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Dependence of drag on a Galilean invariance-breaking parameter
in lattice Boltzmann How simulations
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We present two-dimensional lattice Boltzmann simulations of Bow past a cylinder which show
that the drag coeKcient is proportional to the factor multiplying the convective term in the Navier-
Stokes-like equations obtained for Boolean lattice gases and for certain lattice Boltzmann models.
With the correct expression for the drag coefBcient, we show that the results of previous Boolean
lattice-gas studies of drag agree with experiment and with each other.

PACS number(s): 47.15.—x, 47.60.+i, 51.10.+y

INTRODUCTION

There have been several studies of drag on obstacles in
lattice-gas simulations of Quid How. Some have yielded
good agreement with experimental results, others have
not. We are able to reconcile the disparity in the results
by demonstrating that the appropriate expression for the
drag coeKcient is different from what has often been pre-
viously used. When the correct expression for drag is
used, both Boolean lattice gases and lattice Boltzmann
models yield good agreement with experimental results.
We also discuss some numerical issues which affect the
drag.

We will first describe the lattice Boltzmann models
used to investigate the effect on the drag of Galilean
invariance breaking. We then present and discuss our
results. Finally, we compare the present study with pre-
vious ones.

MODEL DESCRIPTION

Recently, lattice Boltzmann models have been pro-
posed [1—5] which do not suffer from either the intrinsic
noise or the velocity-dependent pressure of the Boolean
Frisch-Hasslacher-Pomeau (FHP) lattice gases [6,7]. Lat-
tice Boltzmann models are a natural tool for investigat-
ing what effects the departures of lattice-gas equations of
motion Rom the usual Navier-Stokes have on drag coef-
ficient. The reasons are that they are not noisy, allowing
accurate determination of the drag, and that the Galilean
invariance-breaking parameter can be changed without
changing either the viscosity or the density of the lattice
gas. They are thus much easier to handle than Boolean
models.

We brieBy review how the coarse-grained equations of
motion are obtained. One begins by performing a mul-
tiscale expansion of the site populations, f;, near their
equilibrium values, fo, using the explicit form of the
equilibrium populations for a triangular lattice in two
dlmenslons)
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with Z; f; = p, 2;c;f; = pu, b the number of nonzero

c; (here 6), p the density, g an arbitrary constant, and
Q; p = c; c;p —c2b p/2. The c; are the microscopic ve-
locities, whose magnitude is c = 1. Note that if for g one
substitutes g(p) = (b —2p)(b —p) ~, one obtains exactly
the equilibrium population of the Boolean FHP model

[7], obtained by expanding the Fermi-Dirac expression
for population in powers of u.

The resulting equation of motion for the momentum
in the usual limit is

o (pu)
Bt

= —pgu Vu —Vp+ pvV u,

with the pressure p given by

p = c'p/2+ gpu',

(2)

f.' = d. + g~.u' (4)

for the equilibrium distribution of the rest particles and

fi = d + 2 ciaua + gciacipuaup + g7u, (5)2

with the constants d, d„, p, and p„related through the
conservation of mass and momentum; explicitly, p = d„+
db, and 0 = g(p„+2pc +Q). Again, g is arbitrary, with

and the kinematic viscosity v determined by the choice
of collision rules. For collisions of the time-irreversible
form of the BGK (Bhatnagar-Gross-Krook) model [3],
0; = (f; —f; )/7, one obtains v = (7 —1/2)/4.

Equations (2) and (3) differ from the Navier-Stokes
equations in two ways. The factor g multiplying the con-
vective term in general breaks Galilean invariance, and
the pressure has an unphysical dependence on velocity.
Both of these defects can be separately remedied [3,5].
In the lattice Boltzmann approach, one regains Galilean
invariance by simply choosing g = 1. This is, however,
not in general possible for Boolean lattice gases in which
g is determined by p, as given above.

Chen et at. [5] showed that by adding rest particles
with a suitable steady-state distribution and modifying
the equilibrium distribution of moving particles, a pres-
sure &ee &om explicit velocity dependence is possible.
Specifically, again including the parameter g, one takes
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the particular choice g = 1 yielding Galilean invariance.
The diagonal part of the inviscid momentum Aux tensor,
the pressure, is then

f, u u = p = dbc /2 + g(p/2 + bc p/2) u (6)

By choosing p to make the term in parentheses vanish
in (6), one obtains a pressure free from explicit velocity
dependence. The coarse-grained equation of motion is

again (2), though now just with p = dbc /2
By simulating How around a cylinder using these lat-

tice Boltzmann equations, we can investigate the effects
of varying g in (1) or in (4) and (5), thus varying g in
the equation of motion (2) and in the expression for pres-
sure. Since the pressure resulting from (4) and (5) con-
tains no explicit velocity dependence, varying g in these
expressions yields results uncontaminated by any effects
introduced through the unphysical velocity dependence
resulting from (1). Also, since the coarse-grained equa-
tions of motion of Boolean lattice gases differ Rom (2)
only through g being determined by local density and v

being determined by the choice of Boolean collision rules,
this study is relevant for Boolean lattice gases as well as
lattice Boltzmann models.

RESULTS

ZAu
-' UDGE' (7)

with U the free-stream velocity, D the obstacle diameter,
and the sum taken over the surface of the obstacle, and

To investigate dependence of the drag on the Galilean
invariance-breaking parameter g, we ran simulations of
the six-velocity models whose equilibrium distributions
are given by (1) and of the seven-velocity models whose
equilibrium distributions are given by (4) and (5) at Re=
UDg/v = 48 (Re is the Reynolds number). Drag was
calculated by summing the momentum change caused by
bounce-back collision rules on all obstacle sites. The drag
coefFicient is thus

Au the change of momentum in the direction of mean
Bow, x. The mass of a particle is taken to be unity.

Our principal result is that CD is proportional to the
parameter g in f, for both the six- and seven-velocity
cases. Figure 1 shows the effect on CD of varying g. One
interpretation of Fig. 1 leading to a g-independent drag
coe%cient is that the correct expression is

ZAgu

2 p(gU) 2Db, t
CD

g
(8)

Using gu instead of u is consistent with de6ning the
Reynolds number from the ratio of typical magnitudes
of the convective and viscous terms in (2); Re= gUD/u.
In addition, using the dimensionless time formed with

D/gU rather than D/U has been found to give much
better results for the Strouhal number [8,9] and cylin-
der wake formation [8]. Another reason to regard gu as
a quantity more relevant than u is that the equation of
motion for pgu is Galilean invariant, while the equation
of motion for pu is not. We wish to point out that ex-
pression (7) was proposed as the correct expression for
calculating drag by Rivet [10].

The unphysical velocity dependence in the pressure
which results from choosing (1) for f, is responsible for
the difference between the dark and light symbols in Fig.
1. Note that the difference is generally small but be-
comes more pronounced with increasing g. The velocity-
dependent term in the pressure thus has very little effect
on the drag. The inset to Fig. 1 shows the deviation
of CD vs g &om a straight line with slope set by CD at
g = 1. To ll%%uo precision, the dependence is linear over
an order of magnitude in g.

We use the same density in the denominator for the
drag coefficient in both the six- and seven-velocity mod-
els. This is because the rest particles do not directly
contribute to the drag since they cannot strike the ob-
stacle. Also, the denominator of CD may be interpreted
as a pressure times a length (in two dimensions), and
the pressure at u = 0 is identical for both the six- and
seven-velocity models. For p in CD we use density per
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FIG. 1. Drag coeKcient CD, defined by
(7) at Re= gUD/v = 48 versus g. Outlined
symbols are results for seven-velocity model
with f, and f„defined by (4) and (5), filled
symbols are results for six-velocity models
with f, given by (1). The cr. oss represents the
experimental result of Wieselberger [12]. Ex-
perimental results of Tritton [11] are smaller

by roughly 8/0. Inset shows deviation from a
straight line with slope defined by the value
at g = 1. Co is defined by (8).
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FIG. 2. CD plotted against Re for lattice Boltzmann
equations deSned by (4) and (5) with g = 1. Also plotted
are the experimental results of Tritton and Wieselberger.

COMPARISON WITH BOOLEAN STUDIES
OF DRAG

There have been several previous studies of drag on
cylinders made with Boolean lattice gases [8,9,13-15].We
show that after accounting for 6nite-size effects, these
results also appear to be consistent with a g dependence
of CD. We also discuss some potential sources of error in
lattice-gas simulations.

We first address the efFect of the ratio A of cylinder
diameter to system width on CD. The inset of Fig. 3
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FIG. 3. C~ plotted against distance of obstacle center
from inlet, X'0. Data are for f, given by (1),.aud at Re= 48,
with g = 1. The ratio A of obstacle diameter to system width
is 1/12. Inset: Co plotted against the ratio A of system
width to obstacle diameter. Data are as for the main Bgure,
but with Xp ——4D.

unit area, not density per site (the two are related by a
factor of ~z).

The value at g = 0 is not accessible to simulation, since
as g + 0, it is impossible to keep Re= gUD/v finite, due
to the instability in the lattice Boltzmann equations at
small v. Simply setting g = 0 does not yield C~ = 0.

We also present in Fig. 2 a comparison of C~ measured
with the seven-velocity model with g = 1 over a Re range
12—96 with the experimental results of Tritton[11] and
Wieselberger [12] (Fig. 2). The lattice Boltzmann data
agree with the experimental results nearly as well as the
results of the experimental studies agree with each other,
that is, to 15%.

shows our data, taken with periodic boundary conditions
in the direction perpendicular to the flow. Clearly A (
0.1 is necessary for the drag to be independent of A to
5%.

Some workers have used no-slip instead of periodic
boundaries, with parabolic inflow and outflow velocity
pro6les instead of flat ones. The effect this choice has
on the drag depends on the aspect ratio. At A = 0.2,
we find CD(no-slip)/C~(periodic) = 0.743, while at
A = 0.1, CD(no-slip)/CD(periodic) = 0.824 with Re
de6ned &om the peak of the Poiseuille velocity pro6le.
Thus drag obtained &om simulations run with no-slip
boundary conditions is not identical to drag obtained
&om periodic boundary conditions at reasonable aspect
ratios.

Another boundary condition which may afFect the drag
is the distance of the center of the obstacle from the in-

flow, Xo. Figure 3 shows our data which make clear that
Xo should be at least 5D for drag to be independent of
Xo to 2%. Of course, if the outflow is too close to the
obstacle, CD will also be affected. We only note that an
obstacle center to outflow distance of 12D is sufficient to
prevent such contamination.

Lastly, there is the possibility of a Knudsen-layer effect
on the drag. This effect will be strongest for small Re,
since there the ratio of diameter to mean free path (pro-
portional to D/v) will be smallest. We found a negligible
difference between D/v = 320 and D/v = 160 at Re= 12,
suggesting that even with the small obstacle sizes which
lattice Boltzmann equations allow, Knudsen-layer effects
are negligible.

We now consider previous studies ordered by increas-
ing values of g(p). We consider first the results of Hayot
and Wagner [9], obtained for Re= 100 at g(p) = 0.25.
They found CD ——0.575 at A = 0.1 and Xo ——4D,
using the density per site in the definition of the drag
coefficient instead of the density per unit area. Correct-
ing for the effect of the small Xo and using the density
per area in the drag, one finds an amended CD = 0.408
which yields for the value to be compared with exper-
iment CD/g = 1.63. This value is 15% above Wiesel-
berger's experimental value. The agreement with exper-
iment is thus much better than what was concluded in
[9]. Moreover, one must conclude that the estimation of
drag from the velocity profile in [9] is problematic be-
cause of the noise level of the Boolean simulation and
possibly because the method requires a channel longer
than is computationally feasible to be accurate.

Hayot and Lakshmi [8] found for Re= 30 CD = 1.24,
at A = 0.31, and for Re= 60 C~ ——1.06 at A = 0.36,
both at g(p) = 0.25 with periodic boundary conditions.
After correcting for large aspect ratio (using the data of
Fig. 3) and the use of density per site, the amended
values are, for Re= 30, C~ ——0.50 and for Re= 60, C~ ——

0.44. Again, the amended values are consistent with the
dependence suggested by Fig. 1; that is, C& ——C~/g
gives a much better agreement with experiment.

We turn to the studies of Duarte and Brosa [13],of
Kohring [14],and of Vogeler and Wolf-Gladrow [15],who
measured drag on circular and hexagonal obstacles in
the range 5 (Re( 80, with A = 0.2 and Poiseuille in-
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TABLE I. Summary of comparison with Boolean studies. The crudeness of the corrections
(described in the text) allows only a relative comparison between the agreement of Co snd Cz& with
experiment. The result from [13] is not corrected for Xo. Experimental Co is from Wieselberger
[12].

Reynolds
number

100
46.3
30

Raw
CD

0.575
1.34
1.24

Geometry
corrected t D

0.408
1.27
0.50

Geometry
corrected |D

1.63
1.59
2.0

Experimental
CD

1.43
1.61
1.79

reference

[sl
[13]
[81

fiow. They worked with g(p) = 0.8. Thus the efFect of
g(p) on the results of these workers would be much less
pronounced than for the preceding studies. The effects of
large aspect ratio and Poiseuille infiow nearly cancel for
these studies —the correction to &ee-stream drag results
from these two effects being 0.95. Without knowing the
value of Xo used in all their simulations, it is not possi-
ble to explicitly compare their results with those of the
present study. We note only that all three of these stud-
ies did not include g(p) in their definitions of C~ or Re.
The changes caused by including g in both quantities
contribute in opposite ways to the value of CD and are
of similar magnitude over the range of Re investigated.
Thus the effects of the two omissions nearly cancel each
other, which explains why the drag results of these au-
thors agree with experiment. Table I summarizes the
comparison with Boolean simulations.

Both the simulation results presented in this study and
previous Boolean drag data support using expression (8)
for lattice-gas studies which break Galilean invariance.
When expression (8) is used for C~, results in the lit-
erature are seen to be consistent with each other and
with experiment. Furthermore, the effect on CD of the
unphysical velocity dependence of the pressure is small.
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