quired number of floating-point operations, N, necessary
to simulate the growth of one eutectic spacing at mini-

mum undercooling (i.e., L~ = A ). This number scales
as N = No(A /()(L, /()(r/b, t)(t/r) where Ne 10 is
a constant prefactor independent of the lattice size and t
is the total simulation time. A good estimate of the latter
is the time it takes for the interface to move a distance
comparable to A which scales as t ~ A /V. In addition,
the fact that for an alloy of eutectic composition c(x, z)
decays exponentially in z over a length proportional to
A implies that L, ~ A (note that at off-eutectic com-
position this decay length is proportional to the diffusion

length which requires L, Dr, /V). Finally, using the

-40—

-45—

-50
0

~ I ~ s

20 ao
X

I I ~ I ~ ~

60 80

FIG. 3. Stationary eutectic pro6le obtained &om simula-
tion on a 160 x 160 lattice arith V = 0.

PIG. 5. Eutectic pro61es corresponding to Fig. 4 for

A/g = 18, 42, snd 80; z and z are measured in units of (.
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fact that V DI,(/A ~ ((/r)((/A ) at minimum un-

dercooling together with the above scalings, we obtain
the estimate

5

The fifth power in Eq. (32) explains why it becomes
quickly prohibitive &om a computational standpoint to
simulate eutectic structures with a ratio A /( greater
than the ratio of about 40 used here. For example, to
generate the data of Fig. 4 with A doubled (i.e., V four
times smaller) would require a computational effort 32
times larger. What seems encouraging, however, is that
already with the present ratio, the model generates an
undercooling-wavelength curve which is relatively close
&om the one expected &om the sharp-interface limit.

IV. CONCLUSION

In conclusion, we have presented a phase-field model
that can describe the solidification (both isothermal and
nonisothermal) of a eutectic binary alloy with a simple
symmetric phase diagram. We have analyzed the sharp-
interface limit of this model with a specific choice of pa-
rameter scaling (, („andr, r„.With this choice
of scaling, the limit where the lamellar spacing is much
larger than the interface width corresponds precisely to
the limit of LTE where the interfacial kinetic undercool-

ing is much smaller than the overall interfacial undercool-
ing induced by the combined efkcts of surface tension
and solute di8'usion. Hence, with this choice of scaling,
there is a one-to-one correspondance between the phase-
6eld model and the classic sharp interface formulation
of eutectic growth without nonequilibrium corrections.
We have actually demonstrated numerically in this pa-
per that the phase-field equations generate steady-state
lamellar structures which are in relatively good quantita-
tive agreement with those expected &om the sharp inter-
face formulation using computationally tractable lattice
sizes.

In the future, it might be worth exploring diH'erent

parameter scalings of the present model and, in particu-
lar, the one corresponding to the limit („(((, which
has been investigated previously for simple binary al-
loys in Ref. [7]. With this scaling, it should be possible
to describe situations where, simultaneously, the lamel-
lar spacing is much larger than the interface width and
nonequilibrium eKects such as solute trapping are im-

portant, as we expect to be the case for many rapidly
solidified eutectic alloys.
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