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Pattern formation in laser-induced melting
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A laser focused onto a semiconductor film can create a disordered lamellae pattern of coexisting
molten-solid regions. We present a continuum model based on the higher re8ectivity of the molten
regions. For a large latent heat, this model becomes equivalent to a dynamical model of block
copolymers. The characteristic wave number of the lamellae is the one marginally stable to slow

variations in the orientation (the zigzag instability) and can be obtained via systematic expansions
from two limits. The lamellae can also become unstable to the zigzag instability and Eckhaus
instability (slow variations in the wave number) simultaneously. This instability is a signal of
dynamic steady states. We numerically study the behavior after a quench. The lamellar size is in

agreement with the analytic results and with experiments. For shallow quenches, locally parallel
stripes slowly straighten out in time. For deep quenches, a disordered lamellar structure is created.
We construct the director field and determine the orientational correlation length. Near onset,
the correlation is fixed by the system size. Far from onset, the correlation length saturates at a
finite value. We study the transition to the time-dependent asymptotic states as the latent heat is

decreased.

PACS number(s): 47.54.+r, 44.30.+v, 05.70.Ln, 78.66.—w

I. INTRODUCTION

A laser focused onto a semiconductor film such as sil-

icon can induce melting. At low laser intensity the inci-
dent light will simply raise the sample temperature. At
large laser intensity a uniform molten surface will be cre-
ated. However, the laser intensity can be adjusted so
that melting is initiated but molten and solid regions co-
exist [1—6]. Therefore the area onto which the laser is

directed contains both molten and solid regions of size

much smaller than the diameter of the illuminated area.
The coexisting molten-solid regions can arise Rom two

different mechanisms. One possibility discussed by Pre-
ston et al [4,7] is tha. t, due to the coherence of the laser
beam, there can be interference between the incident and
surface scattered fields. This leads to spatially periodic
power deposition and solid-melt patterns that depend on
the wavelength and orientation of the incident light [3,4].

In this paper we will be interested in a second mech-
anism. It was conjectured that the nonuniformity can
be due to the increased reflectivity of the molten regions

[2,8]. Following the argument of Hawkins and Biegelsen

[2], assume that laser energy Qux Jq is required to raise
the solid sample to the melting temperature. Due to the
higher reflectivity, the energy flux J2 required to main-
tain a homogeneous molten phase at the melting temper-
ature will be much higher. Therefore for energy fluxes
between Ji and J2 a homogeneous phase is not possi-
ble. Instead a heterogeneous surface is created in which
the molten regions are undercooled and the solid regions
superheated. Although a free energy argument may not
be justified for the nonequilibrium steady state, Hawkins
and Biegelsen [2] balanced the surface energy due to the
solid-liquid interfaces with the increase in the free en-

ergy due to the undercooling (superheating) of the melt

(solid) phase to relate the wavelength of the patterns to
the average undercooling. Jackson and Kurtze [8], on
the other hand, studied the stability of a periodic array
of solid and molten stripes using a phenomenological in-

terface description. They found that, if the wavelength
of the pattern is within a specific band, the pattern is
stable to infinitesimal perturbations of the orientation of
the stripes. This thermally controlled regime has also
been observed experimentally and is characterized by a
disordered lamellar structure [2,6].

In addition to static patterns, the transition between
the parallel stripes and disordered lamellar phases have
been studied. It was found that the transition was re-
versible but displays hysteresis characteristic of a first
order transition [6]. Dynamical structures have also been
observed [1—4] in which the patterns are not static but
evolves to some, possibly chaotic, time-dependent asymp-
totic state.

In Sec. II we discuss our continuum model of laser in-

duced melting. The dynamics are given by a set of cou-

pled partial differential equations for the order param-
eter and temperature Beld. The effect of the incoming

energy of the laser, the heat flow to the substrate, and
the order-parameter-dependent reflectivity are included
in the dynamics. In Sec. III we show that, in the limit

of large latent heat, this model is equivalent to a model
of block copolymers [9,10]. In particular the static solu-

tions are always the same as that of block copolymers.
Using the analogy with block copolymers the characteris-
tic length scale of the patterns is the one that minimizes
the free energy. We show that this length scale can be
obtained via systematic expansions close to (weak segre-

gation) and far away (strong segregation) Rom onset (the
parameters where pattern formation first occurs). These
regimes are characterized by different dependence on the
control parameter [10—12] and by qualitatively difFerent
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patterns. Near onset, locally parallel stripes are observed
while, far from onset, disordered lamellar structures are
found.

Although we discuss a specific model, this analogy be-
tween seemingly unrelated systems leads us to expect
that most of our results should be relevant to many sys-
tems which favor phase separation at short length scales
but has a mechanism suppressing macroscopic phase sep-
aration. Examples include ferrofiuids [13], ferromagnets
[14], and rnonolayer films [15,16] as well as Raleigh-
Benard convection [17]. In particular, the patterns after
a quench are characterized by two length scales corre-
sponding to the characteristic length of the local domains
(stripes for the symmetric case) and the length on which
the orientation of the domains are correlated. This addi-
tional length scale has been suggested for Raleigh-Benard
convection [18,19].

Whereas for large latent heat the dynamics are equiv-
alent to that of block copolymers, for other parame-
ters the static state is never reached and the system in-
stead settles into a time-dependent asymptotic state. In
Sec. IV we discuss different stability criteria. We con-
sider the linear analysis of the homogeneous state. We
derive the phase diffusion equations [20,21] describing
the slowly varying lamellae. Using the phase diffusion
equations we reobtain the equilibrium length scale us-

ing the rigourous criteria that the selected length scale is
the one marginally stable to the zigzag instability (i.e.,
marginally stable to slow variations in the orientation of
the stripes). We therefore make concrete, and relate to
one another, the seemingly unrelated free energy [2] and
interfacial stability approaches [8].

In addition, we find that a new instability is possible
in which the lamellae become unstable to both the Eck-
haus and zigzag instability simultaneously. This insta-
bility occurs at small latent heat and marks the limit of
metastability of the parallel lamellae. We conjecture that
this instability signals the presence of the time-dependent
asymptotic states which have also been observed experi-.
mentally [1,2,6].

In Sec. V we present a numerical study. First we con-
sider the static steady state. Previous simulations have
only been able to probe close to onset [12,22]. Here we
find agreement near and far from onset. To study the
correlation between the orientation of stripes, we con-
struct a director field pointing in the direction of the
stripes. Near onset, the orientational correlation length
is much larger (possibly only limited by the system size)
than the pattern wavelength. This leads to the large
regions of locally parallel stripes. Far from onset, the
orientational correlation length is of the same order as
the pattern wavelength. A disordered lamellae is formed
in which the lamellae bend on the same length scale as
the lamellar width. The ratio of the correlation length
divided by the pattern wavelength decreases monoton-
ically as a function of the quench depth. We specu-
late that a nonequilibrium Kosterlitz-Thouless-like tran-
sition separating regimes with long range orientational
order from regimes without. We then map out the phase
boundary between static and time-dependent asyxnptotic
states. We demonstrate that the various regimes are de-

scribed by the phase difFusion dynamics and not by the
linear dynamics around the unstable initial condition.

II. MODEL EQUATIONS

We introduce our model of laser induced melting. Let
P be a dimensionless order parameter field which char-
acterises the solid or liquid phases. At coexistence we
choose ((() = 1 for the liquid phase and P = —1 for the
solid phase. The free energy is

F(W) = f dr po~o I f(4)+ —1&41 I

—no
Q 21 I
2 ) 2

(2.1)

Since there are two coexisting phases, f(P) is required
to be a dimensionless function of double well form with
minima at P = kl corresponding to the liquid and solid
phases. For simplicity we also assume f (P) to be symmet-
ric. The [VP[ term penalizes gradients in P and is re-
quired since, in the absence of driving, the homogeneous
state has the lowest free energy. The last term is the
coupling to the reduced temperature u = (T —T )/T
where T is the melting temperature. For u ) 0, the
liquid phase is favored while for u & 0 the solid phase
has the lower free energy. The physical constants are as
follows (for simplicity we assume the two phases are sym-
metric): pp is the mass per unit volume, Ep is a constant
with units of energy/mass, (p is a microscopic interfa-
cial width, and L is the latent heat per unit mass. The
surface tension is o = ppep(po, where the dimensionless
surface tension o depends on the precise form of f (P) and
is of order unity. For f (P) = —gP/2 + P4/4, o = 2~2/3.

To describe the dynamics of )(() we assume that P obeys
the time-dependent Ginzburg-Landau equation

1 bF
(9ip(r, t) =-

ppeprp bP(r, t)

L+ u(r, t) ],
26p

(2.2)

where pr) = Of/8$ and Tp is a microscopic time scale.
We also need the dynamics of the reduced tempera-

ture field u. In actual experiments the geometry is not
translationally invariant [1—6]. Here we consider a sim-
pler geometry in which the film sits on a substrate which,
in turn, is attached to a heat bath. The thickness of the
film is assumed suHiciently small so that all variation in
perpendicular direction can be neglected. (This will be
true if the thermal conductivity of the substrate is much
smaller than that of the film. ) The reduced temperature
6eld obeys
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ppCpBgu = %TV' u — B,p
poL
2T

1 1
J;„(y)—„J.„,(u). (2.3)

Here KT is the thermal conductivity, Cp the specific heat
per unit mass, and h the thickness of the film.

The incoming flux is J;„(P)= Jp[1 —R(P)], where Jp
is the energy flux of the laser and R(P) is the reflectivity
which is higher in the molten phase. For simplicity we
assume that R(P) is linear in P. We write J;„as

J;„(P)= J;„(P= 0) —Jp
AR

(2.4)

where AR is the difference in the reflectivity between the
solid and melt phases.

The outgoing flux is J „q(T)= (K, /d) (T —Tp), where
K, is the thermal conductivity of the substrate, d is
some length of the order of the substrate thickness, and
To ( T is the temperature at the heat sink. We assume
that the system is maintained close to the melting tem-
perature so the dependence of the outgoing flux on the
local temperature can be neglected. The net flux is then

AR
Jc.~.i ——J;.(4) —J..~(T) = &J —Jp

2
(2 5)

where 6J = J,„(P= 0) —J „q(T= T ). This quantity
determines the relative volume fractions of the melt and
solid. There will be a 50-50 mixture of solid and liquid if
6J = 0. Increasing 4J will increase the fraction of the
molten phase.

We introduce the dimensionless variables t/Tp

r/(p ~ r, and u I/(2ep) M u. The dynamical equations
become

phase separation is suppressed due to an effective long
range interaction. This is a feature common of many
physical systems. Therefore we ask whether there is a
relationship between different models with this feature.
In this section we show that in the limit of large latent
heat the dynamics are equivalent to that of a model of
block copolymers. In particular, the static configurations
are always static configurations of the block copolymer
model. Using this analogy we obtain the characteristic
periodicity of the patterns using systematic expansions
around two limits.

A block copolymer is a linear polymer chain consist-
ing of two subchains A and B covalently bonded to each
other. As the repulsion between A and B chains is in-
creased there can be segregation of A and B chains. How-

ever, due to the covalent bonding macroscopic phase sep-
aration is impossible. Instead the static state consists of
alternating A and B domains of mesoscopic size.

The free energy for block copolymers can be written
in scaled form as [9,10]

F(p) = jdr f(p(r)) + l&y(~)~l'

drdr' r' G r, r' r,

where B 1/N with N being the degree of polymeriza-
tion, P is the difference in the local volume fraction of A
and B monomers, G(r, r') obeys V'2G(r, r') = b(r —r'),
and f is a double well coarse-grained free energy. Other
than symmetry considerations, the exact form of f is
unimportant. We can choose it to be the same as that
of our model for laser induced melting. Assuming relax-
ational dynamics, the dynamics for block copolymers is

[12,22]

~t4= pB+ 7 0—+u~

cpu = DV u —I. A4+ Aj —rp p,

(2.6)

(2.7)
~to = &' = &' {pa —&'4'j —B[4'(r) —&] (& 2)I' bP

with the dimensionless parameters

7.pKz L
QppC~' 4epT Cp'

70LA J ~OL JOUR

2EokT poCp 4606T poCp

(2.8)

where p~ = Bf/8$, P is the average value of P, and I' is
a kinetic coeKcient. The static solution obeys

0 = 7' {p& —V' P) —B[P(r) —P].

We will use these rescaled equations as our working
model. There are four independent parameters. We dis-
cuss primarily the symmetric case, i.e. , Aj = 0. Equa-
tions (2.6) and (2.7) with rp ——0, bj = 0 have been used
as models of phase ordering dynamics with conservation
of order parameter [23).

III. ANALOGY WITH BLOCK COPOLYMERS

A. Dynamical equation and static states

There are two regimes. For values of B very close to the
onset of microphase separation, the size of the patterns
grows as B ~ [9,10]. This is called the weak segre-
gation regime. Further from onset is the strong segre-

gation regime in which the domain sizes grow as B
[10,11,24(a)]. In this regime one typically observes a dis-

ordered lamellar structure unless the overall direction of
the lamellae is fixed either by flow or by boundary condi-
tions [22], or if the system is gradually annealed [24(b)].

Now we reconsider the laser induced melting model.
We can use Eq. (2.6) to solve for u

The fundamental feature of laser induced melting is
that there is local phase segregation but macroscopic

u = V a(4) —&'4 + A4.

Substituting into Eq. (2.7) gives

(S.4)
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For E )) 1,E )) D, the left-hand side is dominated by the
IBtp term and the dynamical equation becomes

(3.6)

and is therefore equivalent to the dynamics of block
copolymers [Eq. (3.2)] with I' = D/I, B = rp/D, and

PB = bj/D. In addition, independent of the values of
8 and D, the static solutions are extremums of the block
copolymer &ee energy.

Figure 1 shows the P configurations obtained from a
simulation of the laser induced melting model. We will

discuss the simulations in detail in later sections. Note
that there are two regimes with qualitatively diHerent
patterns. In analogy with block copolymers we call these
the strong and weak segregation regimes. On the left, the
parameters corresponds to the weak segregation regime

near onset. There are long parallel stripes straightening
out in time. On the right, the parameters are further
&om onset. This corresponds to the strong segregation
regime in block copolymers. Here a disordered lamellae
structure is found. That is, rather than straight stripes,
there is a more complicated interconnected structure. In
this regime a cross section of the order-parameter profile
would show domains of the two phases separated by a
thin interfacial region over which the value of P changes
&om +1 to —1.

Using this analogy we will use known results for block
copolymers to aid in our study of "laser induced melt-
ing. " We will also use the laser induced melting model
to shed some light on block copolymers. However, the
dynamics for laser induced melting is richer. For exam-
ple, if E is not sufficiently large or D sufficiently small, the
static solution is not obtained. Instead a time-dependent
asymptotic state is reached which can be chaotic.

B. Energy minimization

The equilibrium length scale is the wavelength of
the one-dimensional solution which minimizes the free
energy. Let us assume a one-dimensional solution of
wavenumber k = 2m/A. We can write the free energy
density as [ll]

A/2

A/4 A/4

dz dz' ]z —z'iP(z)P(z'), (3.7)
-A/4 -A/4

where we choose P(z) = —P(—z). In this subsection we

demonstrate that the equilibrium length scales can be
obtained via systematic expansions &om the strong and
weak segregation limits. We also show that in the strong
segregation limit, this is equivalent to a modified form of
the f'ree energy arguments of Hawkins and Biegelsen [2].

f. Strung segregation limit

FIG. 1. The P Beld for L = L„=640, dz = 1.26, L = 2.0,
D = 0.5, and Aj = 0. A 256 x 256 portion of the 512 x 512
lattice is shown. From top to bottom, the left panels shows
ro/D = 0.24 (close to onset) with t = 1600, 12 800, and
10 2400. The rolls continue to straighten at later times. The
right shows ro/D = 0.001 875 (far &om the onset) for the same
times. The patterns are essentially frozen after this time.

F(gj 2o. A2B t' 1 )
A A 96 A2

(3.8)

For small B the equilibrium length scale was obtained
by Ohta and Kawasaki using a variational method by
assuming a form for P(z). We will show that this result
can be justified via a systematic expansion in the small
parameter 1/A. As shown in Appendix A, P(z) = +1+
O(A i) in the two bulk phases. Near the interface P(z) =
Pp(z)+O(A ) with Pp being the planar interfacial profile
for B = 0. We can now calculate the &ee energy density.
There are two interfaces per period so the local term in
the free energy density is 20'/A+ O(A 2). The long range
term is BA /96+ O(A ). The free energy density is
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[Here B is O(A ).] Minimizing I' with respect to A gives
the wavelength of the one-dimensional solution with the
lowest free energy as

1/s

&Br (3.9)

This is in agreement with the previous strong segregation
result for copolymers [10—12]. Higher order corrections
can also be obtained to give

96-

& B )
(3.10)

where y = dpi'/dP~y —i. The wavelength for the laser
induced melting model is obtained by replacing B by
rp/D.

We can now see why the free energy describes the static
states of laser induced melting by reconsidering an argu-
ment of Hawkins and Biegelsen [2]. In the strong seg-
regation limit, the &ee energy density due to interfaces
is 20/A. They balanced this with the change in the en-

tropic contribution TS (where S is the entropy) due to
the superheating and undercoohng of the bulk. In terms
of the rescaled variables this contribution to the free en-

ergy density is —
& f dzu(z)P(z) = ( ~u~ ). Balancing

these two factors they obtained A( ~u~ ) = 2o. Note, how-

ever, that the static solution gives u = (rp/D)V' 2P, so
that the long range term in block copolymer free energy
is exactly this bulk entropic contribution. Therefore we

have justified Hawkins and Beigelsen's approximate anal-
ysis. In fact, we can obtain the result [Eq. (3.9)] if we

extend their arguinent by explicitly calculating (~u~) and
minimizing the resulting free energy density.

For direct comparison with experiment the rescaling
we have chosen is somewhat confusing in the small rp

limit. In terms of the dimensional unscaled variables we
find (leading order only)

e A2 ~4324" (i —k') + " (i —9k')
4 32

4k2
(3.13)

The erst two terms correspond to the short range parts
of the &ee energy density while the last term is the long
range portion. We minimise this expression with respect
to k to give

k*' = B+O("), (3.i4)

which is in agreement with the previous weak segregation
result [11,12,22]. The next order correction can also be
calculated (one needs to keep terms of order e in the free
energy) to give

k' =B~ 1 ——e ~4 O(e)..4 & 5 4& s
16

(3.i5)

We see that the fourth order correction is fairly small.
In the weak segregation limit the selected wavelength de-
pends on the microscopic parameters. In terms of the
dimensional unscaled variables, the leading order result
1S

4 LJpAR
4epQhT K~

(3.16)

This limit cannot be obtained from the previous interface
description.

IV. STABILITY ANALYSIS

P(z) = eAi, sin(kz) + e Asi, sin(3kz) + O(e ), (3.12)

with A& ——(8/3) {1—2[(k —kp)/e) j and A3$ = 9A~~/128.
Here k —kp is assumed to be O(e). In this limit the free
energy density is

(6ohT Kr lA'.= 4
( Ppl JpAR )

(3.1i) A. Linear stability analysis

so that the selected wavelength is independent of the mi-

croscopic parameters (p Fp and wp. As we will discuss in
Sec. IV, this is (6/27)i~ of the result obtained by Jack-
son and Kurtze using a stability analysis of a periodic
array of interfaces. Our result is in very close agreement
with the experimental result of Dworschak and van Driel

[6], although, due to the difference in the experimental
geometry and the lack of symmetry between solid and liq-
uid phases in the experiment, a very detailed comparison
is not appropriate.

Since a Liapunov functional exists only in the large
E limit, in general, the laser induced melting model has
much richer dynamics than the block copolymer model.
Some insight into the dynamics can be obtained through
a variety of stability analysis.

The homogeneous solution of Eqs. (2.6) and (2.7) is
P* = Aj/rp, u* = p~~& &. . We assume infinitesimal

perturbations bgi, = by exp(ui, t + ik r) and buA, .

b„exp(nit + ik r). Solving the dynamical equations
(2.6) and (2.7) to first order in b gives

2. R'eak segregation lim, it
4(&p+»Dk') & (4.1)

We can also Gnd the wavelength minimising the free
energy in the weak segregation regime. The homogeneous
state first becomes unstable at B = Bp ——1/4 and wave

number k = kp ——1/i/2. Near onset, we can expand the
static solution in orders of e where e = Bp —B,

where» ——p& + k with p& ——dp~/dP~y y and pI, =
E+ pI, + Dk2.

For p& & 0, the real part of uI, is always negative and
the homogeneous state is linearly stable. In this case,
the initial state is outside the spinodal. For p& ( 0 the
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linear dynamics can be divided into several classes. For
C & —p,&, the hoxnogeneous systexn is linearly unstable
to small wave number perturbations (k ~ 0). If 4ro )
(e+ p&)2 the instability will be oscillatory.

If. 8 ) —p~ the system is linearly stable to small
wave number perturbations. If, in addition, rp

max (—pi, Dk2) = D(p&/2) the homogeneous state is
linearly stable to perturbations of all wave numbers. For
ro & D(p&/2)2 the system will be unstable in a finite
band of wave numbers,

IJ'B (I g) & 2k & +B+ (I B)
I 4rp 2 I 4rp

D D

(4 2)

For b,j = 0 and @gal
= —P + P, the conditions are (i)

unstable at k = 0 if e & 1, (ii) stable to all k if ro/D )
1/4, and (iii) if ro/D & 1/4 then unstable in a band of
wave number k with 1/2 —gl/4 —rs/D & k & 1/2+
Ql/4 —ro/D.

wavevector k to the fast variable 8 by

k(X, T) = V8(r, t) (4.4)

The goal of the phase diHusion description is to describe
the slow dynamics of k on the long length scales X. The
introduction of the separate slow and fast variables al-
lows us to write the dynamics order by order in e. The
equilibrium &ee energy in terms of the phase variables
has been discussed by Kawasaki and Ohta [25(b)].

In terms of the phase variable the dynamical 6elds are
of the form

&( t) =& [8(r t)] (r t) = [8(r t)] (45)

where Pg and ui, are 2n-periodic functions which are one-
dimensional time-independent solutions with wave num-
ber k. Since static solutions exists for a band of wave
numbers, P~ and ui, depend on the local wave number
and hence the slow variables X and T. The full deriva-
tion is given in Appendix B. Here we only give the final
results. The dynamics for the phase variable 8 is

B. Phase diffusion description
Stability of lamellae

where

rl, Bg8 = —V k G(k), (4.6)

The state minimizing the block copolyxner &ee energy
corresponds to parallel stripes. The approach to this
state is via locally parallel lamellae with the orientation
and wave number varying slowly on the length scale of
the patterns (although we do not assume a global orien-
tation). The dynamics of the lamellae are described by
the phase-difFusion formalism [25(a),20]. This formalism
allows the classification of the stability of the lamellae as
well as a rigourous criteria for wave number selection. In
this section we obtain the phase diffusion equations for
the laser induced melting model and discuss the stability
of the slowly varying lamellae state. Using this descrip-
tion we obtain the characteristic length scale in agree-
ment with the block copolymer length scale and discuss
a new instability which we conjecture to be a signal of
time-dependent chaotic dynamics.

Since we are interested in behavior on length scales
much larger than the wavelength of the stripes, we need
to separate the long distance, large time behavior on this
length scale from the short length-scale behavior. To see
how this is done, note that at each point in the stripe pat-
tern we can define the local wave vector k(r, t) which is
directed in the direction norxnal to the stripes and whose
magnitude is the local wave number of the stripes. Lo-
cally the choice of this vector is twofold degenerate (i.e. ,
we can choose either k or —k). However, once this choice
is made at one point it is 6xed at all points. We assume
that k varies on length scales 1/e, much larger than the
pattern wavelength 2n/k. (Here we use i as the small
parameter to avoid any confusion with the previous e.)
We can now introduce the slow space and time variables
via

D
G(k) = A„(k)q—„,l, —Ay(k)qy, i,

Pp
(4.7)

and

e )
rI = Ay(k)

~ qy, l +, ~

——A (k)q aDk2 j
D —S

A„(k)q„I, + Ap(k) —G(k).
~p

(4 8)

1
Ag(k) = — d8$i, (8),2' p

Ap(k)qp i, = — d8 [Bsgi,(8)]',2' p

(4.9)

A„(k)= — d8ug(8),2' Q

A„(k)q„,i, = — d8 [Bsui, (8)]'.
2x Q

»nce 4'a and ui, depend on k(X, T) these coefficients de-
pend on the slow variables.

The stability condition is apparent in curvilinear co-
ordinates [20]. Let tu be the distance in the normal di-
rection and s be that in the tangential directions. In
curvilinear coordinates the 6rst order phase difFusion dy-
namics [Eq. (4.6)] becomes

The coeKcients are related to the static one-dimensional
solutions by

X=EF, T=E t (4.3)
v.

g, Og8 = D 0 8+ D,V,8, (4.10)
and the fast phase variable 8(r, t), such that 8 = nn
at each solid-liquid interface. We can relate the local where D = d[kG(k)]/dk and D,—= —G(k). The sys-
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tern is stable against slow variations of the local wave
number (the Eckhaus instability) if w& D & 0, while
the lamellae is stable against variations in the orienta-
tion (the zigzag instability) if r& D, & 0. If ~i & 0 and
one neglects defects, the functional [20]

k(r, t)
F(k(roi =, /dr dq G(q) (4.11)

defines a Liapunov functional with the extremum
G(k*) = —

D~~
——0. Therefore the selected length scale

is exactly the one marginally stable against the zigzag
instability. Since, for ordered lamellae, this wavelength
is unique, it must be the same as the block copolymer
length scale.

For some parameters, vy can be negative. If this oc-
curs at larger wave number than that at which D, and
D becomes negative, the lamellae will become unstable
to both the zigzag and Eckhaus instabilities simultane-
ously. That is both, 7s D, (k) and 7& D (k) become
negative at the same k. From Eq. (4.8) this simultane-
ous instability supersedes the isolated zigzag instability
if the latent heat is sufEciently small,

O((ro/D) ~ ) Details are given in Appendix B. We find
that

+O(A '),
7t.k

(4.13)

~ot: 6 (R)
(4.14)

The leading order D ) 0, and the system is stable to the
Eckhaus instability at that order. The kinetic coeKcient
7 It„ Is

—G(k) + O(A ').(D —1) o

D ) ark Dk' (4.15)

where y = dp Ji/dP]y i. Here we have kept the
leading- and next-leading-order terms. The diB'usion con-
stant in the normal direction is

Dk'2A„(k*)q„i,.
roAy(k')

(4.12)
The lamellar is unstable to the zigzag instability [G(k) &

0] for A & A* where

where k' is the wave number at which the zigzag insta-
bility occurs, i.e. , D, (k') = 0. Small E is exactly the con-
dition for which the analogy with the relaxational block
copolymer dynamics does not hold. From the phase dif-
fusion dynamics, we cannot determine the final evolution
of the unstable state. However, the lamellae are unsta-
ble to perturbations of wave number q in an entire band
of wave numbers around q = 0. So we conjecture that
this may be a signal of time-dependent dynamics. Note
that this is not the skewed-varicose instability [26] which
has also been suggested as a signal of a time-dependent
asymptotic state [27,28]. The skewed-varicose instability
is also a long wavelength instability to perturbations with
components both normal and tangential to the stripes.
However, the skewed-varicose instability occurs at a fixed
angle, i.e., fixed ratio of the normal and tangential com-
ponents of the perturbation. In this case, the lamellae
is unstable to perturbations with an arbitrary ratio of
normal and tangential components.

In general, the coefficients A4, (k), A„(k)and q~ i„q„i,

must be obtained numerically. However, they can be
obtained explicitly in the strong and weak segregation
limits. In particular, since these coefBcients depend only
on the static one-dimensional solutions we can use the
results of Appendix A. (It turns out to be calculation-
ally simpler to obtain the selected wavelength using this
criterion rather than minimizing the &ee energy. )

2. Strong segregation linet

In the thin interface limit, we can use the static solu-
tion in Appendix A to calculate the coefficients A4, (k),
q~ i„A„(k),and q„,i, order by order in O(A )

ij3
O(~- ) (4.16)

This length scale is in agreement with the result in Sec.
III. Since dkG(k)/dk & 0 for all regions where G(k) & 0,
the lamellae is electively stable against a separate Eck-
haus instabilities.

%e now relate our result to the interfacial stability
analysis of Jackson and Kurtze [8]. They considered
the stability of a periodic array of stripes using a phe-
nomenological interfacial description, i.e., the kinetics of
the temperature field was given by Eq. (2.3) and its value
at the interface was fixed by the local equilibrium Gibbs-
Thomson condition. The interfacial velocity was related
to the energy current by conservation of energy. They
discussed the dynamics of an infinitesimal perturbation
of wave number q in the orientation of the stripes. Due
to the undercooling (superheating) the stripes can be un-

stable to the Mullins-Sekerka instability [29]. However,
for low q, they found that the interface is stable because
the energy flux is decreased (increased) if the liquid phase
advances (recedes) into the solid phase. At large q the
interface is stable due to surface tension. The two sta-
ble bands overlap only if the wavelength of the stripes
lies within a specific range. Therefore the selected wave-
length must be within this stable band. The largest wave-

length in the stable band was a factor of (27/6) ~ larger
than that given by Eq. (4.16).

In our analysis we also find a stable range of wave num-

bers, but we explicitly showed that the selected wave-

length is exactly the largest wavelength in the band, i.e. ,
the wavelength marginally unstable to the zigzag insta-
bility. Moreover, we do not find the stability to pertur-
bations of low q. The reason for this difference is that
,Jackson and Kurtze discussed the stability of a single
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0' /rr2ro) /1/3
I. & (1 —D) —k' = (1 —D)

~ q12D &

(4.17)

stripe independent of the rest of the system. Here we

have considered collective behavior of an entire set of
stripes. Their analysis can be obtained from ours if we

consider a perturbation with a component in the nor-
mal direction q = O(1/A). Since the normal diffusion
constant D is positive, this means the interface is sta-
ble to perturbations of this type at small tangential wave
number q, . Furthermore due to this stabilizing eH'ect, the
stripe wavelength at which the instability occurs is larger
than that of the zigzag instability. In fact, Jackson and
Kurtze commented that preliminary estimates including
cooperative behavior gives a largest stable wavelength
approximately 2/3 that of the independent stripe analy-
sis [8].

The lamellae can become unstable to both the Eckhaus
and zigzag instability simultaneously if vy becomes neg-
ative while both D, and. D are positive. We find this
instability supersedes (i.e., occurs at higher wave num-

ber) the independent zigzag instability if

1.0—

10

FIG. 2. Graphical summary of the stability analysis. The
homogeneous state is linearly unstable within the shaded area.
The solid line is k' = (to/D) ~, i.e., the lowest order re-
sult for the selected wave number obtained near onset. The
dotted line is the lowest order wave number far from onset
k' = 2m(96Do/ro) ~ . The dashed hne is the far from on-
set result including next order corrections. The squares are
the length scale obtained from simulations with E = 2 and
D = 05.

8. R eak segregation limit

We can also obtain the phase equations in the weak
segregation limit. As shown in Appendix A, the static
solution can be obtained order by order in e where ez =
1/4 —B. The coefficients are given in Appendix B. The
result is

G(k) =

We summarize the results of the stability analysis in
Fig. 2 in the large E limit. We show the neutral stability
curve ~k —ko~ = pro/D as well as the boundaries of
the zigzag instability (and therefore the selected length-
scale) as determined by the expansions around the weak
and strong segregation limits.

V. NUMERICAL RESULTS

A. Previous numerical works
+G(~ ), (4.is)

where Al,
——(8/3){1—2[(k —ko)/e]2j. The lamellae be-

comes unstable to the zigzag instability at

k' = a ——"+n("),
64

(4.19)

which is in agreement with the result for the equilibrium
wavelength. G(k) can also vanish if A(k) = 0. This gives
an upper k limit to the stability band which occurs at

k =k, + ' +O(.').
2

(4.20)

Here we have only kept the leading order. Yo this or-
der this k* is equivalent to the neutral stability curve.
This wave number corresponds to a local maxima in the
j iapunov functional.

To 6nd the siInultaneous Eckhaus-zigzag instability we
calculate v.y to leading order

(4.21)

Therefore in the weak segregation limit the system be-
comes un~table to both Eckhaus and zigzag instabilities
simultaneously if E ( (1 —D) (ro/D) ~/2.

In this section we discuss the evolution of our model
from an initial random small amplitude state. Pre-
vious related studies included numerical quenches of
Raleigh-Benard convection [30,31,19] and block copoly-
mers [12,22].

Manneville [30] integrated the Swift-Hohenberg equa-
tion [32] and other two-dimensional models of Raleigh-
Benard convection starting from a small amplitude initial
state. To mimic experiments the study was performed
in a circular geometry. He characterized the linear and
weakly nonlinear regimes and studied qualitatively the
behavior of defects. Greenside and Coughran [31] were
able to study a larger system and therefore make a more
extensive analysis. They found that, near onset, the de-
fects evolved to the boundaries leaving a defect-&ee re-
gion in the middle. However, further from onset, defects
in the system tended to freeze and the boundaries become
less important. The description of parallel roll regions
separated by defects become less de6nite. The quali-
tative difference in the defect behavior was also shown
by studying specially prepared initial conditions. For a
pair of disinclinations, they found that, near onset, the
disinclinations annihilate while far from onset, the disin-
clinations persists forever [31].

More recently, Elder et al. studied the evolution of
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rolls following a quench of the Swift-Hohenberg equation
with a stochastic noise term [19]. They found that the
system can undergo a Kosterlitz- Thouless-type transition
as the noise strength is varied. That is, for low noise am-
plitude, the orientation of the rolls exhibit long range
order, while for large noise, the orientational correlation
length is finite. They found that the width of the scat-
tering intensity peak decreases as t ~ in time implying
that regions of correlated stripes grow as t ~ . Using a
projection method to describe the roll motion they found
a small but nonvanishing coefBcient for D, indicating a
transition to t ~ growth at very late times, though giving
an effective ti/4 growth at intermediate times [19]. How-

ever, the phase diffusion equations are the same generic
form for the Swift-Hohenberg equations [20,21] as for our
model. The selected wave number will therefore be that
marginally stable against the zigzag instability, i.e. , the
k at which D, vanishes. Based on the phase diffusion
description we do not expect a crossover to t ~ growth
at late times.

Oono and Bahiana considered the behavior of the dy-
namical model of block copolymers [Eq. (3.2)] following
a quench from an initially disordered state [12,22]. They
found a disordered lamellae pattern and show that nei-
ther including a bending modulus nor thermal fl.uctua-
tions was suScient to straighten out the patterns, al-

though straightening can occur due to boundary condi-
tions and due to the presence of fiow [22]. Numerically
they were only able to study not too small B and found
A ~ B ~ . However, using an analogy with phase or-

dering they argued that A B ~ for small B. Liu and
Goldenfeld also constructed a scaling function [11] to de-

scribe the behavior of the characteristic length scale as a
function of B and time t after the quench. This scaling
hypothesis was partially confirmed [22].

playing qualitatively different behavior. Near onset, the
system evolves to locally parallel rolls with the wave num-
ber fixed near that maximizing the linear instability, i.e. ,

ko = 1/i/2. The parallel rolls then slowly straighten out
in time. As shown in Fig. 3(a), P and u are relatively
small amplitude and approximately sinusoidal justifying
our near onset analysis. As expected u is negative (posi-
tive) where P is positive (negative) so that the solid phase

(P ( 0) is superheated and the liquid phase (P ) 0) is
undercooled. Far from onset [Fig. 3(b)] the characteristic
wave number slowly decreases with time and is much less
than ko. There does not seem to be any tendency toward
locally parallel rolls and the system &eezes into a disor-
dered lamellar structure. The solid phase is superheated
and liquid phase undercooled. The P field can be divided
into bulk and interfacial areas where P changes rapidly
from one bulk value to another while u is smooth.

Figure 4 shows the circular average scattering intensity
Sg = (Pi, P k) for the order-parameter field for the same
values of ro/D. Near onset, the wave number of the very

sharp peak is fixed in time. Far from onset, we observe
a much broader peak which moves, with time, toward
lower wave number. This is indicative of the growing
characteristic wavelength of the patterns and the disor-
dered structure observed far from onset. Similar scat-
tering intensities have been observed experimentally by
Dworschak and van Driel [6].

As a quantitative measure of the characteristic
wavenumber we chose a quantity that amplifies the con-
tribution from the peak in Si, . For each value of ro/D
we calculated

dkk St,
0

B. Selected length scale

(a) 0.20

We numerically updated the coupled partial differen-
tial equations (2.6) and (2.7) using an Euler discretiza-
tion with mesh size dz = 1.25, time step dt = 0.2, and a
sphericalized Laplacian (see Appendix C for details). We
used 512 x 512 lattices with smaller lattices to test for
finite size effects. Our simulations were restricted to the
symmetric case (6j = 0) and fixed D = 0.5. For the ini-

tial set of simulations we fixed E = 2. This value of 8 was

suKciently large so that the copolymer analogy is appli-
cable and a static state is always reached. Most of the
runs were to t = 102400 or about 500000 updates. For
selected cases, we ran to t = 256000. We chose an un-

correlated Gaussian distribution for the initial values of
P with mean zero and deviation of 0.001. The u field was

set to zero initially. If we start with an average u different
from zero, the system rapidly evolved so that the average
was zero. Even starting with a different value of average

P did not have a major effect unless the value was outside
the spinodal. Unfortunately, due to the length and size
of the simulation we were only able to average over two
to four initial conditions depending on the parameters.

In Fig. 1 we showed that there are two regimes dis-

0.10

o 0.00

-0.10

-0.20
0 25

X

. . J

50

I

0.5
e

0.0 ,

-0.5

50 100

FK". 3. The values of the 4i and u field along a horizontal
cut for two values of ro/D The dashed line with . the solid
circles is the 4i field while the solid line with open boxes is the
u field. (a) ro/D = 0.24 (near onset). (b) ro/D = 0.0018?5
(far from onset).
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FIG. 5. Test of the scaling form ki(t) = ki(oo)g(h'0/D).
plot is of ki(t)/ki(oo) vs ro/D for seven values of ro/D from
0.00046875 to 0.24. The line is of the form k t . The
inset shows the unscaled plot of ki(t) vs t.

The squares in Fig. 2 show ki vs re/D for various values
of r0. Also shown are the selected wavelengths obtained
&om the stability analysis; the selected wavelengths ob-
tained &om the &ee energy minimization are the same.
We show the lowest order and next order result from
the far &om onset expansion, but only the lowest or-
der result for the near onset expansion since the next
order correction is negligible where this is valid. There
is very good agreement between the theoretical predic-
tion and kq in the simulation. In particular, we observe
both limits of the strong segregation regime in which
k (re/D) / and the weak segregation regime for which
k - (.,/D)»4.

Liu and Goldenfeld have conjectured that the charac-
teristic wavenumber has the following scaling form [11]:

k(t, B) = k (B)g(tB), (5 2)

where, using the block copolymer notation, B = rp/D
and g(z) is a dimensionless scaling function that behaves
as z ~ for small x. This conjecture was based on di-
mensional analysis of the block copolymer equations and
the analogy with phase ordering dynamics. They numer-
ically tested this by plotting k(t, B)/k vs tB and found
a good collapse [11,22]. However, for small B they were
not able to obtain the asymptotic wave number k di-
rectly and they chose ki(oo) to produce the best collapse.
Therefore it is not entirely clear that Eq. (5.2) is obeyed.
In fact, it is simple to see that this scaling form cannot
hold for all B and t For B near. onset k(t) is approx-
imately ks ——i/2 from the very earliest to latest times.
Therefore near onset, g(x) is a constant for all x. Fur-
thermore the time scales over which linear dynamics hold
tb„canbe made arbitrary large by decreasing the ampli-
tude of the initial condition. There must be an offset in
time which depends on th„.

FIG. 4. The circular averaged scattering intensities Sg(t)
for t = 1600, 12800, and 102400. (a) ro/D = 0.24 (close
tp onset). The sharp peak in Srj(t) is fixed at k 0.7. (b)
ro/D = 0.001 875. The broad peak shifts toward lower k with
time.

Therefore this scaling form can hold only if we impose
the constraint that t » ti;„andki ( ke. In Fig. 5 we plot
ki(t)/ki(oo) vs tro/D for values of re/D ranging from
0.000 468 75 and 0.24 where ki(oo) are the values shown
in Fig. 2. We find a reasonable collapse of data over this
regime although, due to the small number of configura-
tions, the scatter is quite large. In the strong segregation
limit, one expects that the small value of ro/D is irrele-
vant at early times and we recover the result for spinodal
decomposition with conservation of order parameter, i.e.,
ki(t) t ij's or g(x) xi/s [11]. Therefore, with the
restrictions discussed, which essentially means that the
scaling relation is only nontrivial not too close to onset,
our data are consistent with the scaling form of Liu and
Goldenfeld [11].

C. Orientation correlations

To further quantify the difference in the strong and
weak segregation regimes we construct the director field
for the stripes. The stripes pattern can be describe by a
liquid crystal type order parameter [18]. To construct the
director field, we cannot use the local gradient since it will
vanish at maximum. and minimum of the stripe pattern.
Instead we use a symmetric difference to determine the
direction tangential to the stripes. We define at each
lattice point i, j the differences

&(0) = lu', &
—u'+i, & I+ lu', &

—u'-i, & I,
1

++j,j+ll + I+*,j + —i j—tl),E(z./4) =

&(~/2) = lu;, , —u;.,+il + lu;, , —u;.,-, I,
1

&(3~/4) = I~'., —~'+i j-iI+ l~;., —~'-i j+il).

We then define 8 as the angle minimizing b, (8). This
is obtained by finding the m* minimizing E(mz/4) and
making a quadratic fit to b, [(m'+1)z /4], b, (mam/4), and
b, [(m —1)vr/4]. Hence 8 is in the direction in which the
change in lul is the sinallest (tangential to the stripes).
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We use u, since for ro/D, P is effectively discontinuous
on length scales larger than the interfacial width.

The orientational correlation function measures the
changes in orientation of the stripes. We define it as

Ce(r) = ( exp [i28(R + r)] exp [i28(r)] ), (S.4)

where the angular brackets indicate an average over ini-
tial conditions or, for su%ciently large systems, a trans-
lational average over R. The factor of 2 is required since
the director is a headless vector and has a twofold sym-
metry.

As might be expected the qualitative difFerence be-
tween the behavior close to onset and far from onset is
magnified in the director field. Figure 6 shows the direc-
tor field for ro/D = 0.24 for the same times as in Fig.
1. At t = 1600, the system is barely out of the linear
dynamics stage and one observes essentially randomly
oriented regions. Patches of correlated regions form and
grow with time. By t = 12800 the correlated regions
are already on the order of the system size. The patches
continue to grow but one observes long lived structures
indicating the presence of grain boundaries and defects.

Figure 7(a) shows Ce(z) near onset, ro/D = 0.24, and
t = 800, 1600, 3200, 4800, 6400, and 12800. Cg coin-
cide for the first two times since they are just beyond the
linear regime. For t & 12800 the orientational correla-
tion length is very large and strong finite size efFects are
found. As shown in the inset, there are two characteris-
tic length scales evident in |g. There is a kink in Cg at
approximately z 3 and then a slow decay at larger x.
We interpret this kink as the contribution arising from
the defect cores while the slow decay comes &om the slow

variations in the orientation. With increasing time the
contribution &om the "defects" decreases, refIecting the
decrease in the density of defects. This is consistent with
our qualitative analysis of the patterns.

Figure 7(b) shows Cs(r) far from onset, ro/D
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FIG. 6. The director field for «/D = 0.24 corresponding
to the same times as in Fig. 1 (t = 1600, 12 800, and 102 400.).
The entire 512 x 512 lattice is shown. The lower left quarter
box corresponds to the 256 x 256 region shown in Fig. 1.
White denotes regions with cos(28) ) 0 (—7r/2 & 20 & Ir/2)
and black denotes cos(20) & 0.

FIG. 7. The orientational correlation function Ce. (a) Ce
near onset (rp/D = 0.24) with times t = 800 (—), 1600

(o), 32pp (. ), 48pp (~), 6400 (—), and 12800 (+). The
inset is the region near x = 0. (b) Ce further from onset

(«/D = 0.001875). Times t = 800, 3200, 12 800, and 51200
are shown.
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0.001875. Times t = 800, 3200, 12800, and 102400 are
shown. In contrast to the near onset case, there is no
kink at short length scales since pattern can no longer
be described by regions of locally parallel lamellae sepa-
rated by defects. The orientational correlational length
is much smaller than for that near onset and grows slowly
in time. This growth is due mainly to the growth of the
characteristic pattern size during this time.

To quantify the behavior further, we define the orienta-
tional correlation length Ls (t) as the value of z at which

Cs(x) reaches the value of 1/e [note that Cs (0) = 1]. Fig-
ure 8 shows Ls(t) for ro/D = 0.06, 0.12, 0.18, and 0.24.
Very close to onset (ro/D = 0.18 and 0.24), Ls is con-
sistent with the power law growth Ls ti/4 as observed
by Elder et al. [19] in a quench of the Swift-Hohenberg
equation. However, with decreasing rp/D we find that
Ls saturates at a value which depends on ro/D and is
much smaller than the system size, although asymptotic
logarithmic growth cannot be ruled out.

Figure 9 is a plot of asymptotic value of the product
Lski as a function of ro/D. For the two values of ro/D
near onset Le continues to grow so that the points are
not the saturation values. Several features are evident.
The product Lski approaches a well define limit of order
unity as ro/D approaches zero. This is the thin inter-
face regime in which there is single length scaling with
the orientational correlation length being on the same
order as the characteristic wavelength of the patterns.
Closer to onset, the system cannot be described by a sin-
gle length scale, but instead both the characteristic pat-
tern size and the orientational correlational length are
required. The orientational correlation length becomes
much larger than the pattern size as ro/D ~ 1/4.

Several interpretations are possible. First, Ls(t) may
grow as a power law L (ts) ~ ti/4 up to some finite sat-
uration value depending on ro/D. Candidates for this
saturation length are the length scales on which defects
and boundary efFects heal [33]. Near onset, the pertur-
bation due to a defect will disappear on length scales of

in the direction normal to the stripes and e ~ in
the direction tangential to the stripes (e2 = 1/4 —ro/D).
The distinction in the two directions is due to the van-
ishing of the tangential difFusion constant at the selected
wavenumber. Estimates of the first length scale gives
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FIG. 8. The orientational correlation length Lg (t) for
ro/D = 0.06, 0.12, 0.18, and 0.24 on a Iog-Iog scale. A line of
L ~ t ~ is also drawn. The data for ro/D = 0.24 are strongly
in8uenced by Bnite size efFects.
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PIG. 9. The orientational correlation length Lyke for
eight values of i o/D ranging from ru/D = 0.00046875 to
ro/D = 0.24 on a log-log scale. This product is expected to
be approaching its asymptotic values except for two points
closest to onset (open squares).

10 for ro/D = 0.24 and 3.7 for ro/D = 0.18. Estimates
of the tangential length scale gives 3 and 2, respec-
tively. Although these candidates cannot be ruled out,
they are much smaller than that for the observed orien-
tational correlation length. These lengths are equivalent
to the equilibrium or steady state correlation length on
which the effect of fluctuations decay [18].

A second possibility is that the orientational correla-
tion length grows as a power law in time for small t and
then crosses over to logarithmic growth at larger time
with the crossover length depending on rp/D. This slow
growth will then continue until limited by the system
size. It would indicate that the long time scale dynam-
ics are similar to that of a magnetic system in a random
field, perhaps because the long-lived defects are elec-
tively quenched-in impurities. Based on our simulations
we cannot rule this out. This crossover length scale may
be related to steady state correlation length described
above.

The third possibility is the most intriguing. According
to simulations of the Swift-Hohenberg equation by Elder
et aL [19],the system shows long range orientational cor-
relational ordering at a finite distance &om onset. That
is, the orientational correlation length is limited only by
the system size. On the other hand, our results indi-
cate that, further from onset, the orientational correla-
tion length is finite and much smaller than the system
size. If this is the case then there will be a value of
rp/D & 1/4 at which the orientational correlation length
becomes finite (in an infinite system). This would mark
the presence of a nonequilibrium phase transition similar
to a glass transition. Note that this transition cannot
be an equilibrium phase transition since the lowest &ee
energy state is that of parallel stripes. In addition, this
transition, if it exists, must depend on dynamical fea-
tures such as quench rate, the presence of walls, and in
a real system, impurities. Although such a possibility
is intriguing, based on our numerical results, we cannot
difFerentiate between this scenario and other scenarios
based on an efFective crossover length approaching infin-
ity as ro/D ~ 1/4 in which case there is no secondary
transition for ro/D & 1/4. To tell which of these scenar-
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ios, if any, occur one must simulate larger systems with
more initial configurations and with a systematic finite
size analysis.

10

D. Time-dependent asymptotic states
10

In the limit of large latent heat the laser induced melt-
ing model is equivalent to a dynamical model of block
copolymers which has a Liapunov functional and, there-
fore, purely relaxational dynamics. In this limit, there
can be no motion of the patterns in the asymptotic state.
However, as the latent heat is decreased the dynamics of
the laser induced melting becomes distinctly different.

For illustrative purposes we discuss what happens as
E is decreased for particular values of ro = 0.03 and
D = 0.5. There is very little change in the pattern
dynamics as 8 is decreased from 2 to 1. We monitor
P(t) = P, P; z(t)/(n n„),i.e. , the average value of P, as
a function of time. As E is decreased below unity there are
small oscillations of P at early times. These oscillations
decay after one or two cycles and a disordered lamellar
pattern is formed similar to that for E = 2. As E is de-
creased further, below 0.6, there is a large increase in the
amplitude of the oscillations as well as in the time for
which oscillations persist. The corresponding patterns
during this transient period consists of regions of dis-
ordered stripes intermingled with oscillating structures.
For 8 ( 0.5, there is a long transient period with a chaotic
space time pattern. This transient dynamics persists for
many periods but the system eventually evolves to a state
that is homogeneous in space but oscillating in time.

For ro ——0.03 and L = Ly ——160, we can locate the
transition to within AE = 0.05. We always find the stripe
phase for 8 = 0.55 and the oscillating homogeneous phase
for 8 = 0.5. Depending on initial conditions, states for
E between these two values may settle into a inhomoge-
neous state consisting of stripes and oscillating regions
or may settle into a static stripe phase or a oscillating
homogeneous state. (The smaller the system the broader
the range of E on which one finds mixed states. ) The
lifetime of transient can vary by one order of magnitude
with different initial conditions and is rapidly increasing
function of system size.

A quantitative measure of the persistence time is the
time required for the system to evolve to a state in which

P;~ is the same sign for all i,, j. Defining lnr = (lnr),
where () indicates the average over the initial conditions,
we find that for ro ——0.03 and E = 0.5, 7 = 2700 for
L =L„=160,r =650for L =L„=80,and~ 170
for L = L& ——40 (the averages are over 30—80 initial
conditions). The lifetime of transient state grows rapidly
with system size and is consistent with diffusion being
the dominant process since v L . For infinite systems
the transient state may persist indefinitely. [Note that we
have taken the average of the ln(r) rather than r itself so
that rare long-lived states do not dominate the average. ]

Figure 10 shows the value of E at which the transition
Rom stripes to oscillating homogeneous states occur as a
function of ro. We find E~ and E2 such that for all E ( E»

10
10

ro

FIG. 10. The value of 8 at which the transition from stripe
phase to oscillating homogeneous phase occurs as a function of
ra. The error bars indicate the bracketed region as explained
in the text. The shaded area is where the linear stability anal-
ysis predicts oscillatory behavior. The solid line is the value
of 8 at which the simultaneous Eckhaus-zigzag instability oc-
curs obtained from the weak segregation limit and the dashed
line is that value obtained from the strong segregation limit.
A line proportional to ro is drawn as a guide to the eye.

the asymptotic state is a homogeneous oscillating state
and for all E ) 8z the asymptotic state is a disordered
stripe phase. In this way we can bracket the transition
to within a narrow band of 8. In addition to 8* decreasing
with rp/D we also find that the period of the oscillations
decreases rapidly with rp/D. For example, for rp/D =
0.03 the period is about 50 and for rp/D = 0.00375 the
period is about 500.

One possible reason for the oscillatory behavior is that
the linear dispersion relation [Eq. (4.1)] predicts an oscil-
latory instability. The linear stability analysis predicts a
complex ug for k = 0, if 1 —2~rp ( E ( 1+ 2~rp and
that uI, to be unstable if / ( 1. The band with complex
~y is also shown in Fig. 10. It is clear that we can rule
out the oscillatory linear dynamics as the reason for the
oscillatory asymptotic state. In fact, except near onset,
we do not see any reflection of the linear behavior in the
final state. For example, we do not see any qualitative
differences as we cross 8 = 1 even though this is an impor-
tant boundary in the linear analysis as the k = 0 mode
is unstable for E & 1 and stable for E ) 1.

We also plot the values of 8 at which the simultaneous
Eckhaus-zigzag instability occurs. Our data are primar-
ily for the weak segregation case in which /' (rp/D)
We find that the E for the Eckhaus-zigzag instability is
approximately a factor of 4 smaller than E', the value of
E at which the transition occurs in our numerical exper-
iment. However, the scaling behavior seems to agree in
this range of parameters and the result is consistent with
the requirement that 8* is larger than that predicted by
this instability.

VI. SUMMAHY

To summarize, we have introduced a continuum model
of laser induced melting. In this model, the presence of
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coexisting solid-liquid regions within the illuminated area
is due to the higher reflectivity of the molten regions. We
showed that, in the limit of large latent heat, the dynam-
ics becomes equivalent to a model of block copolymers
[12,11,22]. In particular, any static state of the laser in-
duced melting model is also a static state of the block
copolymer xnodel. As the latter is based on an equilib-
rium &ee energy this analogy can be used to obtain the
wave number of the patterns observed in the laser in-
duced melting experiments. Via this analogy we justified
the approximate &ee energy argument of Hawkins and
Biegelsen [2].

We also derived the phase diffusion equations describ-
ing the slowly varying stripes. The selected wave number
k of the patterns is the one in which the tangential dif-
fusion constant D, (k). vanishes, i.e., the wave number
marginally stable to slow variations in the orientation
(the zigzag instability). Therefore the wave number of
the lamellae is also given by the stability criteria. We ob-
tained this wave number via systematic expansions from
two limits, near onset (weak segregation) and far from
onset (strong segregation). The wave number is in good
agreement with experiment corresponding to the strong
segregation limit [6]. These are very general results for
a wide class of systems. In particular, we argue that the
vanishing of the tangential diffusion constant at the se-
lected wave nuxnber is the reason that the length scale
on which regions are orientationally correlated grow as
t ~ in simulations of quenches of the Swift-Hohenberg
equation [19].

We also discussed a new instability. The lamellae can
become unstable to the zigzag instability and Eckhaus
instability (slow variations in the wave number) simul-
taneously. We conjecture that this instability is a signal
of time-dependent asymptotic states which are observed
experimentally.

We numerically study the behavior after a quench. We
find strong agreement between our analytic prediction for
the selected wave number and the numerical simulation
results as indicated by the peak in the scattering inten-
sity. There are two qualitatively different types of pat-
terns determined by the distance (in parameter space)
from onset. Near onset, locally parallel stripes slowly
straighten out in time. Far &om onset, a disordered
lamellar structure is formed in which the lamellae bend
on the same length scale as the characteristic lamellar
width. This qualitative difference is also reBected in the
scattering intensity.

To study this behavior further, we constructed the
director field and measure the orientational correlation
length. Close to onset, the behavior of the orientational
correlation length is consistent with a t ~ growth with
the final length being of the order of the system size.
Further &oxn onset the correlation length quickly satu-
rates. The product of the orientational correlation length
and the selected wave number approaches a limit with
decreasing ro/D (i.e. , far from onset). Based on our
data and the conclusions of a simulation of the Swift-
Hohenberg equation by Elder et al. [19], we conjecture
that there may be a dynamical phase transition dividing
a regime near onset where the orientational correlation

length grows until lixnited by the system size and a sec-
ond regime in which the orientational correlation length
saturates at a value which depends on the distance &om
onset. Much more extensive numerical work will be re-
quired to demonstrate whether this conjecture is true.

Finally we studied dynamics for sxnaller latent heat in
which the system xnay evolve to a time-dependent asymp-
totic state. In this case we observe a long-lived transient
state which eventually evolves into a homogeneous oscil-
lating state. The persistence time of the transient state
depends on the system size. We sketch out the boundary
between this and the regime in which the static steady
state is reached as a function of latent heat 8 and reflec-
tivity difference ro. We find that the value of 8 at which
this transition occurs is larger than that predicted by
the simultaneous Eckhaus-zigzag instability. However,
the scaling behavior for the phase boundary agrees with
that of this instability. This indicates that this instabil-
ity marks the limit of metastability of the locally parallel
stripes.

ACKNOWLEDGMENTS

We are grateful to H. van Driel, D. Kurtze, C. Sagui,
T. R. Rogers, and Y. Oono for helpful comments and
discussions. We are grateful to D. Jasnow for allowing
us to clog his computer workstation. This work was sup-
ported by the Natural Sciences and Engineering Research
Council of Canada.

APPENDIX A: STATIC SOLUTIONS

In this appendix we show that the static solutions can
be obtained via systematic expansions around the small
amplitude and sharp interface limits. Assuming periodic
stripes of wave number k and the normal in the z direc-
tion, the one-dimensional static solution obeys

(Al)

The reduced temperature field u can be obtained using
the relation Bzu = ro P/D

1. Sharp interfacial limit

For sxnall B, we break up the system into four sections
consisting of two outer (bulk) regions corresponding to
the positive and negative P phases and two inner regions
consisting skin of thickness unity around the two inter-
faces. In the outer regions we are interested in length
scales of order A k . We introduce the small param-
eter e = A . To extract the large distance behavior, we
rescale the normal direction by I = ex in the outer re-
gion. The interfacial width is order unity so the normal
direction is not rescaled in the inner region. B must also
be rescaled since it determines the pattern wave nuxnber.
In the bu&& phases P = kl, as B ~ 0. Using this condi-
tion in Eq. (Al) gives B = G(es). Therefore we rescale



2110 CHUCK YEUNG AND RASHMI C. DESAI 49

BbyB=~ 3B.
In the outer regions the static solution obeys

0 = Bxp(r/i) —eB P, (A2)

where p(r/i) = pI3(r/i) + e Ox.p. In the inner region the
static solution is given by

0 = l:pfi(0), (A9)

where Eo ———(k&0& + k&B& + Bo). This gives fi(0) =
Ai, sin(0). (We assume odd symmetry. ) The second order
expression along with the orthogonality condition gives
f2 ——0. The third order condition is

0=0 p(P) —e Bg, (A3)
&o—fs = —(kiBri + 6kikoOs —1) fi + koBsf, (A10)

&(x) = &o(x) + O(") (A4)

where Po is the planar interfacial profile for B = 0. (We
have used the condition that P,&o is orthogonal to the
Goldstone translation mode dPo/dz. ) The outer equation
gives

where p(P) = pcs(P) + 02$. In each region we expand
P = Pp + egi + O(e ) and p(P) = pp + epi + O( e). The
matching conditions for p at the boundary between inner
and outer domains are P';""" = P,.

"'" and 8 P,'+"" ——

pm~outerJ+i
The inner equation gives

The solvability condition requires that the right-hand
side is orthogonal to the zero eigenvector of 80, which
is simply sin(0). Applying this condition gives

1
—Ai,

——kiAk —6kikoAg + Ag = (1 —2ki)Ag, (A11)

or &i, = 8(1 —2ki)/3. Substituting this into Eq. (A10)
and solving the resulting ordinary differential equation
gives fs(0) = Asg sin(30) with Asy = 9A&/128. The next
order expression gives f4(0) = 0. Therefore the static
solution is given by

P(x) = &AD sin(kx) + e Asi, sin(3kz) + O(r. ) (A12)

y(X) =+ 1+&yBX
~
Xp

~

+O(& )2). (A5)

where y = dp~/dr/i~~ i and X = z/A. For p~
—/+ps and y = 1/2. In the outer region the temperature
field becomes

and

u(z) = e sin(kz) + e sin(3kz) + O(e'). (A13)9k2

APPENDIX 8: PHASE DIFFUSION EQUATIONS

B
u(X) =+ .—X

~

Xp-
~

2 i 2)

+e yB —
~

X (Xp1) + —
~

+O(e ).
-,x(, 3

12 g 8)

(A6)

In the inner region u(z) = O(e ).

2. Weak segregation limit

In the weak segregation limit we use standard. methods

[21] to expand the solution around the critical point B =
Bo ——1/4, k = ko ——I/~2. We define a small parameter
E' defined by Bo —B = e and assume k = ko + ~k~. The
static solution obeys

0 = a. (4, —4,'+ O.'4) —(B.—")~,

1. Rescaled variables and separation of length scales

X=~r, T=~ t, (B1)

where e is a small parameter and the rapidly varying
phase variable 0(r, t) This mixture . of slow and fast vari-
ables is somewhat cumbersome so we introduce a slow
phase 0 = ro. The local wave vector k of the stripes is

In this appendix we derive the phase diffusion descrip-
tion of the laser induced melting model. Our derivation
closely follows the derivation of Cross for convection mod-
els [20].

We assume that the system consists of stripes with
slowly varying wave number and orientation. There are
two relevant length scales: first, the wavelength of the
patterns and second, the length scale on which the orien-
tation and wave number varies. We are interested in the
behavior on this second large length and long time scales.
In order to separate the two length scales we introduced
the slow variables

where we have used pn = —P+ P . We want a solution
for wavelength A = 2vr/k. We can write the solution as

V0(r, t) = Vxe(r, t) = k(X, T).

The dynamical fields are of the form

(B2)

P(x) = ) r. f (kx),
en= 1

(A8) P(r, t) = P(0(r, t), X, T), u(r, t) =—u(0(r, t), X, T),

(B3)

where f (0) = f (0 + 2'). To fix the position of the
interface, we require that f be orthogonal to f' We.
can now write Eq. (A7) order by order in e. First order
gives

where P and u are 2vr periodic function of 0 whose func-
tional form depends on the local wave number k.

In the new coordinate systems, the gradient becomes
V' = keg + eV'~. The Laplacian is
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= k 8& + ~D10g + ~ D2, (B4) 2. Zeroth-order equations

where D1 and D2 depends only on the slow variables
X, T, with

Bk
Dg ——2k Bw + k + kKw

The zeroth order equations are

0 = ij~—(gp) + k Beep + up,

0 = Dk Beup —romp.

(Bs)

D2 ——kKwBw + EKsBs + (kBw) + (IBs) . (B6)

Here W is the rescaled distance in the normal direction
with W Vx ——kBw and 8 is the rescaled distance in the
tangential direction with S Vx = EBe. Kw = VX w is
the curvature of the TV =const contours and K~ ——VX s
is the curvature of the S =const contours. The time
derivative is

88 2 80
Bg = —Be+e BT =e Be+t BT'.

Bt

Therefore we find that Pp and up correspond to static
one-dimensional solutions of the model equations. Since
the static solutions exists for a band of wave number k,
Pp and up depend on the slow variables through the local
wave number k.

3. Pirst-order equations

The 6rst order equations are

We expand P and u in orders of e as
W W

4x +~ 4o
0

1
1

0
(B9)

4 = 4o + &4x + &(& ), u = up + cup + O(e ). (B7)

We can now write the dynamical equations order by order
1n 6.

where

and

+ k282
gPp 8

PQ

1
Dk'Be2

(B10)

~~~~ Be + {2k28w + k eel + kKw) 8,
8T-SeeB,

0
~g~~Be + D {2k28w + k,'w" + kiCw) Be

(B11)

We apply the solvability condition (vol:qgp) = 0 where g = (P, ur) and vp are the null eigenmodes of l:p, that is,
1/pl p = l tvo ——0. For Zp the null eigenmode is

&o =
l

Bed'o ——Be~o

The solvability condition gives

( 80 2 Bk 2ll 8801+k'8 +k +kK
~

— d& (8 Po)'+ — — de(8 o)(8 Po)BT BW ) 2s. rp BT 27/' p

/80 2 8 Bk 'i 1+
l

Dk Dk —DkiCw — d8 (Beup)(BT Bu Bur ) 27r p
(B12)

We can introduce the coeKcients

j 2'
0=Ay k,

1
(Be&p)' = &e(k)qe, ~

2K Q

2'
mp

——A„(k),
271 Q

1
(Bemo) = A„(k)q„g,.2K Q

1 2''
d8 (Beep) (Beep) = —— d8 Po Beep

27/ 0 2' Q

= —"„',—' f* dsy,*

Ae(k). (B13)

These coefBcients depends only on the static one dimen-
sional solutions Pp and up. Therefore the coefficients de-
pend on the local wave number k. We also have
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Note that this implies that A„(k) rp/(D2k ), confirm-
ing our intuition that the temperature field mediates an
effective long range interaction.

4. Phase diffusion equations
and Liapunov functional

The phase diffusion equation is now

5. Sharp interface limit

A4, (k) = 1+ O(~),
1

0 + O(e),A4, (k)qp g =

We now calculate the coefficients in the sharp interface
limit. Using the static solutions equations (A5) and (A6)
gives

1
I

A2qp g + Ap(k) ——A„(k)q„g
~

o)T 0
Dk2 rp

Dk
k 0~+k +kKg

OtU

D
x

~
Ap(k)qpg — A„(—k)q„i, ~,

Pp

which we can write as

~A,.(9T 0 = —VX k G(k),

(B14)

(B15)

A„(k)= (
—

)
A(k)q „=(—)

r 3 7r'

5040 D k6

1 Pp t3 gK 4+O( )30 D& k6

(B21)

Note that rp is O(e ). This gives

G(k) = — ——— ——+ O(e). (B22)
D 12k 60 D k ~k

The leading order result for vI, is

where
—G(k) + O(e).

e

D ) hark Dk' (B23)

D
G(k) = —A„(k)q„p—Ay(k)qp A,

Pp
(B16) For vA, ) 0, the stability condition against the zigzag

instability is G(k) ( 0 or A ( A* with

and

1
Ay(k)qy g + A4, (k) — A„(k)q„y—

~

. (B17)Dk2 rp
" "' )

In terms of the original coordinates the phase difFusion
equation becomes

1/3I'96D ) 8y
( )

rp ) 5
(B24)

For 7I, ) 0, the stability condition against the Eckhaus
instability is d(kG(k))/dk ( 0 or

rl, )9g8 = —V k G(k)
dkG(k) 7r r() 2x harp

dk 4Dk4 3D k
(B25)

=-G(k)V I, -k"'(") '"
dk Om

dkG(k)
(B18)

Therefore if the lamellae are stable against the zigzag
instability, they are also stable to the Eckhaus instability.

where we have used k = VO. Therefore, assuming wA, & 0,
the system is stable against variations in the normal di-
rection if d[kG(k)]/dk ( 0 (the Eckhaus instability) and
stable against variations along the tangential direction if
G(k) & 0.

Now let us show that the selected wavelength is exactly
the one marginally stable against the zigzag instability,
i.e. , G(k) = 0. In the absence of defects and boundary
effects, we can define a Liapunov function via [20]

6. Weak segregation limit

Ap(k) = + I
9~~ 4

2 (128)

In the weak segregation limit, we expand in ~ = Bp-
B. Using the static solution given by Eqs. (A12) and
(A13), the coefficients become

1 k(r)
F(k(r)) = —— dr dk' G(k').

2 0

We can show I" is a Liapunov functional via

(B19)

A4, (k)q4, ), = e'A'„4( 27 l '
1+&

2 128)

4 ~A4
D2k4 +'

~ 128)~

(B26)

BqE = —— dr (9qk G(k) = — dr rA, (0&8) . (B20)
2

It is easy to see that this function is minimized when

G(k) = 0.

A„(k)q„I, =

This gives G(k) as

~ A~2 rp A'
2 D2k4 1+a

), 128)
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(B27)

The leading order expression for 7I, is

7I, = e AI, — +e Ai, —G(k) +O(e ).D 2Dk 2Dk

(B28)

0 9

.-" 0.7

0.5
0

I

2 3

APPENDIX C: NUMERICAL DETAILS

(bz)'5'u]', ~
= I

&i+1,q + &i,y+1 + &i—1,q + &i,q —1

+& ( '+i, + + *+, —

+&i—1,j—1 + &i+1,j 1)—
—4(1+ b, )u;, , (Cl)

with 6 = 1/2 so that the next nearest neighbors 1/2
weight relative to the nearest neighbors.

Here we consider difFerent values of b, . In Fourier rep-
resentation the discretized Laplacian is

In order to numerically update the laser induced melt-
ing model we use a Euler discretization. Due to the large
mesh size and time step (bz = 1.25 and bt = 0.2) the up-
date does not reproduce the partial differential equations
in the sense of obtaining the exact position of interfaces.
However, the numerical method does reproduce the large
scale behavior such as the average pattern length. This is
checked qualitatively by varying the mesh sizes and step
sizes.

The mesh can produce large anisotropy effects. Oono
and Puri reduced the anisotropy by including the next
nearest neighbors in the discretized Laplacian [34]. They
used for their Laplacian (in two dimensions)

FIG. 11. The ratio of the sphericalized Laplacian in Fourier
space along the diagonals divided by its value along the axis.
b, = 0, b, = 0.3, b, = 0.35, and 4 = 1/2 are shown.

(bz) I'(k) = ( 1 —cos(k bz) + 1 —cos(k„bz)S+ 2A
+ 6 (1 —cos[(k + k„)bz]+ 1
—cos[(k —k„)bz])).

(C2)

We want to make I'I, as isotropic as possible. As a mea-
sure of the anisotropy we use the ratio of I'(k) at dif-
ferent angles 8 where k = (kcos(8), ksin(8)). Figure
11 shows a plot of the ratio I'(k/v 2, k/~2)/I'(k, 0) for
b, = 0, 0.3, 0.35, and 1/2. For all values of 6, this ratio
approaches unity in the limit kb'z -+ 0. For small kb'z,

the ratio is larger than one and becomes unity at a value
of kbz = (kbz)' which increases with increasing A. Note
that (kbz)' = 0 for b, = 0. From this plot it is clear that
the choice of b, = 1/2 does reduce the anisotropy from
6 = 0. However, 6 = 1 makes I' on the diagonals too
large relative to the axis. For our simulations we choose
6 = 0.35, which seems to give a nice compromise be-
tween making the value of I' on the diagonals too large
for small kbz and too small for larger kb'z.
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