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Perturbation theory applied to the freezing of classical systems
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We analyze the density-functional perturbation theory for simple classical systems and in particular
the application of the perturbation-weighted density approximation to the study of the solid-fluid coex-
istence. The main assumptions of the approximation are discussed to clarify the dependence of the re-

sults with the partition of the intermolecular potential into repulsive and attractive contributions. A
simplified version of the theory is presented and the results for the phase diagram of a Lennard-Jones
system are compared with other theories and computer simulations.
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I. INTRODUCTION

The development of density-functional approxiinations
has allowed the extensive study of inhomogeneous classi-
cal systems [1]. An important part of this effort has been
dedicated to the hard-sphere (HS) system. Today we
have accurate approximations to predict the structure of
a HS fluid against a hard wall and its thermodynamic
freezing properties [2), probably two of the hardest tests
to be satisfied by any theoretical model of inhomogeneous
systems. The common basic idea behind these theories
for hard spheres is that the free energy of inhomogeneous
systems may be locally mapped into the free energy of
homogeneous systems whose density, p(r), is related in
some way to the actual density distribution p(r) of the in-
homogeneous systems. There are several theoretical
models based on different recipes for this thermodynamic
mapping [2,3]. However, it has been recently found that
some of these theories fail when applied to systems with
attractive interactions [4,5]. The failure may be due, at
least in part, to the thermodynamic mapping into the
condensation density gap where the corresponding homo-
geneous phase is not defined, so that this deficiency is
probably inherent to all these models. An approach to
avoid this difficulty is the extension of the well-known
perturbation theories for uniform fluids [6) to the case of
inhomogeneous systems. Following the standard pro-
cedure of perturbation theory, the intermolecular poten-
tial is split into a reference part (usually the short-ranged
repulsive part) and the perturbation (usually the long-
ranged attractive tail). The reference system is then
mapped into a HS fiuid and the first-order perturbation
energy is evaluated with the pair distribution function,
p' '(r, r'), of the reference system (essentially the hard
sphere system). This perturbation approach was success-
fully applied to the freezing of a Lennard-Jones system
using computer simulation data for the pair-correlation
function of the HS system [7,8] and this approach is obvi-
ously restricted to the bulk crystal. A density-functional
approximation, capable of studying in a consistent way
the bulk and interfacial properties, requires a workable

approximation for the pair distribution function of inho-
mogeneous HS systems [9—12]. The usual scheme is to
write

p"'(r, r') =p(r )p(r')g (r, r'),
where g(r, r ) is the natural extension of the radial distri-
bution function, g( ~r —r'~ ) in homogeneous fluids. The
question is whether or not the function g(r, r') in the in-

homogeneous system may be approximated by that of a
homogeneous fluid with an "efFective density" p, which
may depend on r, r', or some symmetrized combination.
In this way we would deal again with the mapping of an
inhomogeneous HS system into a homogeneous one, but
now this mapping has to include not only the free energy
but also the pair distribution function. The idea was easi-

ly applied in cases where the inhomogeneity is smooth,
like the liquid-vapor interface of a Lennard-Jones fiuid
far from the triple point [13,14]. Simple choices of the
effective density such as p(r)=p(r) or p(r, r')
=[p(r)+p(r')]/2, may be justified and have been suc-
cessfully used in these cases. It is clear that these simple
recipes are not valid for strongly inhomogeneous systems,
like the solid phase or the fluid against a wall at high bulk
densities, because at some points the local density p(r)
has very large values which would be impossible to reach
in homogeneous phases. A possible choice would be to
take the hard-sphere "weighted density" p(r) which re-
sults from the free-energy thermodynamic mapping, but
it has been recognized that this overestimates the contri-
bution of the perturbation potential [15]. The same ap-
plies to any effective density p of the order of the crystal
or the coexistent liquid densities.

An alternative is to take the limit p =0, i.e., to describe
the radial distribution function by the steplike function
given by the Boltzmann factor of the repulsive reference
potential. This yields reasonable results for the solid free
energy, suggesting that most of the structure in the func-
tion p' '(r, r') in a crystal is already contained in the
product of density distributions in (1). However, in a
homogeneous fluid p(r) is constant and all the structure
in the pair correlation is due to the function g( ~r —r'~ ).
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If this function is approximated by its zero density limit,
the contribution of the perturbation potential is grossly
underestimated. The phase diagram may be studied us-

ing different criteria for the solid and the fluid phases
[15],but this is far from being a consistent treatment and
it cannot be extended to the study of interfaces. Kyrlidis
and Brown [9] have discussed this problem and they pro-
pose that instead of mapping g(r, r') it should be easier to
map the full pair distribution function of the crystal. The
crystal anisotropy may be avoided by taking the spherical
average of p' '(r, r') and then mapping it into the Percus-
Yevick approximation of the metastable isotropic liquid.
The contributions of the perturbation potential in this ap-
proach are quite reasonable and intermediate between
those obtained by using g(r, r')=g(~r —r'~, p) with

p(r) =0 and with p(r}=p(r). Recently [10],we have sug-
gested an approach, the perturbation-weighted density
approximation (PWDA), which allows for a consistent
treatment of homogeneous and inhomogeneous phases
and has competitive accuracy with earlier empirical ap-
proximations. However, recent work has indicated some
problems, mainly the strong dependence of the results on
the partition of the intermolecular potential into refer-
ence and perturbation parts. In Sec. II we present a new
discussion of the PWDA which clarifies this point and in
Sec. III we explore simplified versions of the theory,
which drastically reduce the computer calculations, and

apply them to study the phase diagram of the Lennard-
Jones system. We end with a discussion of the different
theoretical results and the comparison with computer
simulations.

II. PERTURBATION-WEIGHTED
DENSITY APPROXIMATION

U~[p(r)]= —,
' f drp(r)u[r, p(r)], (2)

where u is a functional of p(r) and a function of r, which
represents the average local potential energy acting on a
molecule at position r from all its neighbor molecules:

u[r, p(r)]= f dr'p(r')g(r, r')(() (~r —r'~), (3)

with g(r, r') defined in (1). We know very little of this

Here we summarize the perturbation-weighted density
approximation (PWDA), which has been recently pro-
posed [10], and we present a new discussion which
clarifies the accuracy of the approximation when applied
to a crystal of classical molecules with simple interac-
tions, like the Lennard-Jones (LJ) potential. According
to standard perturbation theory, the density functional
for the Helmholtz free energy of an inhomogeneous sys-
tem, F[p(r)], may be split in the free energy of an "refer-
ence fluid, "F,[p(r)], whose molecular interactions match
the repulsive part of the intermolecular potential, P„(r),
and the perturbation contribution of the attractive poten-
tial, P (r):

F[p(r)]=F„[p(r))+U [p(r)] .

The last tenn, which is also a functional of the density,

may be written as

function in strongly nonuniform systems, like a crystal-
line solid described within the density-functional formal-
ism. The main idea in the PWDA is to get some insight
in the structure of g(~r —r'~) through the exact "local
compressibility" equation (see the Appendix of Ref [10]),

(4)

which generalizes the "local charge neutrality" proposed
by Gunnarson, Jonson, and Lundqvist [16] for charged
systems. In systems with homogeneous density (4)

reduces to the well-known compressibility equation. For
the application to dense inhomogeneous systems, like the
hard-sphere (HS} fluid acting as reference system in the
perturbation analysis, the second term on the right-hand
side of (3) may be approximated by

=k&P (r)y7(p(r)), (5)
p(r) dp

in terms of the isothermal compressibility, yz. , of a uni-

form system with the "weighted density, " p(r) used in

the thermodynamic mapping of the reference HS fluid.

Although, this approximation could be avoided with a
self-consistent evaluation of dp(r )ld p, the proposed ap-
proximation is a considerable simplification without ap-
preciable deterioration of the results. In fact, in the ap-
plication to the problem of crystallization, the total con-
tribution of this term is only of order 0.01 to be com-

pared with the term —1, so that any approximation is

quite harmless and the second term on the right-hand
side of (4) may even be neglected altogether.

In the original presentation of the PWDA it was ar-

gued that the function g(r, r') in a crystal is probably
much less structured than the radial distribution function
of a dense fluid, because a good part of the structure in

the pair distribution function is already included in the
product of density distributions in (1). It was then sug-

gested that a possible family of appropriate functions to
approximate it could be constructed from the radial dis-

tribution function of uniform fluids with low effective

density, p,

g(r, r')=g(~r —r'~, j) .

If this approximation is included in Eqs. (4) and (5},we

get an equation for the local value of p(r}, which may be
solved numerically and its solution used in (2), (3), and (6)

to obtain the perturbation energy. The results of this ap-

proach were promising [10]. The effective density needed

to satisfy the local compressibility equation was always
much lower than the typical macroscopic density of the
crystal, and the function g(~r —r'~, p) gave very accurate
results for the phase diagram of an LJ system, with the
Weeks-Chandler-Andersen (WCA) [6,17] decomposition
of the intermolecular potential. However, the same

theory applied to the same system but with the potential
partition proposed by Barker and Henderson (BH) [6]
gives much poorer results (Table I). In both cases the
perturbation theory was only carried up to first order and

the soft repulsions of the reference Auid were mapped
into an equivalent HS diameter with the simple BH cri-
terion dependent of the temperature but not of the densi-
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TABLE I. The fluid (p&) and solid (p, ) coexisting densities at several temperatures for a Lennard-
Jones system (in units of the LJ parameters e and 0 ). The results of the PWDA with the WCA and the
BH partition of the potential are compared with the computer simulations of Ref. [18]. Notice that the
triple-point temperature with the BH partition is above kT/a=0. 75 so that the coexisting fluid is vapor
in that case.

p~O
ps&

pro
pq cT

py cT

ps~

PWDA (WCA)

0.906
1.004

0.946
1.040

0.966
1.055

PWDA (BH)

kT/a=0. 75
0.003
0.992

kT/e= 1.15
0.836
0.997

k T/a= 1.35
0.873
1.016

MC, Ref. [18]

0.875
0.973

0.936
1.024

0.964
1.053

ty [6]. The difference between the two schemes for dense
liquids is small, but the PWDA produces a gross overes-
timation of the attractive interaction with the BH parti-
tion.

To clarify this point, let us reconsider here the assump-
tions of the PWDA in terms of the "local potential"
defined in (3). We may decompose the density distribu-
tion p(r) in the crystal into the contributions from the
unit cell around each lattice vector R,

p(r') = g f (r' —R),
R

(7)

so that the function f(r) is a normalized narrow distribu-
tion around the origin (usually described by Gaussians}.
Let us take the position r in u [r,p] within the unit cell
associated with R=O. Any sensible approximation for
g(r, r') contains the excluded volume around the origin
which avoids the self-interaction of the molecule in each
unit cell. This is equivalent to ignoring the term R =0 in
the sum in (7). Then we split u in a "mean-field" part,
without the function g(r, r'), and a correlation part, hu,
which depends on g(r, r') —1:

u[r,p(r)]= g f dr'f(r —R}P (r —r')+bu[r, p(r)],
R+0

The lattice sites R far away from the origin R=O will
give small contributions to hu, because both g(r, r') —1

and P~()r —r')) decay rapidly with the distance (r—r'~.
The main contribution comes from the nearest-neighbor
cell, )R) =R

&
where (r' —r( =R is within the range of the

repulsive potential P„(r). In this region the function
g(r, r') goes briskly from zero to values larger than 1 and
its contribution to the perturbation energy is enhanced by
being close to the absolute minimum of the intermolecu-
lar potential. The accuracy of the PWDA, or of any oth-

with

hu[r, p(r)]= g fdr'f(r' R)[g(r, r') 1—]P (~r —r'~) .—
RAO

er similar approach for the thermodynamics of a classical
crystal, depends mainly of the capability to describe the
correlation contribution from the shell of nearest neigh-
bors, although the lattice sites further away than nearest
neighbors may still give a substantial contribution to the
mean field part of u.

A parallel line of argument may be followed for the ex-
act local compressibility equation (4). There we may also
split the density into the contributions from each lattice
site (7). The site at R =0 is at the center of the correla-
tion core, and its integral, with g(r, r') =0, cancels exact-
ly the —1 term on the right-hand side of (4). The contri-
butions from lattice cells further away from nearest
neighbors are probably small but the sites in the first
neighbors shell impose important physical restrictions on
the function g(r, r'}. By comparing the resulting expres-
sions for hu and for the local compressibility equation we
realize that the information gained with the later may be
used in the former by assuming that the perturbation po-
tential is a smooth function of r', compared with the rap-
id changes of f(r —R)g(r, r') in the region ~r —r'~ =R, .
A simple analysis based on the Taylor expansion of p~(r)
around r=R, shows that any function g(r, r') satisfying
the local compressibility equation will give the correct
leading term for the local effective potential. Obviously,
the local compressibility equation is far from fully speci-
fying a unique function g (r, r') and that is why a solution
may be sought within an arbitrary family of functions,
like (6}. However, the zeroth-order contribution to the
perturbation energy in a Taylor expansion of P (r) is in-
dependent of the particular choice.

The difFerence between the BH and the WCA decom-
positions of the LJ potential now becomes clear. The
WCA partition produces a perturbation potential which
is constant and equal to the minimum of the full LJ po-
tential, P(r), for r (ro, where ro is the position of the
minimum of P(r). The equivalent HS diameter describ-
ing the repulsive reference potential is smaller than ro, so
that Pu(r) is fiat in the region with the main contribution
from the correlation function. The exact zeroth-order
term in the Taylor expansion of P (r), gives most of the
correlation contribution to u[r, p(r)] independently of
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the accuracy of the ansatz (6). Thus the WCA decompo-
sition of the LJ potential seems to be the optimum parti-
tion to minimize the error in the perturbation energy
with an approximate function g(r, r') fulfilling the local
compressibility equation. On the other hand, the BH
decomposition of the LJ potential gives a very steep func-
tion P (r) in the region of the strongly correlated nearest
neighbors. The results produced with this partition
should depend much more critically on the choice of the
particular family of functions.

The approximation (6) does not reproduce all the
features of g(r, r') observed in the computer simulation
data (see Fig. 7 in Ref. [9]), but it may be regarded as a
convenient functional family which satisfies two basic re-
quirements: all the functions have the correlation hole
around the origin, as needed to avoid the self-interaction
of the molecules, and the efFective density p is a smooth

parameter to tune the local compressibility with the
strongly structured density distributions typical of a crys-
tal. Moreover, it becomes exact in the limit of homo-
geneous fluids, which is an important requirement in the
study of solid-fluid interfaces. The PWDA, together with
the WCA partition of the intermolecular potential, pro-
vide a workable and accurate density functional which
may be applied to the study of systems with arbitrary in-

homogeneity.

f dr f dr'f(r) f(r' R—, )[g(r, r') —1], (12)

where R& is any lattice vector in the first correlation
shell. Double integrals like (12) appear in a "global
compressibility" equation obtained by integration in a
unit cell of the exact "local compressibility" equation (4)
multiplied by the local cell density f(r ):

f drf(r) f dr'p(r')[g(r, r') —1]

=g f dr f dr'f(r) f(r' R)[—g(r r') —1]—
R

+ f d f( kT dp(r)
p(r) dp

(13)

As far as g(r, r') contains the exclusion hole around
r —r =0, the restriction to normalized unit cell densities
cancels out the —1, in the last term of (13), with the con-
tribution from the lattice vector R=O. The contribution
for the remaining sites is again dominated by the shell of
nearest neighbors so that any function g(r, r') fulfilling

the global compressibility equation (13), would give an
excellent estimate of the integral (12) and hence a good
approximation to the correlation energy (11) for the
%CA perturbation potential, for the same reasons dis-

cussed in the previous paragraph.
This suggests a simplified version of the PWDA (or

SPWDA) based in the approximation (6) for g(r, r') with

a global uniform effective density p which satisfies Eq.
(13), instead of the locally varying p(r) required to satisfy

(4). This simplification provides an important reduction
of the numerical calculations and, if our discussion is

correct, it should have essentially the same accuracy as
the original PWDA (although limited to macroscopically
uniform systems). We have checked the SPWDA for the
solid-fluid coexistence of the LJ system and the results
are compared with the original PWDA [10],with Monte
Carlo results [18] and with other theoretical approaches

[9,19—21] in Table II. Both the PWDA and the
SPWDA use the WCA partition of the LJ potential [17].
The radial distribution functions of the reference system
is obtained from the Verlet-Weiss approximation [22] for
HS and the Boltzmann factor of the reference potential
according with the perturbation theory [6,17]. The soft
repulsive potential is represented by hard spheres with a
diameter determined with the Barker-Henderson cri-
terion [6], as is also done in the other theories we want to
compare with. The use of the more accurate WCA cri-
terion [17], used in perturbation theory of homogeneous

liquids together with the WCA partition of the inter-
molecular potential produces a HS diameter which de-

pends on the density and would be very difBcult to treat
in non-homogeneous systems. For the reference HS free
energy we use the weighted density approximation of
Tarazona [15] but any other mapping might be used in

our general scheme. The density p(r) in the solid phase is

parametrized by Gaussians in a fcc lattice and the total
free energy in minimized with respect to the Gaussian
width [15]. The right-hand side of (13) may be approxi-
mated by (5) or, without appreciable effect, we may

neglect the compressibility of the solid phase. The re-

sults, as presented in Table II are very close to those ob-

III. SIMPLIFIED PERTURBATION-WEIGHTED
DENSITY APPROXIMATION

If we focus our attention on systems which are macros-
copically homogeneous, such as a bulk crystalline solid,
the perturbation energy (2) is proportional to the number
of molecules, X and using (7)—(9) we get

Up =
—,
' f drf (r)u [r,p(r)],

which may again be decomposed into "mean-field" and
"correlation" contributions:

U =
—,
' g f dr f dr'f(r) f(r' R)P (~r —r'~)—

RAO

EU~[p(r)]+
N

(10)

where, as before, the exclusion of the R=O in the mean-

field part avoids the self-interaction of the molecule in

each unit cell. The correlation contribution is now

As in the previous discussion, the main contribution to
this energy comes from the shell of nearest neighbors,
~R~=R„where the function g(r, r') presents a strong
dependence on

~
r —r' ~. If we use the WCA partition of

the LJ potential, P (r) is smooth function and we may ex-

pand it around r =8, . The leading (zeroth-order) contri-
bution is proportional to

hU
g f dr'f(r) f(r' R)[g(r, r') 1]P (~r —r—')) . —

RWO
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TABLE II. Solid-liquid coexistence densities and pressures for the Lennard-Jones system for
dimerent temperatures. Comparison of Monte Carlo data (Ref. 18) with those obtained from the
PWDA (Ref. [10]), the simphfied versions presented here, SPWDA and mean-field (MF), and other
theories: Curtin and Achscrof (Ref. [19]),Kyrlidis and Brown, (Ref. [9]),and Choi, Ree, and Ree (Ref.
[20]), and Kang et (tl. (Ref. [8]).

PWDA SPWDA MF MC Ref. [19] Ref. [9] Refs. [8,20]

pI~'
pso

Po /e

pio.

pg o'

Po /e

plo
pso'

Pcr /e

0.906
1.004
1.04

0.946
1.040
S.90

0.966
1.055
8.65

0.898
1.001
0.94

0.941
1.043
5.78

0.958
1.060
8.30

kT/E= 0.75
0.880 0.875
0.990 0.973
0.60 0.67

kT/e= 1.15
0.934 0.936
1.035 1.024
5.50 5.68

kT/e= 1.35
0.953 0.964
1.054 1.053
8.07 9.00

0.855
0.970
0.90

0.934
1.026
6.40

0.960
1.045
9.10

0.859
0.983
0.65

0.920
1.008
5.44

0.943
1.024
8.13

0.861
0.957
0.54

0.950
1.027
6.16

0.986
1.054
9.60

tained with the PWDA. The overall agreement with the
Monte Carlo results and temperature behavior is quite
good, even slightly better than our PWDA results at low
temperatures, and comparable with the other theoretical
results presented in the table.

At this stage it is clear that the accuracy of our ap-
proaches, either the PWDA or the SPWDA, is mainly
due to the use of compressibility equation and the WCA
partition of the intermolecular potential, rather than to
the validity of the approximation (6) for g(r, r ) in a crys-
talline solid. As a final check we have explored an even
more simplified version of our theory. As we said above,
the compressibility contribution in the last term of (13) is
negligible, compared with —1, and this later is exactly
balanced by the R=O contribution over the lattice vec-
tors. Thus, Eq. (13) reduces to

X f dr f dr'f(r)f(r' —R)[g(r —r') —(]=0, ()4)
R+0

which is satisfied by the trivial solution g(r, r ) =1 every-
where except near ~r —r'~=0. This is equivalent to
neglecting altogether the correlation contribution to the
perturbation energy (11) and keeping only the mean-field
part, which still excludes the self-interaction. The results
of this mean-field (MF) approximation for the solid-liquid
coexistence are also presented in Table II; they are as
good as those of the PWDA or the SPWDA and even
better at low temperature. However, they are based in a
very unphysical assumption, fully neglecting the correla-
tion between nearest-neighbor cells but still keeping the
self-exclusion of the molecule in each lattice cell. The
function g(r, r') corresponding to this assumption would
be a steplike function going from 0 to 1 but not at a dis-
tance ~r —r'~ near the HS diameter, but somewhere
around ~r r'~=R, /2, in the—interstitial region with
negligible local density. This unphysical function resem-
bles the empirical correction to the direct correlation
function used by Curtin and Ashcroft [19], which also
has a step at a distance of half HS diameter: in both
cases the functions are built to separate each peak in the

crystal p(r) from all its neighbors. In the study of crystal
phases within the density-functional formalism it is usual
to separate the density profile in the individual contribu-
tions from each molecule. The results for the HS crystal
are better if the minimization of the free energy is re-
stricted to density distributions made of normalized con-
tributions from each molecule as in (7) and the contribu-
tion from the attractive interactions is also much easier
to approximate if the molecular self-interaction is avoid-
ed. This is done by our unphysical g(r, r') in (14) or by
the empirical step in the direct correlation function of
Curtin and Ashcroft. It is clear that our good results for
the LJ phase diagram cannot be taken in support of this
correlation function; the accuracy of the results comes
from the cancellation of errors controlled by the
compressibility sum rule (13). This should be taken into
account when the density functionals developed for the
bulk solid are extended to the study of other problems
like the wall-fiuid interphase or the surface melting,
where the separation ofp(r) into the individual molecular
contributions is impossible. The extrapolation to these
problems should not include any features associated with
the separation of p(r) in the contributions of each mole-
cule.

In this respect the PWDA, with the WCA partition of
the intermolecular potential and the local compressibility
equation solved within the approximation (6), seems to be
superior to the other alternatives. Although the radial
distribution functions of low density Auids cannot fully
match the correlation function in a crystal, they provide
important physical features like the presence of the
Boltzmann factor with the repulsive reference potential
and they are extended in a natural way from the solid to
the liquid phase. The accuracy in the evaluation of the
WCA perturbation energy is controlled by the local
compressibility equation. Now we understand how this
sum rule produces good estimates of the crystal free ener-

gy and, by the same reason, it should also give accurate
results for other inhomogeneous systems: it gives the ex-
act leading contribution for the WCA perturbation po-
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tential. If we restrict ourselves to the study of bulk
solids, the SPWDA presented here is simple to use and
offers a controlled approximation with results compara-
ble to other existing theories, like those of Curtin and
Ashcroft [19], Kyrlidis and Brown [9], already men-
tioned, and the interesting approach of Choi, Ree, and
Ree [20] (see also Refs. [7] and [8]). However, the later
cannot be compared directly with the functional theories
discussed above because it uses the references HS free en-

ergy and pair distribution function obtained from Monte
Carlo simulations instead of being generated by the
theory itself.

Finally we have to remark that our discussion here has
been restricted to the perturbation treatment of the at-
tractive interaction. There still remains a relatively weak
point in the theoretical treatment: the map of the soft
repulsions of the reference Quid into an equivalent hard
sphere. In the homogeneous Quid this is done much more
accurately by the %CA criterion, with the effective HS
diameter which depending on both temperature and den-
sity. However, in the crystal the dependence with the
density becomes very troublesome and, as in other previ-
ous works, we have restricted the map to the simpler BH
criterion in which the HS diameter is density indepen-

dent. This approximation is not very accurate for the
free energy, but most the error made in the liquid and in
the crystal cancel out, so that the phase diagram may be
more accurate than the equation of state of each phase.
However, other properties of the crystal, such as the Lin-
demann ratio, are much more sensitive. The microscopic
structures of the density distribution in the LJ crystal
should reflect the softness of the core repulsion and the
width of the Gaussian peaks are different in a crystal with
self-repulsion than in the HS crystal. The equation of
state of the crystal at high pressure and the solid fluid

phase diagram at high temperature also reflect the prob-
lem of the soft repulsive potential which requires further
study.

ACKN0%LEDGMENTS

We have benefitted from fruitful discussions with An-
dres Somoza and Don Sullivan, to whom we also ac-
knowledge the careful reading of the manuscript. This
work was supported by the Direccion General de Investi-

gacion Cientifica y Tecnica of Spain, under Grant No.
PB91-0090.

[1]R. Evans, Adv. Phys. 2$, 143 (1979).
[2] R. Evans, in Inhomogeneous Fluids, edited by D. Hender-

son (Dekker, New York, 1992), Chap. 5.
[3] M. Baus, J. Phys. Condens. Matter 2, 2111 (1990).
[4] A. de Kuijper, W. L. Vos, J. L. Barrat, J. P. Hansen, and

J.A. Schouten, J. Chem. Phys. 93, 5187 (1990).
[5] A. Kyrlidis and R. A. Brown, Phys. Rev. A 44, 8141

(1991).
[6] J. P. Hansen and I. R. McDonald, Theory of Simple

Liquids (Academic, New York, 1986).
[7]J. J. Weis, Mol. Phys. 2$, 187 (1974).
[8] H. S. Kang, T. Ree, and F. H. Ree, J. Chem. Phys. $4,

4547 (1986).
[9]A. Kyrlidis and R. A. Brown, Phys. Rev. E 1, 427 (1993).

[10]L. Mederos, G. Navascues, P. Tarazona, and E. Chac6n,
Phys. Rev. E 47, 4284 (1993).

[11]Z. Tang, L. E. Scriven, and H. T. Davis, J. Chem. Phys.
95, 2659 (1991).

[12]S. Sokolowski and J. Fisher, J. Chem. Pyhys. 96, 5441
(1992}.

[13]S. Toxvaerd, Mol. Phys. 26, 91 (1973).

[14]L. Mederos, E. Chac6n, G. Navaseues, and M. Lombar-

dero, Mol. Phys. 54, 211 (1985).
[15]P. Tarazona, Mol. Phys. 52, 81 (1984); P. Tarazona, Phys.

Rev. A 31, 2672 (1985).
[16]O. Gunnarson, M. Jonson, and B.I. Lundqvist, Phys. Rev.

B 20, 3136 (1979).
[17]H. C. Andersen, D. Chandler, and J. D. Weeks, Phys.

Rev. A 4, 1918 (1971).
[18]J. P. Hansen and L. Verlet, Phys. Rev. 1$4, 151 (1969).
[19]W. A. Curtin and N. W. Ashcroft, Phys. Rev. Lett. 65,

2775 (1986).
[20] Y. Choi, T. Ree, and F. H. Ree, J. Chem. Phys. 95, 7548

(1991).
[21]C. Marshall, B. B. Laird, and A. D. J. Haymet, Chem.

Phys. Lett. 122, 320 (1985).
[22] Tarazona's model for the HS reference system gives very

accurate radial distribution function compared with the
"exact" solution of Verlet and %eis, Mol. Phys. 24, 1013
(1972). So this analytical solution can be used without

lack of consistence in the treatment of the reference sys-

tem.


