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Fluctuation-induced first-order transition and dynamic scaling in Rayleigh-Bénard convection
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We study the ordering dynamics of the Rayleigh-Bénard convective patterns using the cell-
dynamical-system model. Evidence for a fluctuation-induced first-order transition is presented. The
simulation result confirms the theoretical prediction to exhibit the dynamic scaling with a characteristic

length scale /() ~¢'/2,

PACS number(s): 47.27.Te, 64.60.Cn, 05.40.+j, 47.20.Ky

When a horizontal layer of fluid is heated from below
and driven far from equilibrium, it undergoes a transi-
tion, or bifurcation, from a spatially and temporally uni-
form conducting state to a convecting state of lower sym-
metry. The structure that emerges above the convective
threshold in large aspect-ratio systems is convective rolls
of arbitrary orientation. The subsequent evolution of the
pattern involves the reorientation of rolls and elimination
of defects to attain parallel straight rolls of sizable extent.
This Rayleigh-Bénard (RB) convection provides a canoni-
cal example of bifurcations and patterns in a nonlinear
dissipative system. The phenomena which occur pertain
to a broad class of more complex dissipative systems such
as liquid crystals and pattern-forming chemical reactions,
and have been amenable to highly quantitative studies [1]
owing to the relative simplicity of the system. The
present paper reports some of the results of a numerical
simulation of RB convection for the two-dimensional
Langevin model [known as the Swift-Hohenberg (SH)
model [2]], using the cell-dynamical-system approach
[3,4].

A simplified model of the RB instability was intro-
duced by SH to study the critical behavior associated
with fluctuation effects at the bifurcation. It is a two-
dimensional theory involving a real order parameter,
Y(r,t), which describes the slow (spatial and temporal)
variation of the vertical component of the velocity and
the temperature. The variable ¢ is also related to the
Nusselt number, W, in such a way that
NEN—1=S_'fdr1/:2(r), S being the area of the sys-
tem. The model is derived from the Oberbeck-Boussinesq
equations in the limit of the large Prandtl number, sup-
plemented by the Langevin noise terms. It reads as

10, W(r,2)= —8FH (P} /8Y(r, 1)+ f(r,21)
H{py=— [dr{(Dey’— ()

—(DEV+g3)¥ 1,
with a Gaussian noise satisfying {f(r,z)f(r',¢'))
=2F7,8(t —t")E(r—1'). The quantities 7o, &g, Go» &
and F are constants determined for appropriate horizon-
tal boundary conditions [2(b)], and e=(R —R_.)/R, is
the reduced Rayleigh number with the convective thresh-
old R..
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An important conclusion of the SH theory is the pre-
diction that because of its high degree of degeneracy of
the ordered state the RB convective instability belongs to
the Brazovskii universality class [5], where a first-order
transition would occur as a result of fluctuations. In or-
dinary physical systems, however, the strength F of noise
(thermal fluctuations) is many orders of magnitude small-
er than the typical macroscopic dissipative energies of the
system, and the induced fluctuations are extremely weak
even for sufficiently small |e|. Since the scale of the pre-
dicted jump (say, in N) is set by F?/, it is unobservably
small, and in fact the prediction has never been confirmed
by the experiments on fluid systems. However, in the nu-
merical simulation it is possible to realize a system with
increased effective thermal noise strength. In this
manner it is expected that we can make a direct observa-
tion of this fluctuation-induced first-order transition. In
this connection we note that in symmetric diblock copo-
lymers near the order-disorder transition, which was
suspected [6(a)] to be another example of the Brazovskii
class, the weak first-order transition has been observed in
the laboratory experiment [6(b)]. In that case the fluctua-
tion corrections scale with N ~!/3, N being the degree of
polymerization, and are controllable in practice.

However, it should be pointed out that the perturba-
tion theory of SH breaks down for L /d > F %> (L and d
are the lateral dimension and the plate separation, respec-
tively), and it is not clear how the system will behave
in that (strong noise) case. On the other hand, we note
that a proper systematic and consistent (e.g., the
renormalization-group) theory of the model (1) has still to
be worked out. Because of this, a computational study is
a valuable source of information.

Motivated by these observations, we have performed
simulations of the SH model (1) using the cell-
dynamical-system (CDS) approach. The CDS scheme,
first proposed by Oono and Puri [3], provides an efficient
algorithm for numerical simulations and has proved valu-
able in studying the late stage of phase-ordering processes
such as domain growth in binary alloys. In the CDS
scheme the SH equation is replaced by the following
equation [4].

Y(n,t +1)= A4 tanhy(n,t)

—L[[¢(n,0)] 1. +Bn(n,t), 2)
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with [¢], = {¥)) —c, where ¥(n,t) is the order parame-
ter in the nth “cell” at time ¢. The positive constants A,
L, ¢, and B are parameters of our model, B being the
noise amplitude; the noise field 7(n,?) is a random num-
ber (uniformly distributed in the interval [—1,1]) as-
signed at each time ¢ to each cell site n. The operator
(( ) is the isotropic spatial average, and is defined on the
square lattice by {(¢)) =(1/6)3 (nearest-neighbor cells)
+(3 )29 (next-nearest-neighbor cells). We will refer the
reader to Ref. [4] for motivation for replacing the model
(1) by the cell dynamics (2).

An important remark is in place in this connection. It
is possible to find the following correspondence between
the two models by naively applying a conventional Euler
algorithm of discretization to equation (1) for small ¢
(just above threshold): A —l<€, L&s/my, cq?,
B%F. However, the time increment involved is too
large to justify the discretization. The point here is that
the CDS model (2) is not the outcome of a simple discret-
ization of the partial differential equation (1). The basic
idea of CDS modeling [3] is essentially that of the
renormalization-group approach. Namely, if the dynam-
ics of our interest is universal, different physical systems
with different equations of motions may be driven to the
same fixed point, thereby exhibiting identical asymptotic
behavior. Then it is not necessary to solve exactly the
equation of motion, if one is interested in the universal
behavior. For computational studies one may use a
minimal model of the dynamics, which is in the same
universality class as the system of interest, but which is
computationally more efficient. Conversely, what is ob-
served in the numerical model may be analyzed by a
minimal model which is in the same universality class as
the model system studied, but which is theoretically more
easily handled. We assume that the SH model (1) and the
CDS model (2) belong to the same universality class be-
cause (i) the local (cell) dynamics is the same in the sense
that the relaxational behavior is described by a one-to-
one map with two stable and one unstable fixed points; (ii)
the interaction among cells is of the type which enhances
the stripe patterns above threshold; and (iii) the ‘“‘up-

down” symmetry of the flow (order parameter) field is im-
posed, so that non-Boussinesq effects are ignored in both
models.

In our numerical investigation we have studied a sys-
tem on a square lattice of size 100X 100 with periodic
boundary conditions and with parameters 4 =1.0015,
L =0.8,c=0.7, and B =0.01. The initial distribution of
the ¢’s is specified by a random uniform distribution in
the range [ —0.01,0.01]. To average over the initial con-
ditions, we have found that four samples are sufficient to
discern the accurate behavior of the quantities studied, as
we shall see below.

Given the computationally efficient model, it should be
reminded that to estimate the order of transition in nu-
merical computations is a delicate question [7]. Due to
finite-size effects, the discontinuity characteristic of the
first-order transition is either removed completely or at
least smeared out. A hysteresis occurs not only in the
first-order transitions but also in the second-order transi-
tions where the relaxation time diverges due to a critical
slowing down. We have, therefore, followed Landau and
Binder [8] who suggested that the only possibility to dis-
tinguish the first-order from the second-order transitions
comes from a kinetic analysis by which metastability will
show up as a relaxation occurring in two steps. This is
because in the second-order transition the rate of relaxa-
tion is monotonic. The result is displayed in Fig. 1,
where the double-plateau evolution is clearly seen. Since
our parameters are likely to be outside of the range of va-
lidity of the weak noise limit [although the precise
correspondence in parameters between the two models (1)
and (2) is not known, as remarked above], we have no
theoretical prediction to compare quantitatively with the
behavior in the figure. Also shown in the figure are the
actual patterns observed at the plateaus. Since the SH
theory could not address the pattern achieved at the
metastable state, the observed essentially hexagonal pat-
tern will be of help in further elucidating the nature of
the transition. Furthermore, in our numerical simulation
with periodic boundary conditions and near threshold, all
defects eventually disappear to leave straight parallel

FIG. 1. Time evolution of the Nusselt num-
ber W for the stochastic case. Inset: Flow pat-
terns achieved at 7000 and 30000 time steps;
the bright regions show downflow while the
dark ones upflow.
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rolls asymptotically, in agreement with an earlier obser-
vation [9]. The strong constraints imposed by the period-
ic boundary conditions make all defects anneal out as
recognized by Cross [10].

Perhaps against the original motivation of SH, a deter-
ministic version of (1) in which the noise term is omitted
is widely used [1] as a model of spatiotemporal pattern
formation near the convective threshold. Strangely
enough, however, in view of the current intense interest
in the study of ordering kinetics [11] from initially unsta-
ble states (e.g., the so-called scaling behavior of domain
growth in order-disorder transitions), little attention, ex-
cept the work of Ref. [12], has yet been paid to the com-
parable study of growth kinetics in RB systems. We have
decided to undertake such an investigation. In so doing
we should bear in mind the two possible distinctive
features of the RB case. First, the interplay with the
mode-selection process [1,13]; for €>0 there is a finite
band width of modes (wave vectors) of width ~¢€ which
are stable against small-amplitude perturbations. Howev-
er, ultimately a well-defined mode seems to be selected as
a final stationary state. Second, presence of the critical
fluctuations; it is generally believed that the noise effect is
unimportant for late-stage ordering kinetics in the ordi-
nary first-order transitions [14]. This is because a zero-
temperature fixed point (in the renormalization-group
sense) controls the domain growth for all temperatures
below a critical temperature [15]. In the case of the
noise-induced first-order transition, irrelevance of noise
in the growth kinetics is not self-evident. We come back
to this later in closing. As a preparatory study towards
understanding the complicated interplay of those effects,
we consider the deterministic SH model.

In recent work, Elder and Grant [16] have generalized
a singular perturbation technique [17,18] (to be referred
to as KYG), developed to study the nonconserved order-
ing kinetics, to a broad class of other ordering dynamics
problems of which RB convection is one example. The
KYG approach is presumably valid for times long
enough that the influence of the initial conditions has de-
cayed, but still short enough that the correlation is not
time independent. We will refer to such a time domain as
one exhibiting intermediate asymptotics [19]. The ex-
tended KYG method formally expands the solution to
the deterministic SH equation of (1) in terms of the solu-
tion to its linearized part: 9,¥°=y(V?)y°, where
y(V) =7, [e—E}V*+q3)*]. Each term in the expan-
sion is then approximated in the intermediate asymptot-
ics by assuming that 1112(:), the Fourier transform of
Y%r,t), is dominated by its value at q=q,; Q.
represents the most unstable mode of the linear disper-
sion, i.e., q,, =q,. Finally the resulting infinite series is
resummed to yield ¥(r,t)=¢"r,t)/V (1+a[¢%r,1)]%),
with a=g /e. The quantity of primary interest for our
study of evolving order-parameter field is the equal-time
correlation function, g(r—r’,t)={(r,t)i(r',¢)). If the
initial profile of ¢ is spatially uncorrelated and Gaussian
distributed, it is straightforward to calculate g at long
times. After normalization by g(0,¢)=1, it is given
by g(r,t)=(2/m)arcsin[ {°(r,t)9¥°(0,2)) /{ [¢%r,£)]*) ].
We have calculated the correlator {¢°(r,z)¥%0,7)) in
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FIG. 2. Flow patterns for the deterministic case at time step:
(a) 200, (b) 500, (c) 700, (d) 40 000.

the manner of KYG [17] to find
g (r,t)=(2/m)arcsin{Jo(q,rexp[ —r2/41%1)]} , ()

where 1(1)=£y\V/ 2t /7y and &,=2q,&s, with J;, being the
Bessel function of the first kind. With the KYG ap-
proach one may take the limit gor — o, t — o such that
r /1 remains finite. Hence the result (3) implies the struc-
ture factor S(q,t), which is the Fourier transform of
g (r,1), has the scaling form S(g,t)=1%(t)f[(g —q)I(1)],
apart from the dependence upon g, itself; f(x) is a scal-
ing function.

We have used the same CDS scheme (2) as before, but
now with 4 =1.01 and B =0. Figure 2 exhibits the pat-
terns observed at different times. We computed the cir-
cularly averaged (and normalized) correlation function.
The length scales /(¢) and g, ' were then calculated by
fitting the KYG-like result (3) to the data; /(¢) may then
be regarded as a measure of the size of domains of uni-
form rolls. Our results are shown in Figs. 3 and 4. In
Fig. 3 we plot the time evolution of g (r,¢), where for clar-
ity only the fitted curves are presented [20]. Over the
time range shown, the value of g, determined from
matching could not be distinguished within numerical
uncertainty from the value for the most unstable mode of
the linear dispersion of (2); g,, =arccos[(3¢c —1)/2]
=0.99 for our system. Our results for /(z) are shown in
Fig. 4. The least-squares fit to our data gives an exponent
0.50+0.02, which supports the predicted power-law
growth I(¢)~t!/? in the intermediate asymptotics. At
late times a crossover takes place which is not described
by the KYG-like solution. Monitoring the heat current
N, we observed that the system still continued to evolve.
This is probably because the wave number, Geq of the
equilibrium stripe pattern differs from the most unstable
mode, g,,, of the linear dispersion, so that the system
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FIG. 3. Correlation function g(r,t) at various times vs dis-
tance. The times are the same as in Fig. 2 in order of increasing
height.

tries to attain the length scale 27/g.,. Such a crossover
of the characteristic wave number is absent in the KYG
approach. This late-stage phenomena is of interest in
connection with the mode selection, and will be the sub-
ject of a future study. Finally, we note that Elder, Vifials,
and Grant [12] recently carried out the direct simulation
of the SH model (1). Comparing the displayed
configurations of Ref. [12] with ours, we infer the time re-
gime investigated is te same (intermediate asymptotics) in
the two studies. They reported the growth exponent 1
for the deterministic case. We have no explanation to
resolve this puzzling discrepancy.

We are presently studying the stochastic CDS model,
and preliminary results indicate that (i) the patterns are
more ragged than in the deterministic case; (ii) the system
evolves with much slower growth rate than the noiseless
case. These features are common to phase separation
kinetics in the presence of noise [14]. However, in con-
trast to the latter case, no crossover to the deterministic

logqyo(t)

FIG. 4. Plot of our data for /(¢) vs time step ¢. All the data
points are obtained by fitting the simulation results to Eq. (3);
the standard error of estimates of /(¢) is 0.14 at worst. The
straight line is the best fit to the data.

growth exponent seems to occur. This is compatible with
the finding of Elder, Vifials, and Grant [12] who also
simulated the stochastic SH model (1) and found the
growth exponent 1. The more quantitative aspects of
this study will be described elsewhere [21].

In summary, we have reported on numerical studies of
the CDS model which we expect to be in the same univer-
sality class as the SH model. We observed, for the first
time, evidence of fluctuation-induced first-order transi-
tion. We also confirmed the theoretical prediction of the
generalized KYG approach to SH model to account for
the deterministic ordering kinetics at intermediate
asymptotics. This, in turn, provides a self-consistency ar-
gument for our ansatz that the SH model (1) and the CDS
model (2) belong to the same universality class.
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FIG. 1. Time evolution of the Nusselt num-
ber N for the stochastic case. Inset: Flow pat-
terns achieved at 7000 and 30000 time steps;

the bright regions show downflow while the
dark ones upflow.



FIG. 2. Flow patterns for the deterministic case at time step:
(a) 200, (b) 500, (c) 700, (d) 40 000.



