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Chaotic instabilities in smectic-C liquid crystals

I. %. Stewart, '* T. Carlsson, and F. M. Leslie
Department of Theoretica!Mechanics, University of Nottingham, University Park, Nottingham NG72RD, England

Physics Department, Chalmers University of Technology, S-412 96 Goteborg, Sweden

Department ofMathematics, University ofStrathclyde, Livingstone Tower, 26 Richmond Street, Glasgow Gl 1XH, Scotland
(Received 7 July 1993)

An investigation is made of chaos in planar samples of nonchiral smectic-C liquid crystals. When a
static electric field is applied at an oblique angle to the layers an explicit solitonlike solution is derived
from the smectic continuum equations: this solution describes a moving domain wall. When a suitable

oscillating electric field is superimposed on the static field this domain wall can be unstable and chaotic
instabilities are shown to arise in the movement of the c director. Criteria for the onset of chaos are pro-
vided via a Melnikov analysis where, for example, for any given smectic tilt angle it can be decided
which magnitudes and frequencies of the oscillating field lead to chaos.

PACS number(s): 61.30.Cz, 47.52.+j

I. INTRODUCTION

Liquid crystals consist of elongated molecules for
which the long molecular axes locally adopt one common
direction in space, generally described by a unit vector n
called the director. Smectic-C liquid crystals are layered
structures for which the director is tilted by an angle 8
with respect to the layer normal. In this work it is as-
sumed that the layers are of constant thickness. The unit
layer normal is denoted by a and, as introduced by de
Gennes [1], a unit vector c (the c director), which is per-
pendicular to a, is used to describe the direction of the
average molecular tilt of the alignment with respect to
the layer normal. The c director is parallel to the projec-
tion of the usual director n onto the stnectic planes (see
Fig. 1).

Smectic-C liquid crystals can form planar layers in the
bulk where the two directors a and c are constant in
space. Applying an external electric field to a homogene-
ous sample can, for proper combinations of the boundary
conditions imposed on the c director at the surrounding
glass plates and the direction of the applied field, result in
a Freedericksz transition where the c director may rotate
around the layer normal while the layers remain intact;
static and moving domain walls are also possible and do
not disturb the layer structure. Layer distortions may
also occur. The combinations of the possible deforma-
tions involving perturbations of the a and c directors are
associated with an elastic energy having nine elastic con-
stants (see Refs. [1—4]). From this continuum theory the
elastic constant B3 and the rotational viscosity A., will ap-
pear in the equations discussed below in Sec. II; much of
the analysis is motivated by the known solutions for stat-
ic and moving domain walls presented in Stewart and Raj
[5] and Schiller, Pelzl, and Detnus [6].

The derivation of the dynamic equation we will use is

'Author to whom correspondence should be addressed.

given in the Appendix, together with a brief outline of
the theory contained in [4]. Simpler heuristic derivations
are possible, but the techniques employed in the Appen-
dix (involving Lagrange multipliers) are of great
mathematical convenience when considering more corn-
plicated layered structures of smectic-C liquid crystals
such as the focal conies (see de Gennes [1]). The use of
these multipliers has been successfully demonstrated by
Nakagawa [7] and Stewart, Nakagawa, and Leslie [8] and
it is in anticipation of their usefulness for the future that
more detailed manipulations have been included in the
Appendix.

The onset of chaotic motions of the n director in
nematic liquid crystals has been discussed by Abdullaev,
Abdumalikov, and Tsoi [9]. The aim of this article is to
show that chaotic solutions can occur when an electric
field, composed of a static field that is augmented by a
weak low-frequency alternating field, is applied at a small
tilted angle to the planes of a planar aligned sample of

Y

z

FIG. 1. The average molecular alignment, i.e., the director, is
prescribed by a unit vector n making an angle 0 with the layer
normal a. The c director is the unit vector parallel to the pro-
jection of the n director onto the smectic planes and is denoted

by c. The z axis is taken to coincide with the orientation of the
layer normal a and the x and y axes lie within the smectic
planes. The electric field E makes an angle a with the smectic
planes as shown in the figure.
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nonchiral smectic-C liquid crystal. Instabilities in the
form of chaos arise from the oscillatory forcing term due
to the alternating field; when the alternating field is ab-
sent and only the static field is present an explicit soli-
tonlike solution is available.

(see Carlsson, Stewart, and Leslie [2] for a description
and discussion of this and other related deformations).

The electric free-energy density that occurs when an
electric field is applied across a liquid crystal may be
written as [1]

II.DESCRIPTION OF THE PROBLEM
w'= —

—,'s e (n E) (2.7)

A. Geometrical arrangement, energies,
and the dynamic equation

a a=c c= 1, a c=O . (2.1)

Further, as dislocations are not considered, we require
(Oseen [10])

V Xa=O . (2.2)

The bulk energy integrand involving the gradients of a
and c can be written in the equivalent forms

We consider a nonchiral smectic-C liquid crystal in the
bulk where the planar smectic layers of constant thick-
ness are aligned as shown in Fig. l. The layer normal a is
taken to be parallel to the z axis. The average direction
of the molecules is described by the unit vector n, the
director, and 8 is the usual temperature-dependent smec-
tic tilt angle (cos8=n a), for our purposes assumed con-
stant. The xy plane is taken to be parallel to the smectic
planes and the c director, being the unit projection of the
director into the smectic planes, is described by the phase
angle P, as indicated in Fig. 1.

Using the above notation, the two directors a and c are
subject to the constraints

where co is the permittivity of free space and c, is the
dielectric anisotropy of the liquid crystal, assumed in this
work to be positive. Imposing the above geometry, Eqs.
(2.4) and (2.5) show that

w'= —
—,
' e, soE o [sina cos8+ cosa sin8 cosP(z, t) ]

and we therefore set

(2.8)

W=w+w'. (2.9)

Before deriving the dynamic equation of the system we
study the physical implication of the dielectric potential
(2.8) in a qualitative way. Provided that s, & 0 and a (8,
this potential exhibits two local minima for / =0,n as de-
picted in Fig. 2. If a=0 (the electric field being parallel
to the smectic planes) the two minima are of equal depth
and the system is bistable. If the electric field makes an
angle a & 0 with the smectic planes, the minimum P =m is
metastable [w'(P=n ) & w'(/=0}]. Now consider a sys-
tem with two domains separated by a m wall as depicted
in Fig. 3. If the electric field is applied parallel to the
smectic planes (a=0) both the domains /=0 and P=m.
have the same dielectric energy and the wall is fixed. If,
instead, the field makes an angle with the smectic planes
the domain P=n has a large dielectric energy than the

w =w(a, c,Va, Vc)=w(b, c, Vb, Vc), (2.3)

where b =a Xc and the symmetry of the nonchiral smec-
tics results in a nine-term quadratic bulk energy as given
in the Appendix [Eq. (Al}].

An electric field E is introduced, making a small angle
a & 0 with the smectic planes

TILT ANGLE: e = 25'

E=Eo(cosa, O, sina), (2.4)

where Eo= ~E~ is the strength of the electric field. We
make the following ansatz for a, c, and n:

a=(0,0, 1),
c = (cosP(z, t), sing(z, t),0),
n=a cost9+c sin8,

(2.5a)

(2.5b)

(2.5c)
I I I I I I

(
I I I I I I I I
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motivated by looking at the possible orientation of c as a
function of z and time t when aXO. For the above choice
of a and c with this supposed spatial and time depen-
dence [satisfying constraints (2.1) and (2.2)] the resulting
bulk energy integrand, by Eq. (A1), becomes

2

w =2B3[—,'(b.VXb+c.VXc)] =
—,'83, (2.6)

8

where 83 is the positive elastic constant related to the ro-
tation of the c director as we move from layer to layer, c
having the same orientation within each individual layer

-90.0 90.0

PHASE ANGLE 0 («g)

270.0

FIT&. 2. Dielectric potential w' [Eq. (2.8)] as a function of the
phase angle P for three different values of the angle a between
the electric Seld and the smectic planes. When a=0 the poten-
tial exhibits two minima of equal depth at /=0 and P=n and
the system is bistable. If 0(a(8 then the minimum at P=vr
has the larger dielectric energy and the system becomes meta-
stable. Finally, when a&8, the minimum at P=m disappears
and instead becomes a maximum.
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FIG. 3. Snapshot of the propagating domain wall [Eq. (2.14)]
at t=O. The upper part of the figure shows how the director ro-

tates around the smectic cone in the region between the stable

{/=0) and the metastable (P=n ) domains. The middle part of
the figure depicts P(z, O) and it is seen how the wall, having a

thickness of the order A, /(sin8cosa), is located around z =ut.
In the lower part of the figure the dielectric potential [Eq. (2.8)]
corresponding to P(z, O) is depicted. When time increases the

wall propagates to the right, driven by the dielectric and elastic

torques which are due to the asymmetry of the c-director profile
around z =ut.

(2.10) represents the z component of the three-
dimensional balance-of-torque equation. This equation is
the governing equation for P(z, t) derived by the
mathematical theory presented in the Appendix. We
would like to point out that some debate today exists in
the literature regarding the choice of the z component of
the torque equation as the governing equation of the sys-
tem. A more physical approach, such as that by
Carlsson, Leslie, and Clark [11],suggests that the proper
component of the torque equation governing the rotation
of the c director in the system we are studying may be the
0 component, where instead of a Cartesian coordinate
system a spherical polar coordinate system is employed
to describe the director. One possible explanation of the
discrepancy between the two approaches is discussed in
Ref. [11]. Since the two approaches give qualitatively
similar equations of motion for the system, in this paper
we will be content with analyzing the rotation of the c
director as it is given by Eq. (2.10), leaving the choice of
the proper component of the torque equation aside for
the moment.

Before analyzing Eq. (2.10) we note that it can be
rewritten as

, a'~ a~
to = (—sina cos8

Bz2 Bt

+cosa sin8 cosP)cosa sin8 sing .

(2. 1 1)

domain /=0. In this case the wall will propagate
through the system, driven by the electric and dielectric
torques, in a direction which makes the /=0 domain ex-
pand at the cost of the P =n. domain

Minimizing the energy (2.9) using the Euler-Lagrange
equations as discussed in the Appendix [leading to Eq.
(A15)] results in the dynamic equation

a'
2

—2k 5
—e, ecEO(sina cos8+ cosa sin8 cosP)az2

Xcosa sin8 sing =0 . (2.10)

Here A,5 is the positive rotational viscosity related to the
movement of the director n around a cone whose
semivertical angle is the smectic tilt angle 8. The solu-
tion of (2.10) for P(z, t) will lead to complete solutions for
the Euler-Lagrange equations as discussed in the Appen-
dix, as required. The solution P will further enable the
Lagrange multipliers arising frown the constraints (2.1)
and (2.2) to be calculated explicitly if necessary via the
relevant equations derived in the Appendix (for example,
the onset of layer deformations may require a more de-
tailed analysis of the behavior of the constraints).

Equation (2.10) can be interpreted as a balance-of-
torque equation where the 83 term represents the elastic
torque which is due to the rotation of the e director when
going from one layer to another. The A.5 term is the rota-
tional torque, being proportional to the angular velocity
dP/dt of the c director, while the last term in the equa-
tion represents the dielectric torque. As it is written, Eq.

Here we have introduced A, and to, which represent a typ-
ical length scale and time scale in the problem, respec-
tively, and are given by

[B,/(e, so)]=1
0

(2.12)

to=2k~/(s, s()EO) . (2.13)

Following the solution of Schiller, Pelzl, and Demus [6]
(with a suitably redefined a), Eq. (2.11) is known to have
solitonlike solutions for aAO which describe a moving
domain wall, namely,

P(z, t)=2tan ' exp
+(z —ut)

sin8 cosa (2.14)

for which the velocity of the wall is

k ~

u =k—sinacosO .
t0

(2.15)

The wall corresponding to the plus sign in Eq. (2.14) is
the one described qualitatively in Fig. 3, while the nega-
tive sign corresponds to a wall moving to the left in a sys-
tem for which the /=0 and P=m domains have changed
places. The solution (2.14) is available whenever E is a
static field: for the remainder of this paper an examina-
tion will be made of possible solutions to (2.11) when a
slowly oscillating ac field is gradually combined with a
fixed static field.
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B. Approximations and equations involving

a superimposed ac field

We assume that the tilted field angle is small, that is,

that is, whenever the solution is investigated sufBciently
near the original point zo. Equations (2.22)—(2.24) allow
(2.20) to be written as

0&a«1, (2.16)
1 1+a =acot8sing+ —,'[I+gacos(cur))sin(2$),1r dr

ED~ED[1+(e/2)cos(cost) ], (2.17)

and seek solutions to Eq. (2.10) when the static field con-
sidered above is gradually augmented with an appropri-
ate ac field possessing a slowly varying frequency. This is
achieved by replacing Eo in {2.10) by

which may be formulated as the first-order system

1
v —,

' sin(2$)

(2.26)

where cps is the frequency of the superimposed field and s
is suitably small. To make the problem more tractable we
will suppose that

+a —v +cot8 sing+ (g/2)cos(roe )sin(2$)
r

(2.18)

for some positive constant g. The assumptions
{2.16)-(2.18) lead to the substitution

f)(P, v) g|(P, v, r)

f2(f, v) g2($, V, T)

= f(P, v)+ag(P, v, r), (2.27)

Eo ~Ev [1+pa cos(co/at) ] (2.19)

in Eq. (2.11),which is then straightforwardly rewritten as

z (Pk
to =—

—,
' [a sin(28)sing

Qz2 Bt

+ [1+ga cos(cogat) ]

Xsin 8sin(2$}] . (2.20)

Motivated by the solution under a static field given in Eq.
(2.14), solutions to (2.20}of the type

P(z, r) =P(~),
(2.21)

r= —sin8 ——a sin 8+1Z . t . 2

to

will be sought, where the constants A, and tc are given by
Eqs. (2.12) and (2.13) and 1 is an arbitrary constant.
Equation (2.20) may be regarded as a special approxirna-
tion to a perturbation of the static-field solution in (2.11).
It follows that

8 sin8 1 8 sin8 1
Qz2 gz 1r dt t dr

The time behavior of solutions will be examined for a
given suitably small region around an arbitrary point zp,
say, noting that whenever a &0, ~~+00 corresponds to
t~+00. Setting 1=—(sin8/A, )zo in Eq. (2.21) shows
that

where v =1//d ~ and, for ease of notation later, the func-
tions f(P, v) and g(P, v, r) are introduced as indicated
above.

The remainder of this paper demonstrates the possibili-
ty that solutions to Eq. (2.27) can exhibit chaotic dynam-
ics in a small enough neighborhood of the originally
chosen point zo. Since this choice of zo is arbitrary, we
can conclude that chaos may be present everywhere in
the liquid-crystal sample where the ac field is applied.

III. CHAOTIC DYNAMICS BY MELNIKOV'S METHOD

Equation (2.27) will now be analyzed via Melnikov's
method and the techniques employed, for example, by
Guckenheimer and Holmes [12] and Marsden [13]; the
objective is to prove that there exist chaotic solutions in
the sense of Smale horseshoes whenever a )0 is
suSciently small. This is achieved by evaluating, and ex-
amining the behavior of, the Melnikov function (defined
below) whose calculation requires the solution of the un-
perturbed system (a=0). A statement of the relevant
theory will be made below, while for full details and ex-
amples of Smale horseshoes, chaotic dynamics, and
proofs of the Melnikov method the reader is referred to
the references cited above.

The unperturbed system for (2.27) is

U

a cos(co/at) =a cos(cor),

where

Cggf p

sin 8

(2.23)

(2.24)

which has Hamiltonian H given by

H (P, v )=—,
' v +—,

' cos(2$ }

since

Ba aa
Bv BP

=v and — = -' sin(2$ ) .

(3.2)

(3 3)

whenever

Iz —zp I sin8,ak
r vco

(2.25)

The equilibria for the unperturbed system are, with the
assumption that e, )0, clearly at /=0, n/2, n, etc., an.d,
as the phase portrait in the Pv plane repeats itself every
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m. , only the phase portrait for P between 0 and m. is con-
sidered. The heteroclinic orbits (separatrices in the phase
plane} occur when H —=—,', that is, when

tance between the perturbed and unperturbed solutions.
M+ is said to have a simple zero at ~, if

v+ =sing and u = —sing, (3.4)
dM+

M+(r, )=0 and (r, )%0 .
d7 o

(3.9)

=(2tan '[exp(r)], sech'),

q (r)=(P, v )

=(~—2tan '[exp(r)], —sech'),

(3.5)

(3.6)

where —~ (~ & ~; the interior and exterior of q+ U q
are filled with periodic orbits (P =n. /2 is a center).

The wedge product of f and g is defined by

where the plus and minus signs represent the upper and
lower separatrices in the plane, respectively. This pair of
heteroclinic orbits is easily derived to be

q+(r}=(4+ u+ }

For a=0 the system (3.1) possesses heteroclinic orbits to
the hyperbolic saddle point at /=0; these conditions are
sufficient for us to apply Melnikov's method for the ex-
istence of chaos ([14], p. 71), which we now state in a
form suitable for our purposes (see [12,13]):

Theorem. If M+(ro} [or M (ro}] has simple zeros in

vo and is independent of a, then for a &0 sufficiently
small the perturbed system (2.27) exhibits chaos in the
sense of Smale horseshoes.

This theorem will now be applied to I+ and M sep-
arately.

A. The M+ case

f Rg =f hagi f2g i— (3.7) From (3.4) and (3.5),
and for the upper heteroclinic orbit we define the Melni-
kov function to be u+ (r) =sing+(r) =sech~ (3.10)

M+(1O)= f f(q+(r)) Rg(q+(r) 1+To)dr . (3.8)

M (ro) is similarly defined for the lower orbit. The Mel-
nikov function is, in some sense, a measure of the dis-

sin2$+ (r ) = —2 sech' tanhr

and hence

(3.1 1)

M+(ro) = f u+ (r) [ u+ (r)+—cot8 sing+(r)+(g/2)cos[co(r+ro)]sin2$+(r)]dr

=f (cot8 1)sech—r dr g f —cos[co(r+ ro)]sech r tanhr

=2(cot8 —1) (I, — (3.12)

where I is the second integral in the preceding line. In-
tegrating by parts yields

It is clear from (3.15) that M+(ru) has simple zeros in ro
provided

I= —— sin co v.+so sech 7
00

iR (co, 8)
~

& g . (3.17)

= ——cos(coro) f sin(cor)sech r dr
2 00

——sin(coro) f cos(cor)sech r dr .
2 00

(3.13)

67I = —
m sin(coro)csch(con /2) . (3.14)

The insertion of (3.14) into (3.12) finally shows

The first integrand in (3.13) is odd in r and therefore its
integral is zero; the second integral may be evaluated to
give ([15],p. 505)

R+ (co, 8)=F(co)(cot8 1), —

where

(3.18)

Hence, by the Melnikov theorem stated above, whenever
condition (3.17) is satisfied it can be deduced that for
sufficiently small a the system (2.27) [and hence Eq.
(2.20)] exhibits chaos. As g increases in (3.17) (i.e., as the
strength of the ac field increases) it is clear that larger
ranges from the combined values of 8 and 0 lead to
chaotic solutions. Solving the equation ~R+(co, 8}~=(
provides the boundary of the region in the BO plane in-
side which the corresponding values of B and 0 force R +
to fulfill (3.17), and hence produce chaos. Writing

CO

M+ (ro) =g~ csch(co@'/2) [R + (co, 8)//+ sin(co~o) ],2

(3.15)

where

R+(co, 8)=[4/(co m)](cot8 —1)sinh(con/2) . (3.16)

F(co)=4sinh(con/2)/(co ~),
it is seen that F (co) has a global minimum at

co, = (4/m )tanh(co, n /2) = 1.219

with

(3.19)

(3.20}



CHAOTIC INSTABILITIES IN SMIN SMECTIC-C LIQUID CRYSTALS

F(co, ) =2. 844 . (3.21}

=F(c0, )=2.844 (3.22)

for which the chaotic r
8=m.

c aotic regime is extend

chao
/. Fo 11 1o er ranch of the

e
e

a lid 1o oh

. 7) o , i (3.1
'

g . 8), bewrittenas

8)F(co)/g, (3.23}

where F(co)
'
is given by Eq. (3.19). Th

of 8 od i ho fo g—co, and the corres
will

given by

responding value of 8 '
is

, =F(ui, )//=2. 844/g . (3.24)
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where

iR (co, 8)i &g (3.29)

and hence, by the Melnikov theorem, condition (3.29) is
sufftcient to ensure that for sufftciently small cr the system
(2.27} exhibits chaos. As in the previous case, solving

~R (cu, 8)~ =g gives the boundary of the region in the co8

plane inside which the corresponding values of co and 8
lead to chaos, by Eq. (3.29). Setting

R (co, 8)=F(a) )(cot8+ 1), (3.30)

where F is given by (3.19), we can see, since R is always

positive, that for all 8

R (co, 8) &F(a), ), (3.31)

where co, and F (co, ) are given in (3.20) and (3.21). Hence
chaotic solutions are only possible in this case when

g& g, =2.844. The relevant combinations of chaos pro-
ducing values for co and 0 lie above the curve
R (co, 8)=g, as shown in Fig. 5. In this figure four
different values of g (/=3.2,8,28.44, 100) have been used
in the calculations, showing the expansion in possible
values for co and 8 producing chaos as g increases above

C. Remarks

In both the M+ and M cases increasing the control-
ling parameter g for the ac field will force the region in

the c08 plane for which chaos occurs to expand in area.

R (co, 8)=[4/(co n)](cot8+1)sinh(con/2) . (3.28)

In a similar manner to the M+ case above, M (ro) has
simple zeros in ~0 whenever

This leads to the interpretation that chaos is more likely
to be present in the given sample under a higher-strength
ac electric field. The M+ calculation involving the rela-
tion (3.17) is relevant when the initial perturbation corre-
sponds to a small change in the initial data above the P
axis close to the q+ unperturbed orbit in the phase plane.
Similarly, the M calculation and Eq. (3.29) are relevant

for small changes to the initial data below the P axis close
to the unperturbed q orbit.

As discussed above, when (&(,=2.844 only the M+
calculations produce chaotic solutions. %hen, on the
other hand, g & g, both the M+ and M calculations

produce chaos. It can be deduced from Eqs. (3.17},
(3.18}, (3.29), and (3.30) that the region in the co8 plane

for which the M calculation produces chaos is always

contained within the chaotic region of the M+ calcula-

tion. (This result is clearly demonstrated by Figs. 4 and
5.) Thus, in order to establish the existence of chaotic
solutions, performing the M+ calculation is sufBcient.

However, if we are also interested in the type of perturba-
tions which can be involved in the chaotic solutions, we

would also have to carry out the M calculations.

IV. DISCUSSION

In this article we have shown that there exist chaotic
solutions to the continuum equations for planar aligned
nonchiral smectic-C liquid crystals whenever a static
electric Geld augmented by a suitably weak ac Geld is ap-
plied at a small oblique angle to the smectic layers. The
instability which arises in the movement of the c director
is analogous to the motion of a pendulum near its unsta-
ble equilibrium: any small perturbation may cause the
pendulum to fall in a complicated chaotic fashion. Simi-

larly, small perturbations of certain positions of the c
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plane, co being the rescaled frequency of the ac
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Fig. 1; ( is related to the strength of the ac field

by Eq. (2.18). Chaotic solutions are only avail-

able for g) g, =2.844; these solutions first
occur when g is close to g; aud a& is close to
co, = 1.219. The area above the curves
represent combinations of 6 and 0 which lead
to chaos. Increasing g allows more chaos-

producing combinations of co and 0.
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Ep' =—'aEO,

21Tf =cps .

(4.1)

(4.2)

By Eq. (2.13}we introduced to, which represents a typical
time scale for the problem. The corresponding frequency
is given by fo = I /tii and we now introduce a dimension-
less frequency f by the relation

f=f/fo=fto . (4.3)

As control parameter when presenting the results we will
now instead of g' and t0 (which are used in Figs. 4 and 5)

director lead to initially chaotic motian. The control pa-
rameters probing the instability in an experiment are the
tilt angle 8, the angle a between the electric field and the
smectic planes, and the strength Eo' and frequency f of
the ac Seld. For mathematical reasons we have not intro-
duced Eo' and fwhen performing the calculations but in-
stead the quantities g and co, which are defined by Eqs.
(2.18) and (2.24). From Eq. (2.17) we notice that

coasin 8
2' (4.5)

In order to investigate which parameter values will lead
to chaotic behavior of the system we anly have to investi-
gate the M+ case for the reasons explained in Sec. III C
abave. Figure 6 shows how the chaotic region in the f8
plane expands with increasing s for a =1' and 5'. As the
calculated results, depicted in Fig. 4, are universal in g
and co, we see from Eqs. (4.4) and (4.5) that whenever s/a
is the same the chaatic region will be unchanged if we re-
place f by f /a, . Thus when a decreases the chaatic re-
gian will be pushed down to smaller frequencies and ulti-

choose s, which is twice the ratio between the amplitudes
af the ac and static electric fields and the dimensionless
frequency f .By using Eqs. (2.18), (2.25), (4.2), and (4.3)
one can express the more physically related control pa-
rameters s and f in terms of g and co as

(4.4}
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mately disappear in the limit as a~O. The typical fre-
quencies f for which chaos appears are seen in Fig. 6 to
be f=0.01. If the typical response time of the system, to,
is taken to be to=1 ms, we conclude that a typical fre-
quency for which chaotic behavior can be expected to
occur is f =f /to = 100 Hz. Generally, as the estimation
made above is very rough, we would thus expect observa-
tions of chaos to be possible whenever the frequency of
the applied field is in the low-Hz region (10 &f &10
Hz).

In the geometrical setup described in Sec. II A, the ac
field introduced has a small amplitude and slow frequen-
cy; as an alternative, E in Eq. (2.17) could be replaced by

Eo ~Eo[1+(e/2)cos(cot) ], (4.6)

but this rescales co to co(to/(asin 8} and the resulting
M+ (or M ) Melnikov function becomes a dependent,
thereby invalidating the use of the Melnikov theorem.
An attempt to overcome this kind of particular problem,
as mentioned by Marsden [13],may be made by examin-
ing suitable expansions of the stable and unstable mani-
folds for the perturbed equations and carrying out a more
detailed error analysis in the resulting e expansions. It is
conjectured that such an approach is possible and will
yield further existence results for chaos.

The subharmonic orbits which are present in the phase
plane (for example, the periodic orbits around P=n/2).
may be calculated explicitly for the unperturbed system
(3.1). An application of the subharmonic Melnikov func-
tion, which (unlike the Melnikov function introduced
above) is based on these orbits, their periods and other
relevant behavior, may establish whether or not any of
them survive as perturbed periodic orbits (having
different periods) when a & 0 is small; the stability of such
perturbed periodic orbits may also be examined (see
Stewart and Carlsson [16]).

To summarize, in this paper we have shown how the
motion of the domain walls described in Sec. II A with
suitable arrangements can become chaotic. The main re-
sults of the paper are shown in Figs. 4-6. From Fig. 6 it
is seen how, for a given value of the angle u between the
oblique electric field and the smectic planes, the region in
the f8 plane for which chaotic motion appears will grow
with increasing field strength c of the ac electric field. In
an experiment performed at a certain temperature, the
tilt angle 0 can be considered to be constant unless the
system is very close ( T, —T & 1 K) to the smectic-
A —smectic-C phase-transition temperature [17]. If, for
given a and e, the frequency f of the ac field is increased,
the system will follow a horizontal line in the f8 plane as
depicted in Fig. 7. Provided 0& 0, there will be an inter-
val f, &f &fz in the frequency for which chaotic

I

2w =A, 2(b VXc) +A~, (c.VXb) +2A„(b.VXc)(c V

+B,(V b) +B2(V c) +B3[—'(b VXb+c.VXc)]
+2B,3(V.b)[ —,(b VXb+c VXc)]+2Ci(V.c)(b.V

= Az, (V a) +B,(a V Xc} +B2(V c) +B3(c V Xc)
+(2A ii + A i2+ A2i+B3)(b.V Xc) —(2A i, +2A

UJ
CHA

0
Z

frequencies leading

to chaos

OTIC REGION

c = 1
0

c = 0.05

REDUCED FREQUENCY

FIG. 7. Chaotic regime in the f8 plane for a=1' and
E =0.05. If 8 & 8, and the reduced frequency f of the ac electric
Geld is increased gradually, one sees how there wi11 be an inter-
val f, &f &f, for which the motion of the domain wall is
chaotic.

behavior of the system is expected. For these frequencies
the nature of the motion of the domain walls is
unpredictable and nonrepeatable.

Another system for which the investigation of chaotic
behavior might be of interest is the switching of a
surface-stabilized ferroelectric liquid-crystalline (SSFLC)
cell. In these cells a chiral smectic-C liquid crystal is
switching between two configurations, driven by an elec-
tric field. Superimposed on the switching field one nor-
mally applies a background high-frequency ac electric
field. In reality, one must always expect the angle be-
tween the smectic planes and the applied electric field to
be nonzero, either by the presence of chevrons or by im-

perfections of the alignment of the smectic layers. Thus
there is the possibility that chaotic behavior can appear
in the SSFLC cell if the values of the control parameters
match in such a way that the system enters the chaotic
region.

In conclusion, we hope that the techniques presented
in this paper will allow a more detailed investigation of
possible instabilities arising in other, more complicated
smectic configurations across which an ac electric field is
applied. We also hope that the work presented here
might encourage some experimental e8'orts in studying
the possible chaotic motion which can appear in the sys-
tem studied in this paper.

APPENDIX

In this Appendix the theory introduced by Leslie and
co-workers [3,4] is applied to the problem outlined in Sec.
II, the reader being referred to these references for full in-
formation and details. From [3], the bulk energy in-
tegrand may be written in either of the two equivalent
forms

(Ala)Xc)+2C2(V c)(c VXb)

2, +B3)(V.a)(b VXc)
—2B,3(a-VXc)(c.VXc)+2(C, +Cz —B»)(V c)(b VXc)—2C2(V.a)(V.c), (A lb)
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where A, , B,, and C; are elastic constants related to those given by the Orsay Liquid Crystal Group [1S] (OLCG) (the
only changes being A» = —

—,
' A» and C, = —C, " ) and b=aXc, surface terms being omitted. From [4], the bal-

ance of angular momentum leads to the following Euler-Lagrange equations in Cartesian component form for a and c,
respectively, where %is the sum of the bulk energy (Alb) and the electric energy at (2.7):

+g,'+ A,a; +jt,c;+e,jkPk =0,aw aw
Ba, , ' Ba,

(A2)

+g +pc;+IMa;=0
BW BW

CI j CI
(A3)

for i=1,2,3, where, for example, a, denotes partial differentiation of the ith component of a with respect to the jth
variable. The usual alternator is represented by e; k, while repeated indices follow the summation convention and are
summed from 1 to 3. The four constraints (2.1) and (2.2) lead to the introduction of the Lagrange multipliers A., p, y,
and P which appear in Eqs. (A2) and (A3), the multiplier JM linking the two sets of equations for the a and c directors.
The terms g' and g' are the dynamic contributions related to a and c, respectively, arising from the dynamic stress ten-
sor formulated in [4]. From Eqs. (3.19) and (3.20} in [4], the dynamic contributions g' and g' appearing in the above
equations are

c;
g; = 275 (A4)

c;g;= 2%5 (AS)

CI.

e, soEO(sina cos8+cosa sin8cosg)cos8E; —2r5 +B,3c,t
'2

where r& and A, 5 are viscosity coefficients, A, s being the positive (see [4]) rotational viscosity related to the movement of
the director n around a cone. Upon inserting (A4) and (A5) into (A2) and (A3) an evaluation or elimination of the
Lagrange multipliers can be pursued, thereby arriving at the equation that governs the movement of the c director.

Since the equations examined in Sec. II are only z and t dependent, the substitution of the energy %given by adding
(Alb) and (2.7) into (A2) and (A3) yields for our given ansatz, respectively,

ay
'
+Ra;+pc;+e; kPk =0, (A6)

B3C; 33 B3c;— c;+s, soEO(sina cos8+ cosa sin8 cosI}})sin8E;—2A s +pc;+pa, =0 (A7)

for i = 1,2,3. On account of (2.1) and (2.5),

C]
a =0

t

and therefore taking the scalar product of (A7) with a shows

Jtt,
= —s, eoEO(sina cos8+ cosa sin8 cosg)sin8 sina .

We now seek the multipliers A, and p. It is known that for any AF Cz(R )

div A=0 if and only if A=VXB

(AS)

(A9)

(A 10)

for some BEC (I ) (unique, apart from a constant) and therefore equation (A6) may be solved for suitable A, and P by
taking the divergence of (A6) and solving for a possible A, ; such a A, will ensure the existence of a vector multiplier P
through the relation (A10} which, for our present purposes, need not be derived explicitly. Substituting JM from (A9)
into (A6) and taking the divergence gives

k, 3
=p, 3cot8 (Al 1)

from which we may clearly set

A, =p cot8, (A12)

the existence of II being guaranteed by (A10). It now follows that solving for c in (A7) (that is, solving for P } also allows
us to completely solve the equations for a given by (A6).

The multiplier y will now be eliminated from Eqs. (A7). Clearly, (A7) is satisfied for i =3 with the above choice of p.
For i=2,
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2

ay ac,
B3C2 33 B3CQ 2As +yc2 —0

t)Z at
(A13)

and fori=l,
'2

ay Bc&
B3ci 33 B3c, +c,,a+0(sinacos8+cosa sin8cosg)cosa sin8 —2As +pc, =0 .

az Bt
(A14)

By multiplying (A13) by c i and (A14) by c2, the multiplier y can be eliminated by subtracting the equations to find

B3 —2A 5
=e,

ego�

(sina cos8+ cosa sin8 cos{b )cosa sin8 sing .z' (A15)
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