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The kinetics of supercrystal formation in quenched systems with a scalar order parameter and
competing interactions is studied. Systems with nonconserved order parameter (a uniaxial ferromag-
netic film) and with conserved order parameter (a binary mixture of amphiphilic molecules at the
water-air interface) are considered. The competition between the long-range repulsive interaction
of the dipolar type and the short-range attractive interaction due to surface tension leads to the
formation of periodically modulated domains. The phase-separation dynamics is simulated using
the appropriate Langevin equation. The initial-stage results related to the phase separation and

cluster shape transitions are described.

PACS number(s): 05.70.Fh, 61.20.Ja, 61.50.Ks, 64.60.—i

I. INTRODUCTION

The kinetics of first-order phase transitions has been
studied in a wide variety of systems and it is a very top-
ical area in nonequilibrium statistical physics [1]. In this
paper we study a broad class of systems in which a rapid
quench from a high-temperature homogeneous state to
the temperature much below the critical temperature
leads to both phase segregation and supercrystal order-
ing.

The time evolution of phase-separating systems is typ-
ically characterized by a single time-dependent length
scale, the average domain size R(t) which often grows
as a power law R ~ t™. Here m is the growth expo-
nent and characterizes the mechanism driving the phase
separation. Phase-separating systems may be classified
into a small number of universality classes, where each
member of a given class shares the same kinetic prop-
erties. The simplest of these universality classes, viz.,
model A and model B, correspond to a system with a
scalar nonconserved and a scalar conserved order param-
eter respectively. In model A, the growth is driven by
the local curvature and is characterized by m = 1/2 [2];
in model B phase separation takes place by a long-range
diffusion and is characterized by m = 1/3 [3].

The systems studied in this paper are modeled by
augmenting the models A and B with a competing,
nonlocal, long-range repulsive interaction (LRRI) in the
free-energy functional. Competing interactions in sys-
tems whose constituents simultaneously experience mu-
tual magnetostatic or electrostatic repulsion and a short-
range attractive interaction lead to the formation of a rich
variety of spatially modulated phases, termed supercrys-
tals. For such systems, the free energy contributed by
the LRRI is reduced by spatial modulations in the cor-
responding order-parameter field. Domains are regions
of uniform amplitude of the order parameter, separated
from one another by domain boundaries or walls. The
tendency of the LRRI for continued subdivision of do-
mains is balanced by the energetic cost of the forma-
tion of the interfaces. A new characteristic length scale,

1063-651X/94/49(3)/2225(20)/$06.00 49

the modulation period, results as a balance between the
strength of the LRRI and the finite domain-wall energy.
Periodic modulations of the magnetization or polariza-
tion can be seen in examples such as uniaxial ferromag-
netic films [4], ferromagnetic surface layers [5], ferrofluid
systems [6], and ferroelectrics [7]. Completely equivalent
to these systems, at least at the level of mean-field theory,
are two-dimensional binary mixtures of monomolecular
amphiphilic films confined to an air-water interface such
as Langmuir monolayers [8]. Other interesting exam-
ples include cholesteric liquid crystals [9], charge-density
waves [10], the primate visual cortex [11], and ceramic
compounds with a long-range Coulombic interaction [12].

We have studied the dynamics of quenched quasi-two-
dimensional systems with a scalar order parameter and
competing interactions. We denote such systems with
conserved (nonconserved) order parameter and with a
long-range repulsive interaction as model By, (model Ay,)
and abbreviate it as MBy, (MAy). Since some aspects of
the early stage results for MAy, [13] have previously been
presented; in this paper we shall concentrate specifically
on MBy, [14].

After the system is quenched, it simultaneously segre-
gates in two phases and creates a supercrystal order cor-
responding to modulated structures with either lamellar
or hexagonal symmetry. Although these processes are si-
multaneous, the time evolution is characterized by three
stages. The early-time regime corresponds to the initial
phase segregation and the emergence of polydisperse do-
mains: the instability amplifies the fluctuations present
in the initial conditions, saturates them, and forms sharp
interfaces. The intermediate-time regime corresponds to
the crossover from the maximally unstable wave number
that controls the initial fluctuations to the equilibrium
wave number: during this stage the domains become
monodisperse. The late-time regime corresponds to an
ordering process and is mainly driven by defect collisions.

In this paper, we report on the results related to initial
stages, i.e., the early and intermediate times. We have
presented the results related to the late times for the
hexagonal phase elsewhere [15]. This late stage work has
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now been extended to both hexagonal and stripe phases
and will be described in detail in a future publication
[16]. A brief summary of the paper is as follows. In
Sec. II we present the mathematical model we will use.
In Sec. III we give the phase diagram corresponding to
a set of parameters of our simulations. In Sec. IV we
present details of the time regimes concentrating on the
initial stages and linear analysis. In Sec. V we give the
results of the numerical simulation for the quenches into
the stripe phase and the hexagonal phase from an ini-
tial homogeneous high temperature phase. Section VI is
reserved for a brief summary.

II. MODEL

The free-energy functional F' of our system is the usual
Landau-Ginzburg-Wilson free energy modified in such a
way as to account for the contribution of the LRRI. It
consists of both a local and a nonlocal term. In terms of
the order-parameter field ¢, it is written as

F{¢} = FL{¢} + Fno{4}, (1)

where the local term has an attractive square gradient
term

Fule} = [at[10)+ 5997, @)

and the nonlocal term represents the repulsive interac-
tions

Fudd) = § [ dhrd'r'o@)a(e - rhow. ()

Here « and a are positive phenomenological constants,
which describe, respectively, the range of the short-range
attractive force and the strength of the LRRI. The bulk
free energy f(¢) is assumed to have a stable single-well
structure if the temperature is greater than the critical
temperature T, and a double-well structure if T < T,

1(8) = 5 ¢ + ;¢ — H9, (4)

where r and u are positive phenomenological constants
and H is an external field that is assumed to couple lin-
early to the order parameter. The latter will only be
relevant for MAyp.

The time evolution of such a system following a deep
quench from a high-temperature disordered phase is
given by the appropriate Langevin equations:

BI/J(XJ) (_v2)n

or 2
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3(}5(1‘, t) 2\n oF
28 — M-V g+ (), ©)
where M is the mobility (assumed constant) and {(r,t) is
the Gaussian random noise that results from the coarse-
graining procedure. The second moment of the noise is
related to the mobility through a fluctuation-dissipation
relation

(C(r, )¢, ¢) = 2kpTM(~V*)"6(x — r')d(t ~ ), (6)

where kg is the Boltzmann constant and T the tempera-
ture of the system. For a system with a conserved (non-
conserved) order parameter, n =1 (n = 0).

The order parameter can be written as ¢(r,t) = ¢(t) +
A¢(r,t). At any given time, 77 [d%r¢(r,t) = ¢(t) and
fddrA¢(r,t) = 0. Since in MBp, the concentration is
conserved, ¢ = 0 for a critical quench during the phase
separation. If a field is not turned on after quenching
in MAp, the average magnetization is also zero. In both
cases, the resulting morphology is a convoluted stripe-like
pattern. By setting ¢ # 0, one can get circular isolated
domains instead of percolating stripes. In MBy, this can
be achieved by making ¢(t) = ¢o =const before quench-
ing; @o is called the off criticality and the quench is said
to be off critical. In MAy, this can be achieved by turning
on an external field H. In this case ¢ varies with time,
though eventually it reaches an equilibrium value that
depends on the field.

It is convenient to express the above equations in di-
mensionless form by using the transformations

1
2
r
K
n
T=2M7‘<I) t,
K

¥(x,7) = (;) [6(x,t) — B, (7)

The equation of motion for the dimensionless concentra-
tion or magnetization fluctuations ¥(x,7) in the two-
phase region is

- [{v2 + 2()(x, ) — BV (x,7) + $(x,7)

5 [ atela(x = x ()| + Vuix. ) ®)
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where
(u(x, T)p(x', 7)) = (-VH)"(x — x)§(1 — '),

sz:(T) =1- 3ﬁ2a

d—1

ag(r - r'|) = %(S) 9(jx —x') = Bg(lx - x')

k5T o
Biu (T
€= 1'2 (;) . (9)

For MBy, ¥(1) = %o = (%)%4)0 =const so ¢2(7) is also
independent of time. Equation (8) describes the time
evolution of the order-parameter fluctuations. This is
the only relevant equation for MBr,. For MAy, Eq. (8) is
augmented by an equation describing the time variation
of the average order parameter

and

() 1 3
2T = 2l - ALY - 9 + )

h= (;) = (10)

The function of the field therefore is to produce and
maintain a net overall magnetization ¥ (7) which rapidly
reaches equilibrium and remains constant so that the sub-
sequent dynamics is governed solely by Eq. (8).

The stochastic integro-differential equation described
by the Egs. (8)—(10) is characterized by five dimension-
less parameters: the off criticality 1o, which defines the
asymmetry between the two phases (o = 0 implies a
symmetric 50-50 mixture, ¥ = 0.2 implies a 60-40 mix-
ture, etc.); the external field h; the relative strength of
the LRRI 3; and the strength of the thermal noise €. As
shall be discussed, the LRRI kernel g(|x — x’|) depends
on a dimensionless layer thickness L = l(%)% . Note that
in the absence of a LRRI (i.e., 8 = 0), these equations
reduce to those of model B or model A, depending upon
whether the order parameter is conserved or not.

Note that experimental quenches where the tempera-
ture is varied can be mapped into our model. From the
equations above, 8 = “—r'%;l/,i, where r ~ (T, — T') > 0.
For most experimental systems the strengths of the LRRI
a and of the short-range attractive force x are fixed. The
LRRI supresses the fluctuations near T, so the onset of
the modulated patterns occurs for a temperature slightly
lower than T, (in a single-mode approximation of wave
number ksy), the new ordering temperature T is given
by To = T.(1 — kZ\s — Bg(ksm)). Near this ordering tem-
perature, r reaches its minimum value » = r, > 0 and
its maximum 8 = (.. As the temperature is lowered, r
increases and 3 decreases. Quenches for high tempera-
tures (shallow quenches) are mimicked in our simulations

where

D=
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by quenches with high 3 while quenches for low tempera-
tures (deep quenches) are mimicked by quenches with low
B. In this way 3 controls the depth of the quench while
the noise term accounts for the thermal fluctuations.

In order to complete the description of the problem,
the form of the kernel describing the LRRI, g(|x — x'|),
must be specified. This will, of course, depend upon the
specific system under consideration. In this paper we
consider the case of a uniaxial ferromagnetic film and
that of a monomolecular film of phospholipid monolayer
confined to an air-water interface.

Consider the case of a uniaxial ferromagnetic film of
thickness L. In the zy plane, the film is assumed to
be large and isotropic (in the disordered phase). If the
film is strongly uniaxial, one can assume straight domain
walls in the vertical (Z) direction, so that the film may
be treated as a two-dimensional system. The order pa-
rameter is taken to be the magnetization averaged over
the vertical direction. The external magnetic field & is
also assumed to be oriented in the vertical direction.

This system is characterized by a balance between
domain-wall energy and its magnetostatic self-energy:
the system can reduce the latter by forming domains of
ordered phases at the cost of introducing domain walls
between the phases. If the system contains N domains,
its free energy is about 1/N times lower than that of a
uniformly magnetized film. Hence the formation of mod-
ulated structures is favored. Since the magnetization is
not conserved, MAj, is appropriate for the description of
this system. For this case, the LRRI is given by

o1 1
9(lx—x)= x—x|  [(x—x)2+ L2}
= /dk—(l = 7 gt (11)
k )

with a strength o ~ (gug)?, where gup is the appropri-
ate gyromagnetic coefficient of the material [4]. Notice
that for |x — x| large compared to L, g(|x — x'|) ap-
proaches L?/(2|x —x'|), which is like a repulsive dipolar
kernel.

The formation of domains in monomolecular films of
phospholipids confined to an air-water interface (Lang-
muir monolayers) is equivalent in its main features to
the domain formation in the uniaxial ferromagnetic films.
Specifically, the short-range interactions between the
long-chain molecules is the source of the short-range at-
tractive interfacial (domain-wall) energy, in the sense of
van der Waals and Landau. This is balanced by a nonlo-
cal repulsive term arising from the normal component of
the dipolar (electrostatic) forces between the polar heads
of these molecules. The free energy contributed by this
interaction is reduced by spatial modulations in the per-
tinent order-parameter field, which is the lateral molec-
ular density in single-component films or the intralayer
concentration in binary mixtures. Thus we can use the
same model kernel as in Eq. (11) above to describe in
a simplified manner these two-dimensional amphiphilic
films. Since the number of molecules is conserved, we
require the conservation law as in MBj, to describe the
corresponding dynamics.
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III. PHASE DIAGRAM

Equilibrium phase diagrams for a dipolar lattice gas
[17], for a uniaxial ferromagnetic film (see last reference
in [4]), and for Langmuir monolayers [18] have previously
been studied. We have extended the single-mode stud-
ies to an arbitrary number of modes to obtain the zero-
temperature phase diagram. For fixed values of L and 3,
modulated stripe and hexagonal disk patterns are formed
as function of the external field h (MAL) or of the off crit-
icality ¢¥o (MBL). The equilibrium states of the system
are obtained by studying the solutions of %g =0. In
equilibrium, the coefficients of the Fourier expansion do
not depend on time. We can write the equilibrium order
parameter as

=m+ Y e *my, (12)
k

where m is the average overall concentration (= v for
MBy, and = ¥(7 = oo) for MA1,) and the zero wave vector
Fourier component mg = 0. A few geometrical properties
of the lattice allow us to make some simplifications in
this expansion. Since ¥ (x) is real and the lattice has
inversion symmetry, m_y = my. Furthermore, since all
the neighbors at an equal distance from a given stripe
or disk are indistinguishable, my only depends on the
modulus of k and we write my = my. Thus we can write

Ze‘ik kaz (13)

k k|

where Z}c means sum over all those vectors k such that
|k| = k and E;c = nyp is the number of those vectors.

With this convention, i;l’"(:) = Z;ﬁ e~ * and the func-
tional derivative %g becomes

(a) (b)

1 6F;

2 2
= —[q® — k% — Bg(k
Admn (g2 — k% — Bg(k)Imins

+3‘7ﬁz ka'm|k+k';
+ Z Z ka’mk"m|k+k’+k”|’ (14)

k' k" '-

where A is the area of the system, ¢> = 1 — 3m?, and
the subscript i stands for S (stripe) or H (hexagonal).
The problem consists of solving the set of coupled equa-
tions gF = 0 and the corresponding equation for the

minimization of the wave number k. For the hexagonal
phase, k = keq\/n1 + ning + n2 and keq = , where a
is the lattice constant and n,,n, are mtegers [the pairs
(0,1), (1,0), (1,-1), and their symmetrical counterparts
give the sixfold Bragg peak].

In principle, Eq. (14) consists of an infinite num-
ber of coupled equations, which need to be truncated
and solved numerically [19]. The number of harmonics
needed depends on (: for small 3 we need to include
more harmonics as the-limit for 3 — 0 corresponds to a
square well profile, while for 3 < ., even a few harmon-
ics are enough. (Very near (3., the single-mode approxi-
mation is excellent.) Once we get (x) expressed in its
Fourier components, we substitute its expression in the
free-energy functional form and use the double tangent
construction to get the different regions in our phase di-
agram. We look for the absolute minimum of F; — ym,
where F; = Fg, Fy, or F (the subscript [ stands for the
isotropic phase) and u is the chemical potential or the
magnetic field magnitude coupled to the average concen-
tration m.

Figure 1 shows the phase diagram in the (3, m) plane
for L = 10. Here 7 is a constant and equal to ¥ for MBy,
or is the average overall magnetization produced by the
field in MAy, (the field h = 0.33 mostly used in our simu-
lations gives an overall concentration 77 = 0.23 in equilib-
rium). Data for § < 0.03 are based on extrapolation due
to numerical difficulties in this parameter regime. Mov-
ing from 7 = 0 to greater values of || for a fixed 3, we

[ ]
0.3 ]
r . B£=0.04
L ] FIG. 1. For L = 10, (a) shows the phase
o} 02| 2 . diagram in the (8,7) plane and (b) shows
C ] \/\/\/\/\/\/\/\A/\ profiles of the order parameter for i = 0 (or
L ] o = 0 and h = 0) for different values of 3.
0.1 -
- ] £=0.22
AT e N
-1 -05 0 0.5 1 NANANNANANNANNNAN]
p=0.38
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find the central region corresponding to the stripe phase,
an area of stripe-hexagonal coexistence, the hexagonal
phase, an area of hexagonal-isotropic coexistence, and
the isotropic phase. In our system, the hexagonal phase
corresponds to what is called a “low-density” phase, in
which the disks are always the minority phase (i.e., their
total area is less than 50% of the total area); some other
more complex systems can show a high-density phase,
from 50% up to 92%, corresponding to closest circular
packing. For the point at 7@ = 0 where the stripe phase
meets the isotropic phase, we found a value of 8. = 0.385.
For a slab of finite thickness, the dipolar coupling is al-
ways found to be relevant, so that the ground state of
the system remains modulated for all values of 3. Only
on the line B = 0, we recover the Ginzburg-Landau free-
energy result. Figure 1 also shows the profiles of the order
parameter for the symmetric stripe phase. From these
pictures, we see that as 3 — 0, the profile approaches a
square well, its amplitude increases towards unity, and its
characteristic wavelength becomes progressively longer.
(The amplitude corresponding to § = 0 is precisely unity
and its wavelength is infinite.) As 8 — (., on the other
hand, the profile looks more and more sinusoidal, while
the amplitude and the characteristic wavelength continu-
ously diminish. Figure 2(a) shows the predicted variation
of the saturation value of the order parameter 15,4 with
the strength 8 of the LRRI.

Figure 2(b) compares the equilibrium wave number k.q
of the system with two commonly used approximations.
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FIG. 2. (a) shows the variation of the amplitude of the
order parameter for L = 10, m@ = 0 with 3. For the pre-
vious parameters, (b) shows the equilibrium wave number
keq that results from our calculation (solid line), the sin-
gle-mode approximation to the equilibrium wave number ksm
(long-dashed line), and the hard-wall approximation to the
equilibrium wave number kuw (dotted line).
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The simplest possible approximation is the single-mode
approximation, in which the modulation of the order pa-
rameter is given by ¥sm ~ cos(ksmz) and kgym is given
by the solution of

_ o—kL
e _ ld[ﬁ_—l © +k2] =0.

dk ~ 2dk k (15)

k=ksm

The other common approximation is the hard-wall ap-
proximation, in which the corresponding equilibrium
wave number kyw is given as the solution of

d 0 1 1-— —(2n+1)kL
d {k 8% (= )]
dk —(2n+1) k k=kw

=0.

(16)

The competing effects of attractive and repulsive in-
teractions determine not only the stability of the shapes
of individual domains, but also the dynamics of domain-
wall fluctuations and shape transitions. For many of the
relevant physical systems, the domains can exhibit a va-
riety of shapes which are not always equilibrium shapes.
For uniaxial ferromagnetic films, the stability to har-
monic distortions has been studied for disks and stripes
[4], where the circular shape has been shown to un-
dergo an elliptical instability; however, higher-harmonic
shapes are not so important. The “stripe-hexagonal”
transition is hindered by a surface energy barrier that
must be overcome in the conversion process. This is
the origin of the topological hysteresis which is related
not to wall pinning by defects but to nucleation and
collapse field problems [20]. Theoretical calculations in
thin layers of ferrofluids [6] and Langmuir films [21] have
shown instabilities not only to elliptic shapes but also to
higher-harmonics shapes which have been found experi-
mentally [22,23]. Seul and co-workers have identified in
amphiphilic monolayers, the presence of an elliptic in-
stability, and a branching instability leading to a melted
stripe phase near the consolute point. But while ferro-
magnetic films and ferrofluid layers follow an essentially
deterministic dynamics, Langmuir films are very sensi-
tive to thermal fluctuations and cannot be described by
mean-field treatments, except in the 7 = 0 limit. Fur-
thermore, while in the case of ferromagnets the LRRI can
be approximated by a local Hamiltonian described by a
curvature elastic energy, the behavior in the monolayers
can be more accurately described by an effective local
capillary-wave Hamiltonian. In this paper we only deal
with dynamics following quenches from the disordered
state, leaving the interesting “stripe-hexagonal” transi-
tion for future study.

IV. INITIAL STAGES OF THE DYNAMICS

As stated in the Introduction, the process of phase sep-
aration involves the simultaneous segregation into two
phases and creation of a supercrystal ordering. These
processes involve very different time scales. In the early
and intermediate stages, the processes related to phase
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segregation and formation of domains are predominant.
At late times the domains are essentially monodisperse
and the process of ordering dominates. In the early time
regime, the instability amplifies the fluctuations present
in the initial conditions, saturates them, and forms sharp
interfaces. This early time regime is dominated by k,,,
the maximally unstable wave number of the linear dis-
persion relation. During this time, the amplitude of the
order parameter grows towards its saturation value. In
contrast, the intermediate time regime is dominated by
the wave number of the equilibrium modulated structure
keq- The characteristic time of this regime is the time
that the domains require to reach their equilibrium wave-
length 27m/keq. Thus the dynamics of this stage involves
crossover phenomena, as the characteristic wave number
of the system changes from k,, to keq. Immediately af-
ter the quench, the system acquires a very complicated
morphology of irregular interpenetrating domains that
percolate through the system. As time evolves these do-
mains either evolve towards their eventual stripe shape,
or neck, and pinch away to form individual clusters for an
eventual hexagonal lattice morphology. During the inter-
mediate time regime, the domains become progressively
more regular (the stripes become smoother and more
rectangular and the individual clusters become more cir-
cular). The crossover from k,,, to keq is achieved by vary-
ing the number of domains (for instance, for MBy, where
km > keq the number of domains in the hexagonal phase
can be reduced by coalescence of two disks because this
process increases the characteristic length of the period-
icity). Eventually the number of domains stays essen-
tially constant and the distribution function of the stripe
width or the disk radii becomes highly peaked around
the equilibrium value. By this time, the shape transition
processes are nearly complete and the system has be-
come a monodisperse disordered liquid of either stripes
or disks. This marks the onset of the late-time regime.
This late stage of phase ordering involves the evolution
from this disordered liquid towards the crystalline ground
state through the gain of orientational and positional or-
der. The main mechanism of this ordering process is
collision and annihilation of defects. The actual achieve-
ment of crystalline order in the late stage can depend
on several factors, such as the depth of the quench (or,
equivalently, the strength of the dipolar interactions), the
presence of noise, etc.

We sum up as follows. The early-time regime corre-
sponds to the amplification of the initial fluctuations and
the saturation of the order parameter, the intermediate-
time regime corresponds to the processes associated with
the geometrical degrees of freedom of the system, and the
late stage corresponds to the processes associated with
the topological degrees of freedom. For MAp, this dis-
tinction is quite sharp. For example, in run F' (see Table
1), the saturation is reached at 7 ~ 30, after 7 = 200
the number and radii of disks stays constant, while the
topological stage extends to 7 ~ 20000. The geometri-
cal degrees of freedom are completely decoupled from the
topological ones. For MBy,, this distinction is only an ap-
proximation. As a consequence of the conservation law,
the geometrical degrees of freedom never really decou-

TABLE 1. Parameters used in simulation. mn..n, is the num-
ber of independent quenches.

Run Model L B o h Trun
A MBL 10 0.22 0.0 0.0 5
B MB;, 0.1 5 0.0 0.0 5
C MBL 10 0.22 0.2 0.0 5
D MBL 0.1 5 0.2 0.0 5
FE MAL 10 0.22 0.0 0.0 5
F MAL 10 0.22 0.0 0.33 5

ple from the topological ones. In the intermediate time,
most of the crossover phenomena and the achievement of
the characteristic geometry occurs, but at late time these
processes still continue (though very slowly) and isolated
coalescence events still contribute to the achievement of
crystalline order. For run C, the saturation is reached
at 7 ~ 200 while the curve of the lattice constant ver-
sus time reaches an approximate plateau at 7 ~ 2000;
however, there are still coalescence events at late times
indicating that the system has not yet reached the equi-
librium modulation Keq.

During the early and intermediate-time regime, all the
necessary information about the system is directly ob-
tained from the scalar order parameter. During the
intermediate regime, the domain size reaches a time-
independent value: since the time evolution is ultimately
governed by this length scale, the system does not dis-
play scaling in the equal-time two-point correlation func-
tion of the scalar order parameter. For the late stage,
when crystalline ordering process dominates the evolu-
tion, the system can be described by measuring the way
in which correlations decay (exponential, algebraic) and
the length over which they decay, as well as the devel-
opment of twofold or sixfold symmetry in the structure
factor. For this purpose it is very useful to describe the
ordering process in terms of two vector order parameters,
constructed from the original scalar order parameter: an
orientational and a translational order parameter. The
new characteristic length scales of the late stage evolu-
tion are related to the size of the ordered regions. Since
the free energy of the modulated system is degenerate
with respect to the direction of keq, a quench from the
disordered phase into the ordered one results in the for-
mation of modulated phase broken up by defects (discli-
nations and dislocations). The new length scales grow at
a characteristic rate as different broken symmetry phases
compete to select the ground state. Although computa-
tion limitations prevented us to study the scaling in the
correlation function or structure factor of the two vec-
tor order parameters, for large systems and times long
enough one should expect scaling in these quantities.

To analytically study the equation of motion, Eq. (8),
it is convenient to transform it into Fourier space. The
order parameter then becomes

Bx) = e R (r) = do(r) + 3 &R u(r)

k K20
(17)

[where ¥o(7) = ¥(7)], and Eq.(8) is transformed into



49 KINETICS OF PHASE SEPARATION IN TWO-DIMENSIONAL ... 2231

2] — )~ B |30l )3 b
with a linear dispersion relation
2\n
w = EL 12— k2~ g, (19)

where g(k) is the d-dimensional Fourier transform of g()
and the dependence of g2 on time can be neglected.

We can linearize this equation and solve for the lin-
ear structure factor, valid for very early times. First we
note that the post-quench value of the structure factor
is the corresponding stationary solution for the structure
factor in the single-phase region of the phase diagram
[where f(¢) = —Q¢2 %¢*, ro > 0] and which has the
modified Ornstem-Zermke form. Thus at time 7 = 0%,
the structure factor is

2\ _ €1
(9 OF) = iy (20)

T;r2-d4/2

where € = (2;) }J—,—d/—, Here T; and Ty represent the

initial and final quench temperatures, respectively.
Linearizing Eq. (18) and introducing the two-point
correlation function

(W ()9 (1)) = 8 (k + k) {|%c(7)?), (21)
one readily obtains the linear structure factor
enT 1

2k

2 ne
(e()P) = (0P + E

]. (22)
The dispersion relation [Eq. (19)] for the LRRI given
in Eq. (11) is

= 5 (k)" [qi K- B(1- ekL)/k], (23)
which for small k£ reduces to v

Y = -;—(kz)" [(qf —BL) + %ﬂsz

- (1 + ﬂ—?) k* + O(k%)|.

Consider the three terms in square brackets. The pres-
ence of LRRI alters the coefficient of (—k?) from 1 to
(1 + BL3/6), which corresponds to a renormalization of
the surface tension. Similarly the constant term is al-
tered from g2 to (g2 — BL), renormalizing the harmonic
term of the bulk free energy. The second term 18L%k
is the direct consequence of LRRI. [Note that the two-
dimensional Fourier transform of the dipolar interaction
kernel g(z) ~ 1/ is g(k) ~ —|k|.] It competes with the
third term, arising from the renormalized square-gradient
attraction and leads to modulated structures as the sys-

(24)

T) + Z Z Y1 (T) Ve (T) s -1 (T) | + Vepe, (18)

k' k'

tem evolves. For # = 0, the system 1s characterized by
growmg domains which coarsen via 73 for model B and
73 for model A. In both cases, the morphology is self-
similar at late times. This is qualitatively different from
the modulated structures that one gets for 3 > 0.

From Eqgs. (22) and (23), it is clear that the initial
growth of the pattern is determined by the linear disper-
sion 7y,. The system is unstable with respect to fluctua-
tions of modes k such that vx > 0 and stable with respect
to fluctuations of mode k such that v, < 0. Using Eq.
(23), the maximally unstable mode k,, is easily found.
We shall write v, = v(km). The presence of 8 > 0 de-
creases 7, and shifts the maximally unstable mode: from
k=0tok > 0for MAy and from k =1/v/2 to k < 1//2
for MBy,. For small values of kL, we can use Eq. (24) to
find the roots of v, = 0. If (BL—gq2) < 0, there exists only
one positive real root koz. For MAy, the k£ = 0 mode is
still unstable and in the point where BL = ¢2 the disper-
sion relation is 79 = 0. For MBy,, the k = 0 mode is fixed
and marginally stable due to the conservation law. If, on
the other hand, 0 < (BL — ¢3) < T%,BZL‘*/(I + BL3/6),
there are two positive real roots; the k£ = 0 mode is stable
for MAj, and marginally stable for MBy,. The dispersion
relation presents a band of stable modes, 0 < k < koy,
and then a band of unstable modes, ko; < k < ko2.
However, as L decreases, the root kg; approaches zero; if
BL > g2 and L < 1, the band of unstable modes is neg-
ligible. For all practical quenches, systems with L < 1
only exhibit a band of unstable modes for (3L —g?) < 0.
Figure 3 shows the k dependence of the dispersion rela-
tion v for MBr, and MAj, for L = 10 and L = 0.1 for a
critical quench with no field and for different values of 3.

The two characteristic time scales in the initial stages
of the evolution are 7,, and 7.. Here 7,, is the saturation
time (i.e., the time that it takes the order parameter to
reach its saturation value) and 7. is the geometrical time
(i.e., the time that it takes the domains to reach their
equilibrium saturation wavelength k%";) These charac-
teristic times depend on the presence or absence of the
conservation law and on the parameters L, 3, and ¢ (or
the field h through 7). Due to the absence of a con-
servation law, the dynamics of MAy, is much faster than
that of MBr,. The value of 7,, is given by 7, ~ v.!.
For a given L, it decays monotonically with either de-
creasing G at fixed m or with decreasing m at fixed G;
for a fixed @ and g, it is larger for decreasing L. Figure
4(a) shows the dependence of 7,,, on the different set of
parameters. For certain combinations of these param-
eters, 7,, diverges near a critical value of BL. This is
due to the fact that the system is approaching the new
effective spinodal line. The value of 7. depends on the
difference Ak = k,;, — keq (Which obviously depends on
the mentioned parameters). The crossover phenomenon
from the stage where the dynamics are governed by k,,
to when they are governed by k.q is common to MAy



2232 CELESTE SAGUI AND RASHMI C. DESAI 49
TT‘I’""“TI- TfTTTj’T“TT"
r L=10 ] [ L=0.1 ]
01 - “ I b B
_ I 1¢t ]
= L 4t 4
~ 005 [ 1 ]
L 4 4
[ o] [ b) |
(2) r (®) FIG. 3. Dependence of the dispersion rela-
tion (k) on the wave number k for critical
quenches. From top to bottom, (a) and (c)
show the curves for the thick film (L = 10) for
B =0, 0.1, 0.22, 0.30, and 0.38; (b) and (d)
show the curves for the thin film (L = 0.1)
for =0, 2,5, 7, and 10.
~
~
N
=~
0 /N
IVVARN\\\

0 0.5 1 0 0.5
k k

and MBy. In MA the maximally unstable wave mode
k., coincides with the equilibrium wave mode ksy com-
puted in a single-mode approximation so the difference
Ak =k, — keq is relatively small. In the simulations for
MAL, the system takes relatively short time (7. ~ 200
for the hexagonal phase, L = 10, § = 0.22) to reach its
equilibrium modulation length scale. However, in MBjy,
the maximally unstable wave mode is quite far from the
equilibrium wave mode, and this large gap Ak causes
the system to take much longer time to reach its equilib-
rium period. Although the curve of the lattice spacing
with time seems to reach a plateau about 7, ~ 2000 (for
L =10, 8 = 0.22, and 9 = 0.2), still at very late times
one can see in the hexagonal phase coalescence of two do-
mains, indicating that the lattice constant is growing very
slowly. Besides, for both models, Ak is larger for systems
with 8L < g2 (particularly those with L < 1). These sys-

N N AN L

tems have very large equilibrium periods (whether stripe
widths or disk radii) and the system takes much longer to
reach the stage of the single dominant equilibrium wave-
length. Figure 4(b) shows the equilibrium wave number
keq and maximally unstable wave number k,, for MBp
for 9 = 0 and 0.4 (L = 10, 8 = 0.22). In Fig. 2(b),
the equilibrium single mode kspy, which is also the un-
stable wave mode k,, for MAy, is compared to the true
equilibrium wave number k.q and with the hard-wall ap-
proximation kgw.

While the linear analysis is useful in identifying the
unstable modes initially, the linear solution incorrectly
predicts an unbounded, exponential growth of the order
parameter for these wave numbers. Such a solution can
only be valid for very early times [1]. To temper the
exponential growth, the nonlinearities must be taken into
account. For model A, a successful theory was formulated
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by Kawasaki, Yalabik, and Gunton (KYG) [24] which
involves the resummation of an infinite number of terms
in a singular perturbation expansion around the linear
solution. This theory was extended for MAy, [13] and, as
shown in the Appendix, may readily be formulated for
MBjy,. The predicted form for the order parameter is

i) = e G2 (1)

XB _=
i+

(3ar — 1), (25)

z

where B.(a,b) is the incomplete beta function, z =
{k2[4°(x,7)]*}/(2¥m), and ¥°(x,7) is the Fourier trans-
form of ¥2(7) = e"* i (T = 0).

In the next section, we give details of our simulations
and compare the results with both the linear theory and
the modified KYG solution.

V. SIMULATION

A. Numerical integration

The Langevin equation [Eq. (8)] was discretized us-
ing a standard finite-difference scheme [25]. The dis-
cretized equation was then integrated using both an Eu-
ler scheme, and a fourth-order Adams-Bashford predic-
tor and an Adams-Moulton corrector technique [26]. We
found that it was advantageous to use pseudospectral
methods: the integral term was evaluated at each time
instant by transforming v into k space, multiplying it
by the discrete form of g(k), and then transforming the
product back into real space. It was found necessary to
use an “isotropic” form of the Laplacian, which couples
nearest- and next-nearest-neighbor cells.

The simulations reported in this paper were performed
for two-dimensional 64 x 64 and 128 x 128 systems with
periodic boundary conditions. The dimensionless mesh
size Az and the dimensionless time step A7 were chosen
in such a way as to avoid possible spurious unphysical
solutions resulting from the subharmonic bifurcation [25].
For the Euler scheme, we chose Az = 1 and AT = 0.01.
Using the predictor-corrector method, it was possible to
use a larger time step of A7 = 0.1. For the hexagonal
phase, we also simulated rectangular lattices. The ratio
of lattice spacing Az/Ay was kept at +/3/2 in order to
accommodate an unstrained triangular array of disks.

We carried out simulations with different sets of pa-
rameters, in order to test different points in our phase
diagram. Most of the results presented here come from
128 x 128 square lattices for L = 10 (MBy, and MAy) and
for L = 0.1 (MBy,). In all cases the system was initially
prepared in a homogeneous state by assigning a random
number to each lattice site. The random numbers were
uniformly distributed, with a mean value of ¥ (o = 0
for MAL) and a width of 0.1 (the width of the distribu-
tion reflects the strength of thermal fluctuations in the
initial state). Table I summarizes the parameters used in
the simulation results described below.

B. Quenches into the stripe phase

We now present numerical results for quenches from
the disordered state into the stripe phase. Since a com-
plete study of these quenches in MA[, was given in Ref.
[13], here we shall only give results for MBy. Systems
with both stable and unstable long-wavelength modes are
considered. The presence of thermal noise can affect (ac-
cording to its strength) the final state of the system. Yet,
for the study of the initial stages, it is not relevant, so
we set € = 0.

Figures 5 and 6 show the time evolution of the or-
der parameter morphology for systems corresponding to
thick and thin layers (runs A and B, see Table I), respec-
tively, at different times, as well as the order-parameter
contours of an arbitrary cut through the system (the
cut is shown as a horizontal line in each of the order-
parameter morphology picture). The dark shading is
used for regions of ¢ > 0 and the regions with ¢ < 0
are left unshaded.

Small inhomogeneities in the initial conditions are am-
plified by the band of unstable modes, giving rise to con-
voluted stripelike patterns broken up by disclinations and
grain boundaries. These arise because the free energy of
the system is degenerate with respect to the direction
of the unstable modes. Therefore, in a quenched system,
each point in the system selects an independent direction,
which leads to a convoluted and interconnected pattern.
Initially, the dynamics is dominated by short-ranged at-
tractive forces, so that the early-time configurations are
similar to early-time model B configurations. At early
times isolated clusters of circular, oval, or similar irregu-
lar shape appear, most of which later disappear since the
system is quenched to the stripe phase part of the equilib-
rium phase diagram. Later times are dominated by the
LRRI, which limits the growth of the domains, building
up stripelike patterns on short length scales. For the
thick layer (Fig. 5, Run A), after 7. = 1000, the stripe
thickness has remained essentially unchanged. The thin
layer system shown in Fig. 6 (run B), on the other hand,
has a much smaller equilibrium wave vector keq, so that
at time 7 = 6000 it is still growing in thickness.

To monitor the domain growth towards the equilib-
rium modulation length, we studied the amount of inter-
faces present in the system. Figure 7 shows the inverse
perimeter density P, which is defined as the ratio of the
total number of sites to the number of interface sites and
is calculated as follows: any site with |¢| < 0.75%,,¢ is
counted as an interface site, otherwise, it is taken to be
part of the bulk.

These pictures clearly indicate that systems with a
complete band of initially unstable wavelength modes ex-
hibit significant growth even for very long times. This is
because for such systems k.q is much smaller than k.,
so that after stripe patterns of period 27 /k,, are formed
at early times, on small length scales, these stripes begin
to thicken and coarsen until they are of thickness 27 /keq.
For a system with stable long-wavelength modes, there is
domain growth only in the early and intermediate stages.
The growth is not self-similar and in contrast to model
B (8 = 0), there is no late stage involving a self-similar
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growth or a power-law time dependence of the domain
size.
We computed the two-dimensional structure factor,

which is
2
1 )
Sk,7) = <N-§ Zzp(xi,r)e’k‘x‘ >, (26)

where k = (27r/N)(mi + nj),m,n =1,2,...,N, where N
is the system length. The circularly averaged structure
factor is

Stk,r) =" S(k,T)/ >, (27)
k k

with £ = 27n/N, n = 0,1,2,...,N, and the sum >, is
over a circular shell defined by n—1 < [k|N/(27) < n+1.
We define the pth moment of the structure factor as

k.
> kPS(k,7)
hp(r)P = 22— (28)

ke
> S(k,7)
k=0

k. is the cutoff frequency associated with the lattice. In
our case, k. = zlL’l@, where we have chosen n. to be the
maximum possible value which is half the lattice size, i.e.,
k. = m. From the first moment of S(k,7), one further

measure of domain size can be defined as R;(7) = kf("T)

Figure 8 shows the time evolution of R;(7) for a thick
layer as well as a thin layer and for both a symmetric
(o = 0) and an asymmetric (9o = 0.2) mixture. During
the initial stages (considerably beyond the times when
the linear theory is valid), the dynamics are dominated
by shape changes. Comparing Figs. 5 and 6 to Fig. 8 one
can see that shape changes at intermediate times corre-
spond to the system acquiring a uniform thickness along

FIG. 5. Configuration pictures corresponding to MBy for a critical quench in the thick film. (Run A: L =10, 8 = 0.22, and

Yo =0.)
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FIG. 6. Configuration pictures corresponding to MBy, for a critical quench in the thin film. (Run B: L = 0.1, 8 = 5, and

%o =0.)

a given stripe for each of the stripes in the total pat-
tern. During this stage, R;(7) decreases to a minimum
and then begins to rise. While the shape changes occur
until quite a late time, the growth qualitatively sets in
only beyond the minimum. The saturation of the do-
main size occurs earlier for an asymmetric mixture and
in a thicker layer. For the thin layer, one needs to have

a larger system size in order to pursue the simulation to
longer times.

S(k,7) is illustrated in Fig. 9. Initially, S(k,7) is
peaked about k,,. For the thick layer, beyond 7 = 1000,
there is no significant inward shift of the peak position
of the structure factor over the time regime considered;
crossover effects are much smaller than those for the thin
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In(Ry(7))
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FIG. 8. Time dependence of In[R;(7)] for MBy. Ri(7) is
proportional to the inverse of the first moment of the structure
factor.

layer, where there is a considerable inward shift of the
peak of S(k, ).

At early times the system builds up a stripelike pattern
of period k., as is reflected in the initial peak of S(k, 7).
After the contribution of this mode has saturated, the
system dynamics is dominated by the longer-wavelength
mode closest to k,,, which results in a thickening of the
stripelike pattern and a corresponding relaxation of the
k,, mode. The system continues to coarsen towards
smaller wave numbers until the dominant wavenumber
becomes keq. This process leads to a thickening of the
stripelike pattern. This phenomena of mode saturation
is a consequence of the nonlinearity. The rate of achiev-
ing this saturation is k dependent, with smaller £ modes
taking a longer time to saturate.

We have found [16] that the ordering state of the fi-
nal configuration depends very much on the depth of the
quench. Figure 10 shows that for deep quenches (low
(), the system gets trapped into a metastable disordered
state, but for shallow quenches (high ) the system con-
tinues to evolve towards the smectic ground state (in the
absence of noise). Although these pictures correspond to
MA},, similar patterns for those parameters are obtained
for MBr. For the case of high 3, the configuration of the
quenched system during the late stage consists of large
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domains, each one composed of several parallel stripes
whose orientation defines the orientation of the domain.
These different oriented domains can be characterized by
an orientational order parameter. The system does not
display scaling in the two-point correlation function of
the scalar order parameter. However, one can expect
scaling in the ordered-domain—ordered-domain correla-
tion function or, equivalently, in the orientational order
parameter correlation function. Elder, Vifials, and Grant
[27] have studied the process of pattern formation in
the two-dimensional Swift-Hohenberg equation and they
have found dynamical scaling for the collective ordering
of convective rolls. The scaling relationship they have
found is of the form

S(k,7) =71"f(|k — keq|T%), (29)

where z is a dynamical exponent related to the curvature
of the rolls (they get z = 1/4 for the nematic phase and
z = 1/5 for the smectic phase). This equation describes
the correlation between these domains and is valid for
large systems comprised of many domains. We expect
this relationship to hold for our system at high 3 [16].

We now compare our simulation results with those of
the early time theory described in the Appendix. Figure
11 compares the time evolution of the order-parameter
contours taken from an arbitrary cut through a config-
uration generated by the simulation of a system of size
128 x 128 (run B) and the theoretical time evolution ob-
tained from using Eq. (25). Both correspond to the same
initial random configuration. There are no significant de-
viations between the simulation and the early-time the-
ory for 7 < 200, for systems in run B (thin layer) and
for 7 < 125 for systems in run A (thick layer). A sim-
ilar comparison [28] for 8 = 0 (i.e., in the absence of
the LRRI) gives such quantitative agreement only up
to about 7 = 50. Small deviations then occur, with
the growth rate being consistently overestimated by the
early-time theory. This is not surprising considering the
approximations made: Eq. (25) is obtained by taking the
growth rate of all the modes to be that of the maximally
unstable mode k,,, which an overestimate for all other
wave numbers. Also all the KYG-like solutions result
from a theory with a single length scale. One is therefore
unable to correctly generate the finite interface width or
any intermediate time coarsening phenomena.

FIG. 9. Circularly averaged structure fac-
tor for MBy, and a critical quench. (a) cor-
responds to the thin film and the different
curves correspond to 7 = 150, 420, 1000,
2000, 4000, 5000, and 6000 from right to left.
(b) corresponds to the thick film and the dif-
B ferent curves are for = = 60, 90, 120, 150,
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We find that in a relatively short time, the errors be-
tween the simulation and the linear theory diverge ex-
ponentially, while the errors between the simulation and
Eq. (25) remain relatively constant. It seems, therefore,
that this solution provides an excellent description of the
early-time dynamics of a system with a scalar conserved

T7=13000
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FIG. 10. Stripe patterns for MAL show-
ing the dependence of the final state on the
strength of the dipolar interaction. The con-
figurations correspond to L = 10, h = 0. The
left pictures are for 8 = 0.10 and the right
ones for § = 0.34.

order parameter and with a long-range repulsive interac-
tion.

The current outstanding theoretical problem with re-
gard to the results described above is the construction of
a better approximation of field-theoretic equations such
as Eq. (A1) which would incorporate the coarsening ef-

FIG. 11. Comparison between the KYG
theoretical prediction (solid line) and simu-
lation (points) for MBy, with L = 0.1, 8 = 5,
and o = 0 (run B).
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fects. This problem is also intimately related to the un-
derstanding of interface dynamics at intermediate and
late stages of domain growth in systems with a conserved
order parameter and in systems with a LRRI.

C. Quenches into the hexagonal phase

We have also studied quenches from the uniform phase
into the hexagonal phase. For MBj, we have essentially
used an off criticality ¥o = 0.2 (L = 10, § = 0.22 and
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L = 0.1, 8 = 5.0), and for MAy, we have used a field

of h = 0.33, which in equilibrium produces an average

layers, respectively). Here positive deviations from the
system’s average value of ¥ (i.e., ¥ > 1) are shaded
dark. In contrast to the percolating domain structure
obtained from quenches into the stripe phase, the con-
figuration consists of a sea of droplets. At early times,
the morphology looks nearly interconnected (bicontinu-
ous); but soon the unshaded threads develop bulges and
necks and necks pinch away to create elongated clusters
which evolve towards the circular shape. The initial stage
dynamics is once again accompanied by both the shape
changes and domain growth.

Figure 14 shows the circularly averaged structure fac-
tor for MBy,. Even though the underlying morphology is
magnetization m = 0.23 (L = 10, § = 0.22). Since dramatically different, the structure factors in Figs. 14
we are interested in deep quenches into the crystalline
phase we expect the thermal noise to be irrelevant as
long as it is not strong enough to put the system above
the Kosterlitz-Thouless melting temperature. We tried
three runs in to check this, and then we set ¢ = 0 for the
rest of the runs.

Figures 12 and 13 show two evolving configurations for
MBy, systems belonging to runs C and D (thick and thin

and 9 look very similar. For the thick layer, both the
peak position and peak height are quantitatively close in
the two cases of 19 = 0 and 0.2. For the thin layer, the
coarsening is slower for the off-critical quench. Because
of nearly quantitative similarity of structure factors, the
morphology differences between the two phases are better
characterized by studying topological features of the two
phases. An example is the cluster-size distribution which
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FIG. 12. Configuration pictures corresponding to MBy for an off-critical quench in the thick film. (Run C: L =10, 8 = 0.22,

and ¥o = 0.2.)
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FIG. 13. Configuration pictures corresponding to MBy, for an off-critical quench in the thin film. (Run D: L=0.1,8 =35,
and o = 0.2.)

is straightforward to define only for the asymmetric case. The sum is over the /2 lattice sites of the cluster. r; is
A radius of gyration was used to define the cluster  the position of lattice site ¢ and r.y, is the position of the
radius cluster’s center. (The factor of 2 ensures that R. reduces

to the usual cluster radius for circular clusters.) In Fig.
15 (bottom) the arithmetic average of the radii of gyra-

9 1 tion of all the clusters at a given time (R.) is plotted as
R. = [_2 Z(ri - rcm)z] . (30) a function of time 7 for runs C and D and for MAy,. For
! Z the sake of comparison, we have also included the curve
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FIG. 15. The top figure shows the time dependence of the
cluster density n. and the bottom figure shows the time de-
pendence of the arithmetic average of the radii of gyration
(Rc) of all the clusters. The solid lines correspond to MBy
with ¢ = 0.2 and the dashed lines correspond to MA with
h =0.33. (a) 8 =0 (model B). (b) 8 =5,L =0.1. (c)
B8 =0.22, L =10.

for model B (8 = 0) taken from Ref. [25]. Since MAL
has reached its keq, In((R.)) is constant. We can see that
MBy tends to a saturation value (in contrast to model
B). Run C achieves it quite fast while the clusters of the
system in run D are still growing over the time regime
considered. Figure 15 (top) shows the time dependence
of the cluster density n.; n. is defined as the number
of clusters per unit area in the system. Once again, for
comparison, we have included the case of model B [25].
Again, the curve is a constant for MAy. For MBy,, a com-
parison of Fig. 8 and the two panels of Fig. 15 shows that
R;(r) and (R.(7)) reach their minimum approximately

at the same time when n. reaches its maximum. This
corresponds to the time when the system has evolved
to a morphology made up of isolated clusters, and these
clusters have on average the smallest size throughout the
time evolution while their total number is the largest.
(The same also happens for MAy,, except that at much
earlier times.)

We have also computed the time dependence of the
cluster distribution function f(R,7). Here f is defined
such that f(R,7)dR is the probability of finding a cluster
with radius between R and R+dR and it satisfies the nor-
malization [ f(R,7)dR = 1. In Fig. 16 we have plotted
f(R/(R.)). As time increases and clusters become more
circular, the distribution function moves steadily towards
larger values of 7’%—, until it centers around (_R%_) =1 for
7 > 1000 and 7 > 100 for MBg, and MAy, respectively.

To take a closer look at the local geometrical proper-
ties of the system, we have also computed the angular
distribution of nearest neighbors (Fig. 17) for the latest
configuration (7 = 6000) in Fig. 12. Beginning roughly
with 7 = 150, the morphology shows that the configura-
tion is made up of clusters with a closed surface and the
interconnected morphology of earlier times is no longer
present. Thus it is straightforward to identify various
clusters. For each cluster with a closed surface in the
system (most of these clusters are nearly circular at late
times), we determine its center of mass. Next we use
Voronoi constructions to determine the positions of the
cluster’s nearest neighbors and choose a reference direc-
tion midway between the pair of nearest neighbors which
are closest to one another. (For different clusters, this ref-
erence axis will in general point in different directions.)
We denote by n(8)Af8 the number of clusters that have
one of their first nearest neighbors lying between 6 and
0+ Af. Anticipating an approximately hexagonal geome-
try that is visually clear in the picture, we use A6 = 30°.
Figure 17(a) shows the histogram n(6); for a perfect local
hexagonal morphology, all the minima of this distribution
function would be zero and the peaks would occur with
n(f) = 1/6 (we have actually seen this in a 1282 rect-
angular system for MAj, that has reached the crystalline
ground state at 7 = 20 000). Figure 17(b) shows the dis-
tribution of coordination number z, i.e., the number of
clusters that have z nearest neighbors. Figure 17 shows
quantitatively that the morphology is locally hexagonal.
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FIG. 16. Cluster distribution function. (a)
MBL for 7 = 150, 180, 300, 600, 1500, 5000,
and 6000 from left to right and bottom to
top. (b) MAL for 7 = 60, 70, 100, 200, 500,
1000, and 4000 from left to right and bottom
to top.
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FIG. 17. Angular distribution of nearest
neighbors (left) and distribution of coordi-
nation number (right) for MBL, correspond-
ing to the last configuration of Fig. 12
(T = 6000).
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While Fig. 17 refers to the geometrical properties of
the local lattice, Fig. 18 shows the properties of a single
cluster. It illustrates how the average shape of a cluster
approaches a circle as time increases. Let r;(?) denote
the distance of the cluster surface from its center of mass,
as a function of the angle ¥, and R the mean radius.
Then the difference f;(d) = r;(9) — R; will be zero for
a perfectly circular cluster and the function f;(¥) will,
for a noncircular cluster, have both positive and negative
values. For convenience, the direction of maximum elon-
gation is chosen as the reference direction ¥ = 0. In terms
of such a local reference direction, we define a quantity

m(d),

1 I9+A9
m®) = 5= 3 /0 £.(9)do, (31)

where A¥ is a small angle (a value of 10° is used), Np
is the total number of clusters, and the sum runs over
all clusters. In Fig. 18 we show m(d) for MBy, for 7 =
420 and 7 = 6000 (the last configuration in Fig. 12).
Statistically the cluster shape is approaching a circular
shape in time. MAj, shows similar behavior.

Finally in Fig. 19 we show two more related quanti-
ties which also depict the approach to the circular shape.
The first quantity depicted in Fig. 19(a) is the angular
integral,

3

—_
o

M= ]—;;Z[) "1 £:(9)|d9. (32)

A collection of perfect circular clusters has M = 0.
Thus we would expect M — 0 for 7 — oo. In the semi-
logarithmic plot of M (1), the qualitative features of the
curves for MAp, and MBy, are similar. There is a linear
region, roughly between 7 = 150 and 7 = 300 for MBy,
and between 7 = 50 and 7 = 100 for MAp, that corre-
sponds to the time span when separated closed clusters
are established but their shapes are rapidly changing to
elliptic ones. In this region M ~ 77% with wg ~ 1.74
and wg ~ 1.19. The beginning of the second linear re-
gion roughly coincides with the minima in (R.) and in
Ry (7) (or alternatively, the maxima in n.). This is the
time when the system has evolved to a morphology made
up of nearly elliptical clusters. Subsequent to this point,
this second region shows that the pace of reaching the
equilibrium circular shape is slowed down as compared
to that in the first region. Here again M varies as a
power law M ~ 7% with Qp ~ 0.34 and Q4 ~ 0.14.

To further quantify the symmetry of the individual
clusters, we have expanded the function f(#) in circu-
lar harmonics as

HO Z[an cos(nd) + b, sin(nd)].

n=1

(33)
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FIG. 19. In(M) and {|az|*(7)) vs In(7) indicating a twofold
symmetry decaying towards a circular symmetry. The trian-
gles correspond to MAL and the squares to MBy (run C).
The dotted lines are linear fits.

We have computed the coefficients for n = 1,2,3,...,12
and found that the coefficients a,, are ~ 10~2 or 103
and are larger by one or two orders of magnitude than
the coefficients b,,. All the coefficients, except ay, decay
very little at early times and remain essentially constant
throughout the time span considered. a,, on the other
hand, is larger than the rest of the coefficients, as ~ 1071,
and has a sharp decay in early and intermediate times.
Figure 19(b) shows (|az|?(7)), indicating a twofold sym-
metry decaying towards a circular symmetry. f(9) and
M give a quantitative idea of how the shaping process of
disks occurs after a quench from a disordered state. From
the pictures shown, it can be seen that higher harmonic
fluctuations do not play an important role in the shap-
ing of clusters, at least for intermediate and late times.
One can therefore expect that for our system only the
elliptical instability is important, as has been stated the-
oretically [4]. In summary we conclude that apart from
time scales, the processes of the emergence and shaping
of individual clusters are very similar for MAp, and MB.
There are also strong similarities in the crystalline order-
ing processes [15], more details of this will be given in a
subsequent paper.

VI. CONCLUSIONS

In this paper, we have studied the dynamics of
quenched quasi-two-dimensional systems with a scalar
order parameter and competing interactions. We have
considered systems with both conserved (MBy,) and non-

conserved (MAL) order parameters and with a long-range
repulsive interaction. In both systems, there is a compe-
tition between the short-range attractive forces, which
favor dipolar alignment and the long-range repulsive in-
teractions, which favor dipolar antialignment. This leads
to the formation of modulated phases with either lamel-
lar or hexagonal symmetry. We have presented a T = 0
phase diagram for a particular thickness of the film and
discussed the dependence of these phases on the param-
eters of the system.

The dynamics of these systems are very rich. In this
paper we have studied the initial stages of the evolution
that correspond to the processes of domain emergence
and shaping that take place following the quench. In the
early-time regime, the instability amplifies the fluctua-
tions present in the initial conditions, saturates them,
and forms sharp interfaces. This time regime is domi-
nated by k,,, the maximally unstable wave number of
the linear dispersion relation. During this time, the am-
plitude of the order parameter grows towards its satu-
ration value. This regime is well explained through an
approximate solution based on an extension of the KYG
theory of the appropriate Langevin equation. We have
applied this KYG extension to MBy, and found that this
solution accounts for some of the nonlinearities present in
the model. It yields a nonexponential growth rate of the
order parameter. There are no significant differences be-
tween the KYG solution and simulation results at early
times. In contrast, the intermediate-time regime is dom-
inated by the wave number of the equilibrium modulated
structure keq (keq < k). The characteristic time of this
regime is the time that the domains require to reach their
equilibrium wavelength. Thus the dynamics presented in
this paper display crossover phenomena, as the charac-
teristic wave number of the system changes from k,, to
keq. These crossover phenomena are not described by the
KYG solution. However, the agreement between the sim-
ulation of MBy, and the KYG solution (up to 7 ~ 200)
is much better than that for the simulations of model B
(up to 7 ~ 30) [28].

Immediately after the quench, the system acquires
a very complicated morphology of irregular interpene-
trating domains that percolate through the system. As
time evolves these domains become more regular as they
evolve towards their stripe or disk shape. Eventually,
there comes the stage (sooner for thicker films and for
higher dipolar strengths) where the curve of the charac-
teristic wavelength versus time becomes approximately
flat after which the number of domains stays almost con-
stant and the distribution function of the widths of the
stripes or the radii of the disks becomes highly peaked
on the equilibrium value. At this point the system is a
disordered liquid of monodisperse stripes or disks, with-
out global orientational order but with local orienta-
tional order. Further evolution of the system towards the
crystalline order (expected for zero-temperature ground
state) becomes slow and hampered by the presence of
defects. There are several nonvanishing length scales:
the interface thickness, the domain size, and the dis-
tance between domain centers. The two-point corre-
lation function of the scalar order parameter does not



49 KINETICS OF PHASE SEPARATION IN TWO-DIMENSIONAL . ..

present scaling. However, one can see in the configura-
tion pictures the formation of macrodomains (comprised
of many stripes or disks) characterized by a certain ori-
entation. The evolution of these macrodomains, as the
system evolves from this disordered liquid towards its
ground state gaining orientational and positional order,
will be the subject of our forthcoming paper [16].
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APPENDIX

In this appendix, we apply the singular perturbation
theory of Kawasaki, Yalabik, and Gunton to MBy,. Pre-
viously, this method has been applied to a variety of other
dynamical systems [28,13]. The starting point is Eq. (18)
withe =1 =0:

Flr) _ YeYu(T)

or
S S e (e (7). (AD)

k' k"

2n+1
Dp=(-3re™ Y N .. ) 6(k - Z ki) (

ki k2 Kant1

with

fn({:r:n};r)=/0Talr1 /OTI de.../OT"“l dr.

n
X exp (Z l','T,')
=1

(A6)

and

z; = v(kzi-1) + v(k2:)

2n+1 2n+1
+‘Y( > kj)—'7< > k,-). (A7)
j=2i+1 j=2i—1

In the infinite series Eq. (A4), each term grows expo-
nentially faster in time than the preceding term. So in
any approximation, it is essential to resume the infinite
series, keeping all the terms. The nth order term can be
approximated using approximations analogous to those
in Ref. [24]. First, in evaluating the time integrals in
Eq. (A6) using Laplace transforms, only the most dom-
inant pole is counted since this gives an exponentially
larger contribution than the rest which may safely be
neglected. This introduces an error of order
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with a linear dispersion relation

=510k = el (a2)

In analogy to KYG, we devise an infinite-order singular
perturbation theory around the linear solution

V() = e (7 = 0). (A3)

Formal integration of the integral form of Eq. (A1)
leads to

2 T ,
iy = 9ilr) = 5 [ drrene)
0

X DD e (7 e (7 e ()

k' k"

= (2n—1)!ID,, (A4)
n=0
where
2n+1 n—1| 2n+1 2
i ¢ki<r=o>)(n 3 k. )fn({wn};f), (%)
i=1 a=0|i=2a+1
|
T z 4 (=29mT)
(211116) kcutoffe T (AS)

Second, assume that the dominant contribution to the
wavevector sums occurs when k; = k,,, the maximally
unstable mode. Third, assume also that the directions
of each of the k; which is summed is distributed isotrop-
ically. This is to a large extent an uncontrolled approx-
imation. As a result, the KYG-type solutions are un-
able to describe coarsening, i.e., the shift in the posi-
tion of k,, with time, as is important for models with
conserved order parameter. For our long-range interac-
tion, the inability of the KYG-type solution to incorpo-
rate a shift in k,,, restricts its validity as a description of
the system’s dynamics to the early-time regime. During
this regime, the dynamics of the system is dominated by
k.. However, at equilibrium the system is characterized
by domain widths with the equilibrium wave vector keq.
Therefore the crossover that takes place as the modula-
tion length changes from A = 27 /k,, to A = 27 /keq is not
incorporated in the approximate solution. It is, however,
an improvement over the linear solution at early times.

Straightforward algebra gives the nth-order term as
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['(ak) —k? " ik-x[,/0 2n+1
N — - KX n Ag
™ T+ ) (47,,1 2 WL (A9)
where
37m — Yk
= _m Ik 1
Qg 2’)’111 5 (A 0)

where T is the gamma function and ¢°(x, 7) is the inverse
Fourier transform of ¥Q(7). Substitution of this result
into Eq. (Ab) gives a closed form result

(1) = Zeik'xi/)o(x,T)F(%,l;ak;—z), (A11)

x
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with

RO, 7))

, A12
T (A12)

z

where F' is the hypergeometric function.
For numerical evaluation it is convenient to rewrite Eq.
(A11) in the following manner:

- S S(12)

1
XBHL: (E,ak - 1),

X

(A13)

where B;(a,b) is the incomplete beta function.
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FIG. 10. Stripe patterns for MA;, show-
ing the dependence of the final state on the
strength of the dipolar interaction. The con-
figurations correspond to L = 10, h = 0. The
left pictures are for 3 = 0.10 and the right
ones for 8 = 0.34.



\

T = 6000

{

FIG. 12. Configuration pictures corresponding to MBy, for an off-critical quench in the thick film. (Run C: L = 10, 8 = 0.22,
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FIG. 13. Configuration pictures corresponding to MBy, for an off-critical quench in the thin film. (Run D: L =0.1, 8 =5,
and 9o = 0.2.)










