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Extending general methods developed in synergetics to construct order-parameter equations we work

out a systematic elimination procedure for the stable modes in nonlinear delay systems. It wi11 be shown

that in the vicinity of an instability the dynamical behavior of the infinite-dimensional delay system is ap-

proximately governed by a low-dimensional set of order-parameter equations which turn out to be of the
form of ordinary differential equations, i.e., they no longer contain memory terms. The general formal-

ism wi11 then be compared with experimental data obtained from the nonlinear operation of a phase-
locked 1oop ~here the finite propagation time of the signal in the feedback loop is taken into account.

PACS number(s): 05.45.+b, 02.30.Ks

INTRODUCTION

In recent years much effort has been devoted to under-
stand the origin of dynamic instabilities in nonlinear sys-
tems which are induced by the finite propagation time of
signals in feedback loops. Although delay effects leading
to an oscillatory behavior have been well known for a
long time, especially in radio engineering sciences, it was
only in 1979 that it was emphasized by Ikeda [1] in the
domain of optical bistable devices and Kislov, Zalogin,
and Myasin [2] in the engineering sciences that delay-
induced instabilities can lead to a more complex
behavior. Meanwhile numerous experimental and
theoretical studies mainly on acousto-optic and electro-
optic bistable devices have clearly demonstrated that in-
stabilities leading to a chaotic behavior can easily be in-
duced in a broad class of nonlinear delay systems. Apart
from a period-doubling route to chaos quasiperiodicity,
intermittency, and locking behavior have been observed
[3—18]. In the chaotic domain studies on the statistical
properties of nonlinear delay equations have demonstrat-
ed that the dimension of a delay-induced chaotic attrac-
tor is directly proportional to the time delay involved
[19—21]. This observation seems to be independent of the
precise form of the system under investigation. The re-
sulting possibility to generate high-dimensional chaotic
attractors by simply increasing the delay time makes non-
linear delay systems promising candidates to contribute
to the still unresolved relationship between high-
dimensional chaotic attractors and the phenomena of tur-
bulence [22—24].

Delay-induced instabilities also provide a powerful tool
in the investigation of irregular behavior observed in oth-
er scientific disciplines. In physiological control systems
the Mackey-Glass model, a scalar nonlinear delay-
differential equation, has been applied successfully to de-
scribe anomalies in the regeneration of white blood cells
due to the finite propagation time of chemosensitive sub-

stances in the blood circulation [25]. Another example
from physiology which allowed for the first time a sys-
tematic investigation of the influence of time delays in
human control systems through a noninvasive technique
is the human pupil light reflex exhibiting oscillatory or
more complicated behavior [26,27]. More recently, delay
effects have also found applications in economic systems
[28] and the cognitive sciences [29—31]. In order to ana-
lyze instabilities attributed to time delays it appears of
great value to employ the concepts of synergetics which
have been developed over the past decades to describe the
origin of processes of self-organization in nature [32,33].
These methods are based on the fact that near dynamical
instabilities self-organized pattern formation can be de-
scribed by a small number of modes which contribute to
the macroscopically observed structure formation pro-
cesses. This important result is due to the fact that in the
vicinity of instabilities the high-dimensional set of non-
linear evolution equations modeling a complex system
can be reduced to a low-dimensional set of order-
parameter equations describing the evolving pattern for-
mation on a macroscopic time scale. Often this can al-
ready be achieved by an adiabatic elimination procedure
[32—35]. However, when dealing with delay effects, an
application of this method has to be performed with spe-
cial care. Due to the infinite-dimensional character of a
delay system a naive application of the adiabatic elimina-
tion procedure can no longer be used, a fact which has al-
ready been emphasized in [36—38] by comparing the dy-
namics of a simple nonlinear delay-differential equation
with its discrete map obtained from a naive adiabatic ap-
proximation. The reason is that the state vector charac-
terizing a nonlinear delay system evolves in a finite-
dimensional state space whereas the dynamics has to be
formulated rigorously in an infinite-dimensional extended
state space.

In this article we point out that the concepts of syner-
getics can still be applied for a general class of nonlinear
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delay systems when the evolution equations are formulat-
ed in an appropriate infinite-dimensional function space.
Following ideas developed by Hale [39], we are able to
generalize the concept of order parameters in such a way
that the adiabatic elimination procedure can systemati-
cally be applied to nonlinear delay systems in a more gen-
eral setting.

In order to compare our results with experimental data
we have analyzed the dynamics of a first-order phase-
locked loop where delay lines have been introduced in the
feedback loop. In varying the time delay the loop under-
goes a hierarchy of instabilities from an oscillatory to a
chaotic motion of the phase error signal. When the loop
exceeds its synchronous operation range a cycle slipping
motion of the phase error occurs. Quite surprisingly this
behavior is associated with a I /f spectrum. Apart from
the practical interest of these results we note the c1ose re-
lation of our system to acousto-optic bistable devices
which among others played the role of a pacemaker in

the physical studies of delay-induced instabilities. Espe-
cially we emphasize the rich dynamical behavior of' our
system which is modeled by an elementary evolution
equation for the nonlinear operation of the loop. We
therefore consider our control system as a suitable candi-
date to examine delay-induced instabilities theoretically
as well as experimentally in great detail.

In order to keep this article self-contained we divide it
into two parts. In the first part we elaborate the
mathernaticai framework. As a main result we formulate
a generalized elimination procedure for nonlinear delay
systems which allows us to systematically construct
order-parameter equations. These order-parameter equa-
tions describe the macroscopic behavior of a delay system
close to instabilities. We shall proceed as follows. In Sec.
I A we introduce basic properties of delay-differential
equations by formulating their dynamics in an extended
infinite-dimensional function space. We then discuss in

Sec. I B the eigenvalue problem of the linearized system.
The results are used in Sec. IC to present a systematic
procedure which allows us to derive order-parameter
equations by the application of fundamental ideas which
have been proposed in synergetics.

In the second part of the article the formalism is ap-
plied to a first-order phase-locked loop (PLL) where the
finite propagation time of signals in the feedback loop is

taken into account. In Sec. II A we derive the scalar non-
linear delay-differential equation modeling this control
system with time delay. The model equation then serves
as a concrete example to demonstrate how a correct elim-
ination procedure has to be performed {Sec.II B). In Sec.
II C the experimentally observed delay-induced instabili-
ties of the PLL are compared with theoretical results. A
conclusion is presented in Sec. II D.

I. THEORETICAL CONSIDERATIONS

A. Basic properties of delay-dift'erential equations

In this section we summarize important notions con-
cerning delay-differential equations. Generalizing a given
finite-dimensional state space to an infinite-dimensional

extended state space we succeed in embedding delay-
differential equations in the context of functional
differential equations. This procedure is based on ideas of
Hale [39].

Dejinition of the problem

The dynamical behavior of a nonlinear system is gen-
erally described by a state vector q(t) in an n-dimensional
state space I . Its components are assumed to be related
to experimentally accessible physical quantities which
completely characterize the underlying dynamics of the
system. In the situation where the finite propagation
time of the signal in a feedback loop is taken into ac-
count, the evolution of the state vector q(t) becomes non-

local in time. Such delay effects are often formulated by
an autonomous delay-differential equation which reads in

its simplest form

q(t)=N(q(t), q(t —r), [o, ) ) .

Here N denotes a nonlinear vector field which depends
on the vector q at time t as well as time t —~, where ~

stands for the time delay. Additionally the set of parame-
ters [

o.
, ) serves for measuring external influences on the

system. For the time being we assume that these control
parameters [tr, ) are kept fixed and we can omit them in

our notation.
If we are interested in solutions of Eq. (1) at times t ~ 0

it becomes necessary to define the state vector q(t) in the
entire interval [

—r, 0]. To this end one has to consider
Eq. (1) together with the initial condition

where g is a given continuous initial vector-valued func-
tion in a suitable function space C.

2. Evolution in an extended state space

From a more forrnal point of view the initial value

problem given by Eqs. (1) and (2) represents an unsatis-

factory situation in the sense that the vector-valued func-

tion g is mapped onto a trajectory in the n-dimensional

state space I ~ Such a mapping from an infinite-

dimensional function space onto a finite-dimensional vec-

tor space is accompanied by a considerable loss of infor-
mation. Different initial vector-valued functions can lead

to crossings of corresponding trajectories in I . This
means that the uniqueness of solutions cannot be assured
when we restrict our attention to the state space I,

T'o get rid of this problem we have to reformulate our
description of the delay system. This can be performed
by extending the finite-dimensional state space I to an
infinite-dimensional function space C where the initial
vector-valued function g is defined. This point of view

enables us to describe the state of the delay system at
time t by an extended state vector q, E C and to refer to
C as the extended state space. We therefore construct q,
hy adjusting the trajectory q{t ) E I in the interval

[ t —r, t] according to the prescription (compare Fig. 1)

—-=6&0
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0
time

(Aq, )(8)=lim —[(T(e)q, }(8)—q, (8)] .1

e~O 6

To perform the limit one has to take into account that
the action of T(e) on q, is distinct in different regimes.
Indeed we find, from Eqs. (1)—(4),

q(t+ 8+a), t+8+F.&0

(T(e)q, }(8)= q(0)+ f N(q(s), q(s r))—ds, (8)

I+8+@&0.

FIG. 1. Folding mechanism relating a history of q(t) E I to a
single element q, 68.

The dynamics of the delay system, however, can now be
satisfactorily described in P. To define the mapping from
the initial state vector g to the extended state vector q, at
time t we introduce the nonlinear solution operator 'T(t)
by the relation

q, (8)=(T(t)g)(8), —r &8&0 . (4)

—q, (8)=(Aq, )(8),d —~~6~0.

The uniqueness of this mapping implies that T(t) has the
usual properties of a semigroup, that is,

T(t+s)='T(t)'T(s), t, s ~0, and T(0)=2 .

l denotes the identity operator in C.
In the following we intend to reformulate the initial

value problem given by Eqs. (1) and (2) in the finite-
dimensional state space I by deducing an equivalent ini-
tial value problem in the infinite-dimensional extended
state space C. To construct an evolution equation for q,
we formally differentiate Eq. (4) with respect to time t,

N, 'J't, 'q (t)q„(t r), —

where Einstein's summation convention has been used.
In a second step we have to reexpress the state vectors
q(t) and q(t —r) appearing in the Taylor expansion in
terms of the extended state vector q, by inverting Eq. (3),

q(t)= f d85(8)q, (8)
r

and
0

q(t r)= f d8—5(8+r)q, (8) .
7

(10)

Applying this procedure to each term in the series and
collecting terms of the same order in the extended state
vector q„ the nonlinear vector field N(q(t), q(t —r}}be-
comes a functional of q, with the explicit representation

3. Representation of the generator

The infinitesimal generator A can be explicitly con-
structed from the nonlinear vector field N in Eq. (1) in
the following way. In a first step we assutne that N can
be expanded in a Taylor series around a suitable (station-
ary} reference point q„„which can be chosen without
loss of generality as q„„=o. Using index notation, the
ith component of a typical term of second order in that
series reads

Here A stands for the infinitesimal generator corre-
sponding to the solution operator 7(t) and is defined by with

&"'~q~( )]=f dBi . f dBk~'J", ', . . . ,,„(Bi Bk)q~,„(Bi) q, ,„(Bk) .

In the case of delay-differential equations the matrix-
valued densities w' ' turn out to be linear combinations
of 5 functions as they were introduced in Eq. (10). We
note, however, that Eq. (11) could also describe more
general delay systems. Matrix-valued densities m' '

which are piecewise continuous functions of their argu-
ments lead, for example, to integro-differential equations
which model systems with distributed delay. This obser-
vation allows us to perform our following considerations
in the context of the more general class of functional
differential equations.

With our reformulation Eq. (8) is transformed in a way
that it solely contains elements of the extended state
space C',

q(t+8+e), t+8+e&0
('T(e)q, )(8)= q(t}+f '"+'~q, ( )]ds,

t+8+e&0. (13)

Inserting this result in Eq. (7) and performing the limit
E'~0 we finally obtain an explicit representation of the
infinitesimal generator
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d
q, (8),

(Aqi )(8): ~ ( )] 8

—~&e&o
representation of the nonlinear functional A introduced
in Eqs. {11)and {12).

2. Eigenvalue problem

B. The linear problem

To analyze the dynamical behavior of the nonlinear
functional differential equations (6), (11), and (14), a
thorough discussion of the corresponding linearized
problem appears to be of great value. Therefore we shall
extend well-established concepts concerning the linear
stability analysis of ordinary differential equations to
linear functional differential equations. We elaborate the
analogy as closely as possible so that our procedure con-
tains the results in the theory of ordinary differential
equations in the limiting case of a vanishing delay time ~.

Li nearization

We start to formulate a linear stability analysis by as-
suming that the nonlinear system possesses a reference
state q, f tEI In what follows we restrict ourselves to
the simplest situation where q„„is independent of time t

and obeys according to Eq. (1)

&[q„., ]=o

In the next step we analyze the behavior of the system in

a certain neighborhood of the chosen reference state by
considering small deviations q, from q„„. Inserting

q, (0)=q„„+q,(O), —~&e&0

into Eqs. (6), (11), and (14) and dropping the tilde we ob-
tain in the linear approximation

—q, (8)=(~ q, )(8),d —-, &e&o,

—~&e&oq, (8),
(~ q, )(8)= +[ ( )] 8 0 (19)

&[q,(.)]=f d8tU(8)q, (8) . {20}

A, l denotes the infinitesimal generator restricted to the
linear case and the vector-valued functional L is the
linear approximation to W in the neighborhood of q„„.
Its matrix-valued density w is given as a functional
derivative of A'evaluated at the reference state

5sv[q, (.) ]
w(6) = &&()&0 (21)

We note that Eq. (21) can be obtained from the explicit

qstai istat )

In consistency with Eq. (3) the reference state q„,, can
also be defined in the extended state space C by a vector-
valued constant. Additionally we read off from Eqs. (6}
and (14) that

The knowledge of the infinitesimal generator AL al-

lows us to construct vector-valued right-hand eigenfunc-
tions P of At in the extended state space C. Inserting
the ansatz

q, (8)=P'(8)e", —~&e&o

into the linear evolution equation {18)we obtain the ei-

genvalue problem for the infinitesimal generator A I,
';,.4 L $')(8 ) =ill'(8), —~&6&0.

Evaluating this eigenvalue problem in the interval

[
—r, 0) and taking into account the definition of the

infinitesimal generator in Eq. (19) we obtain for the
right-hand eigenfunctions P the solution

pi{8) yA(0)~ AB —~&e&0

for arbitrary values of P.. The eigenvalues are determined
when we wish to guarantee that Eq. (24) satisfies the ei-

genvalue problem Eq. (23) for the single value 8=0. Ap-
plying again Eq. (19) we gain a transcendenta1 eigenvalue
equation of a matrix W(A. ),

W(l)$'(0) =A/'{0),

where 8'(A) is given by

W{X)=f d8~{8)e
The requirement for nontrivial right-hand eigenvectors

P (0) then leads to a transcendantal characteristic equa-
tion for the eigenvalues k,

det[ W{).) —XI ]=0 . (271

3. Adjoint eigenvalue problem

In general, the infinitesimal generator AL is not self-

adjoint. Therefore it becomes necessary to consider in
addition to the eigenvalue problem Eq. (23) the corre-
spondin~ adjoint one defined in another extended state
space C dual to C. It turns out that the canonical bilin-
ear form for ordinary systems is not appropriate to relate

Here I represents the unity matrix.
For a justification of the nonlinear treatment of func-

tional differential equations (see Sec. I C) we need some
information about the spectrum of the infinitesimal gen-
erator .A ~. We summarize without proof important
properties of the transcendental characteristic equation

(1),~k. ~ possesses a pure point spectrum which consists
of an infinite number of eigenvalues.

(2) In each finite strip parallel to the imaginary axes
only a finite set of eigenvalues is located.

{3)The eigenvalues accumulate at Re(A. )~ —~ .

(4} For all values of the control parameters the rea1

part of the eigenvalues is bounded from above.
A more detailed discussion can be found in [39].
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([A, —XS]g')(6)=y(6), —~&e~o. (28)

Using the definition of the infinitesimal generator AL
from Eq. (19) we obtain in the case BF [—r, O) as a solu-
tion of (28)

gh. (6) gA, (0) A. +f ds ek(e —s)y(s)
0

(29)

In the case 6=0 Eq. (28}correspondingly reduces to

f dBw(6)g (6)—
Ag (0)=g(0) .

r

Inserting Eq. (29) in (30) we obtain the solution condition

[~(~)—u]g'(0)=q(0) —f dB f dse

(30)

X w(8)y(s) . (31)

both state spaces in the case of delay systems. To proper-
ly take into account memory effects a modified bilinear
form has to be introduced. This can be motivated from
the Fredholm alternative which considers the inhomo-
geneous version of Eq. (23),

q, (s)=q, ( —s), 0&s &r, (36)

where T denotes the operation of transposition. The re-
quirement of a time-independent bilinear form according
to

d—(q„q, )=0 (37)

with e; the ith row of the unity matrix I. The bilinear
form thus opens the possibility to enunciate Fredholm's
solvability conditions formally in the same way as they
can be stated when a scalar product exists.

In the following the bilinear form Eq. (33) will be ap-
plied to describe the evolution of the linearized delay sys-
tem in the dual extended state space C . The dynamics of
the delay system can be explored either by a state vector
q, C C or equivalently by an adjoint state vector q, E C .
Whereas the elements q, describe a forward evolution for
t ~0 the dual state vector q, has to be considered as the
corresponding backward evolution for t ~0. Both can be
related via

We read off from Eqs. (29) and (31) that only in the case
when the transcendental characteristic equation (27) is
not fulfilled, does the inhomogeneous Eq. (28) have the
unique solution

leads to the following evolution equation in C:
—q, (s)= —(ALq, )(s), 0&s &r .d

t
(38)

g'(6) =([A, —XS]-'y)(6)

=[W(A, )
—AI ]

X y(0) f ' —d8 f ds e ' 'w(8)g(s)

Xe + dse ' 'y(s) .
e

0
(32)

Additionally the solution condition Eq. (31) suggests how
to introduce both the dual state space 8 and a bilinear
form. We assume that C' consists of n-dimensional
vector-valued functions defined on the interval [O, r] and
that the bilinear form is given by

(f,P)=(f (0),P(0)) —f dBds(g (s —6),w(8)P(s))
T

(33)

for all PE C and g EC, where (, ) denotes the
usual canonical scalar product. It should be remarked
that by this choice each delay system induces its own bi-
linear form which in general does not fulfill the properties
of a scalar product. These are only guaranteed in the
very special case when the matrix-valued densities w(8)
are symmetric and positive definite for all values of
BE [—r, 0]. We emphasize that in the limit of vanishing
delay (r~0) the canonical scalar product is recovered
from Eq. (33) irrespective of the underlying dynamics.

With these definitions Eq. (31) can be rewritten in a
concise way,

q, (s), 0&s &r
S

(AL, q, )(s)= & [q( )], s=0,

X [q, ( )]=f dsq, (s}w( —s) . (41)

We are now in a position to solve the dual eigenvalue
problem

(AI Q )(s)=A/ (s), 0&s &r . (42)

In close analogy to the original eigenvalue problem the
solution for the left-hand eigenfunctions f can be writ-
ten in the form

ftA(s}—ftA(0)e As
Q & s (43)

where cP (0) is the left-hand eigenvector of the matrix
W(A. ),

The explicit form of the dual infinitesimal generator AL
is obtained from the bilinear form introduced above. The
procedure is formally analogous to cases when a scalar
product exists,

(q„ALq, )=(ALqt, q, ) . (39)

Indeed, the application of Eqs. (19) and (20) on Eqs. (33)
and (39) combined with a partial integration leads to the
following ex~licit representation of the dual infinitesimal
generator A L ..

[ W, (A, ) —A5,, ]g, =(a;,y) . (34) ft (0)W(A, )=A,Q (0) . (44)

a;(s) =e 'e;, s E [O,r], (35)

The vector-valued functions a; which are defined in C
are given by

We note that we have used different notations for the
right-hand eigenfunctions P and the dual left-hand
eigenfunctions g . This is due to the fact that the
infinitesimal generator AL is generally not self-adjoint so
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that it is not possible to transform the eigenfunctions into
each other by performing a transposition and by substi-
tuting 0= —s. In what follows it will become important
that the eigenfunctions P and g

' of the infinitesimal
generator At and its dual .At, respectively, can be
chosen to form a biorthonormal set in C' and 8'.

4. Biorthonormality conditions

First, we derive the biorthogonality condition for
different eigenvalues p, Wk. Using the explicit expression
of the bilinear form (33) and applying Eqs. (24) and (43)
we obtain

(g",P")=&g"(0),P&(0)) —y"(0), f" d8 f'dse "' 'w{8)e"' {()"{0)
i

An integration with respect to s yields for the right-hand side

[
i~i

— &. IH
1 ],. AH

d8 —--- —------- -w{8) Q'{0)

445'

(46j

Using the definition of W(A. ) in Eq. (26) and its eigenvalue
equation (25) the biorthogonality results from

(0),P'(0) ) ——
& Q '(0), [ W{p )

—W( k) ]$"(0 ) )
p

[47j

To normalize the biorthogonal set of eigenfunctions, we

introduce a proper normalization constant A'& in a sym-

metric way,

P (0)=Nag~(0), g (0)=Nqgv(0) .

JV[q, ( )]=X[q,( )]+$[q,(.)] . (52)

Using Eqs. (14), (19), and (58) the evolution equation (6)
in the extended state space C can be rewritten in the form

—q, (8)=(At q, )(8)+Xo(8)JV[q,( )],
—r ~8 ~0, (53)

the nonlinear problem given by Eqs. (6), {11),and (14).
To this end we split the original vector-valued functional
.V[q, ] into its linear L [q, ] and nonlinear part ~V[q, ],

From the requirement

(Q ', P'") =1

we determine the normalization constant Ã& by perform-

ing similar calculations as above for the case p =k,

where X„denotes a matrix-valued function defined by

0, —~~9&0
Xo(8): I 8 0

2. Motiuation for a projector formalism

(54)

I

g v'{0), I— 'de~ e ee" ', 0~

[S0i

Summarizing the results, the biorthonormality relation
reads

C. Nonlinear treatment near instabilities:

The concept of order parameters

1. Complete nonlinear equations

To appropriately apply our results derived for linear
functional differential equations we have to reformulate

In general it appears to be impossible to present a gen-
eral solution method for nonlinear functional differentia1
equations. However, in the case of nonlinear ordinary
differential equations the concept of order parameters
and enslaved modes [32—35] provides for a powerful tool
to formulate an equivalent simpler nonlinear problem
which allows for the discussion of qualitative properties
close to instabilities. This motivates us to generalize this
concept to functional differential equations.

In the following we intend to discuss the dynamics of
the nonlinear functional differential equation (53) in the
vicinity of an instability. We consider a situation where
the control parameters [cr, ] are chosen in such a way

that the spectrum of the infinitesimal generator, A, is

bounded from above by the imaginary axes (compare sub-

section I B2j. When appropriately changing the control
parameters [ o, ] some eigenvalues cross the imaginary
axes. According to the spectral properties of,AL it is

guaranteed that only a finite number of modes become
unstable. In Fig. 2 the spectrum representing this situa-
tion is schematically illustrated.

These spectral properties of the linearized problem
provide a decomposition of the state space 8' into
finite-dimensional subspace 'M spanned by the unstable
modes and an infinite-dimensional subspace 4' spanned by
the remaining stable modes. In the following we shall in-

vestigate that it is only approximatively possible to pro-
ject the nonlinear dynamics onto both subspaces Vl and
,.&. After a subsequent proper adiabatic elimination of the
infinite number of stable modes we end up with a low-

dimensional set of order-parameter equations describing
the dynamical behavior of the nonlinear system on a mac-

roscopic level. It turns out that these order-parameter
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Im (k))L subspace 4 is achieved by the operator

6, =(J—P„) (60)

No eigenvalues

in this region
~ Re(k)

4. Investigation of the projection

With the above-mentioned definitions we are now in a
position to decompose the extended state vector q, into
two different parts,

~ ~ q, (8)=U, (6)+S,(8), (61)

Stable part Unstable part

where we specialize U, and S, in the following. In analo-

gy to ordinary differential equations we first consider a
linear motion where U, can be chosen as

FIG. 2. Schematic representation of the spectrum of a delay-
differential equation at an instability. The unstable part consists
of those eigenvalues whose real part nearly vanishes whereas the
infinity of eigenvalues of the stable part lie in a region separated
by a finite distance from the unstable part.

equations are of the form of ordinary differential equa-
tions, i.e., they no longer contain memory terms.

3. Deftnition ofprojectors

First we formalize the decomposition of the infinite-
dimensional extended state space C into an m-
dimensional unstable subspace Q corresponding to the
unstable modes and the remaining infinite-dimensional
stable subspace S. Due to the finite dimensionality of Q,

ill

the set of vector-valued eigenfunctions
represent a basis in VL For a concise notation we collect
these eigenfunctions in an n X m matrix

c „(e)=(y"(e) y™(e)) (55)

U, (6)=(P„q,)(8)=4„(8)e "u(0) (62)

and u(0) is determined by the initial conditions. This hy-
pothesis implies that U, and S, are elements of the sub-

spaces G and 4, respectively. In addition it is possible to
deduce from the dynamics of U, in the extended state
space C a corresponding dynamics in the state space I .
This relation is established by defining the state vector in
1 according to U(t) =U, (0) and by verifying the proper-
ty

v, (e)=v(t+e) . (63)

v, (e)=e „(e)e "a(t) . (64)

The fact that this motion indeed is confined to 0 is ex-
pressed by the relation

In the nonlinear case, however, we have to allow for
varying u in Eq. (62), which provides us with two
conflicting ambitions. On the one hand, a variation of
5(0) should allow us to remain within the linearly invari-
ant subspace O'. This suggests the ansatz

and the corresponding adjoint eigenfunctions in an m X n

matrix (p„v, )(e)=v, (e), (65)

0 „(s)= (56)

%e note that in the matrix notation the biorthonormality
relation (51) takes the form

(57)

With these definitions the eigenvalue problem Eq. (23)
and its adjoint Eq. (42) can be rewritten in a matrix nota-
tion

which can be immediately confirmed from the definition
of the projector P„ in Eq. (59). On the other hand, the
ansatz (64) destroys the relation between both state
spaces I' and 8 since condition (63) is obviously not
satisfied. Therefore we perform an extension of the an-
satz (64) by

U, (6)=4„(6)e "u,(8), with u, (8)=u(t+8) .

(66)

However, it turns out that this motion is no longer re-
stricted to the linear subspace Vl. Indeed, this can be im-
mediately examined by noting

(AL4&„)(8)=4„(8)A„, (AL ql„)(s)=A„+„(s), (58) (P„v,)(e)ev, (e) . (67)

where A„ is an m X m matrix of canonical form. This en-
ables us to introduce the operator P„which projects the
extended state space 8 onto the finite-dimensional sub-
space S':

P„.=e„(e)(q'„,. ) . (59)

The corresponding projection onto the complementary

A compromise between both conAicting ambitions can be
generated by a reasonable approximation which is sug-
gested by the following consideration. Regarding the an-
satz (66) the difference between P„U, and U, only de-

pends on the deviation 5,(6)—6,(0) in the interval

[—r, 0]. In the neighborhood of an instability 6, will be
a slowly varying vector in both of its variables. We there-
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fore assume that the control parameters can be chosen in

such a way that the following condition is fulfilled: d
.,(6)=(~,s, )(8)+ [X,(8)—e„(8}q'„(0}]

u, (8) «u, (8), .
&&~[4„(.)u(t)+s, (.}] .

In this case condition (65) is approximatively valid so
that we can describe the slow motion of a system in the
subspace of unstable modes by an ordinary differential
equation. Following the standard procedures developed
in [32,33,39,40], we introduce generalized order parame-
ters u by defining

U, (6)=(P„q, )(6)=@„(6)u(t),

u(t) =(ql„,q, ) .

They describe the macroscopic behavior of the delay sys-
tem close to an instability. Assuming the validity of the
approximation (68) there still remains the nontrivial
problem to formulate a similar projection for the motion
in the subspace S. Indeed, for the remaining stable mode
amplitudes an inequality similar to (68) will not hold.
Furthermore, we cannot be sure that the linear vector-
valued eigenfunctions determined above completely span
the function space C. In order to avoid a concrete repre-
sentation of the remaining part of the extended state vec-
tor q, in A' we define the stable modes by

S,(6)=(a,q, )(8)=s,(8) .

Using Eqs. (61), (70}, (71), and the biorthonormality rela-
tion (57) we can approximatively project Eq. (53) onto the
subspaces Vl and S. We end up with a coupled set of
nonlinear evolution equations for the order parameters
u(t) and the stable modes s„
—u(t)=A„u(t)+%„(0)JV'[4„( )u(t)+s, ( )],

5. Adiabatic elimination procedure

In this form the coupled set of Eqs. (72) and (73) allows
for an application of the adiabatic elimination procedure
[32—35]. In the vicinity of an instability the real part of
the eigenvalues of the order parameters u nearly vanishes
whereas the eigenvalues of the stable modes s, still

remain negative. Interpreting the real part of these ei-

genvalues as damping constants we can introduce relaxa-
tion times ~„and ~, through the relation

1

/Re(A. „,)[

which leads to the condition

I74)

Equation (75) expresses the fact that a time scale hierar-
chy is established between the order parameters and the
stable modes. The stable modes evolve on a time scale
which is much faster than the time scale of the order pa-
rameters. The asymptotic dynamics of the stable modes
will then be completely prescribed by the order parame-
ters. As was shown in [41,42] there exists a finite-
dimensional center manifold h(6, u(t)) with the usual

properties h(6, 0)=0 and dh(8, 0)/du=0 on which the
asymptotic dynamics of the nonlinear delay system
evolves,

s, (8)=h(6, u(t)) .

Inserting Eq. (76) into Eqs. (72) and (73), we obtain an im-

plicit equation for the center manifold h,

[A„u(t)+%„(0)IV[4„()u(t)+h( u(t))]]
du

=(A h( u(t)))(8)+ [X (8)—4„(8)%„(0)]JV[4„()u(t)+h( u(t))] .

Having solved Eq. (77) the dynamics of the nonlinear delay system on the center manifold is completely described by

the finite-dimensional closed set of order-parameter equations

—u(t) =A„u(t)+%„(0)JV[4„(~ )u(t)+h(. ,u(t) ) ] .

To approximatively determine the center manifold h in lowest order, we first assume that the nonlinear functional A
starts with terms of order 0( ~q, ~"). We therefore restrict our further considerations to the approximative functional

A; [4„(.)u(t)+h(. , u(t))] =JV', "'[4&„(.)u(t)] .

Using the notation from Eqs. (11j and (12) we get

P';"'[@„(.)u(t)]=At, ',."',u, (t) . u, (t),

where the n X m X . - X m tensor X'"' has the explicit representation

, = f ' d6, I" d8„u!",', (8, , . . .t, 8„)e, (6, } e, (6„) .
1
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Up to order 0(
~
u

~

") the center manifold h can be obtained by performing the ansatz

h, (e,u(t))=H, , (8)u, (t) u, (t), (82)

where the unknown n Xm X . . - Xm tensor H is assumed to be fully symmetric in its last r indices. Inserting this an-
satz into Eq. (77) and taking into account the approximation (79), the tensor H can be determined by

(83)

where Einstein's summation convention has not been
used and I, stands for the jth eigenvalue of A„. We note
that the operator [AL —

(AJ + +A,, )/] ' appearing

in Eq. (83) acts only on elements defined in S. Therefore
it can be evaluated by applying the definition in Eq. (32).
Not to overload the formalism we only give an explicit
expression for the center manifold h for the special case
of a scalar delay-differential equation (see Sec. II 8).

II. APPLICATIONS

In this section we apply the formalism developed above
to a concrete example of a nonlinear feedback system
with time delay. We have chosen a first-order phase-
locked loop where analog and numerical delay lines have
been introduced. We show that this nonlinear delay sys-
tem is susceptible to a hierarchy of delay-induced insta-
bilities destroying the synchronous operation of the loop.
In applications such delay effects are important since
many control systems are based on the phase-locked prin-
ciple. In phase-locked frequency synthesizers, e.g.,
delay-induced instabilities resulting from the finite propa-
gation time of signals through frequency dividers are the
origin of phase and frequency instabilities of the whole
device [43,44]. Apart from possible applications, a de-
layed first-order PLL has the important property that all
observable instabilities are purely a result of delays. Ad-
ditionally, the simple form of the corresponding model
equation (see Sec. II A) allows for a quantitative compar-
ison of the theory with experimental data.

A. Derivation of a model equation

A PLL generally consists of a reference oscillator, a
voltage-controlled oscillator (VCO) whose output signal
has to be synchronized with the reference signal, a low-
pass filter, and a phase detector. In the case of a first-
order PLL, the low-pass filter only serves to eliminate
higher-frequency components. The finite propagation
time of signals is taken into account by delay lines. The
experimental apparatus is shown in Fig. 3.

The reference signal y, (t) is supposed to be an oscilla-
tion with angular frequency coo,

I

co is the central angular frequency of the VCO and E, its
sensitivity. The delay line placed at the output of the
VCO takes into account the finite propagation time in the
feedback loop. After a round-trip the signal returns at
the mixer input with a time delay ~,

+sin[8(t)+%(t —r)]] . (87)

PAB/2=p is the sensitivity of the mixer. Its output sig-
nal consists of both a low-frequency component and a
high-frequency term. However, the latter term is elim-
inated by a low-pass filter in such a way that at the filter
output we have the experimentally accessible signal

y3(T)=@sin[8(t)—%(t —r)] . (88)

The dynamical variable of interest is the phase difference
P between the two oscillators which is defined by

P(t) =8(t)—%'(t —r) . (89)

In order to derive an evolution equation for the phase
difference we differentiate P with respect to time t. Using
Eqs. (85) and (88) we obtain

P(t) = —K sin[/(t —r)]+too —co, (90)

where E =E1p represents the so-called open-loop gain of
the PLL. Equation (90) is the model equation of a de-

Reference
signal

y3 Output
signal

Delay

(86)

The mixer acting as a phase detector is the only nonlinear
element in the circuit. If it has a sinusoidal characteristic
its output signal is proportional to the product of the two
incoming signals, i.e.,

y2(t) =Py &
(t)y5(t)

[sin[8(t) —%(t —r)]PAB
2

y, (t) = A sine(t), with 8(t) =coo . (84)

The voltage-controlled oscillator produces a signal y4(t)
whose angular frequency %(t) depends linearly on the in-
coming voltagey3(t),

y4

VCO

y4(t)=B cos%(t),

with@�(t)=co+K,

y3(t) . (85) FIG. 3. First-order phase-locked loop with time delay.
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layed first-order phase-locked loop. It has the same form
as Eq. (1) and represents a first-order scalar nonlinear
delay-diff'erential equation for the phase error signal rI).

It turns out that the frequency deviation co —~o appear-
ing in Eq. (90) qualitatively influences the dynamics of
the nonlinear delay system only when it is operated in its
fully nonlinear domain (compare Sec. II C). In what fol-
lows we are interested in discussing the oscillatory
behavior of the loop. Therefore we can assume without
loss of generality that the central frequency of the VCO is
tuned to the reference frequency, i.e., the frequency devi-
ation co —coo vanishes. In this case an additional scaling
in Eq. (90) expressed by t =rt and the introduction of a

new variable P(t )=P(rt ) allows us to transform Eq. (90)
into the more condensed form

P(t)= —Krsin[P(t —1)] . (91}

From Eq. (91) we observe that the dynamics is only
affected by one effective control parameter i.e., the prod-
uct between the open-loop gain K and the time delay ~.
This scaling property means that we can restrict our
analysis of Eq. (90) to the case where only one of both pa-
rameter (e.g. , K) is varied whereas the other one (e.g. , r)
can be assumed to be fixed.

B. Examination of the model equation

with K) 0. A corresponding evolution in the extended
state space C is given by Eqs. (6), (11), (12), and (14) in

the special case that the densities m' ' are chosen as

~"'-"(e e ) = IC fi(e +r)1)k

(2k —1)r

For the illustration of our formalism developed in Sec.
I, we apply in detail the elimination procedure to the sca-
lar nonlinear delay-differential equation (90) modeling a

first-order PLL with time delay under the assumption of
a vanishing frequency deviation co —coo. In the notation
of Sec. I the evolution equation of this nonlinear delay
system in the state space I reads

q(t)= —K sin[q(t —r)],

Specializing Eq. (26) to our example

8'(k}=(—1}' 'Ke

the transcendental characteristic equation (27) for the ei-

genvalues k takes the form

k-+( —1)'Ke ' =0 .

We immediately deduce that the stationary solutions
q„„=it (mod2vr) are unstable for all values of K and v. ,

since there exists one real eigenvalue which turns out to
be positive. For the remaining stationary solutions
q„„=0(mod2n) we have to investigate whether such ei-

genvalues with positive real part already exist for small
values of K and ~. Applying a generalization of the
Routh-Hurwitz criterion due to Pontryagin (see, e.g. ,

[39]), one can prove that the real parts of all eigenvalues
are in the left half of the complex plane only for
K i & m/2. This means that the stationary state q,,„, loses
its stability at

K.~™=m/2 . (99}

In accordance with the scaling arguments leading to Eq.
(91) the instability condition (99) depends only on the
product of K and 7.. Keeping ~ fixed, we can study the
type of instability by expanding the eigenvalue A. =k(K)
up to the first order in the deviations from the critical
value K, =~/2~ according to the ansatz

A(K)=a(K K, )+i [b—+c(IC —K, )]+O((K K, ) ) . —

(100)

Here we implicitly assumed that the real part of the ei-
genvalue r{.=A, (K) vanishes at the instability K =K, . In-
serting the ansatz (100) into the characteristic equation
(98) (for the case of even 1) and comparing coefficients up
to the first order in K —K, we obtain the solutions

K, ~
r{.(K)=— (K —K, )1+(K,.r)

r

:"i K + (K —K ) +O((K K) ) . —
I+{K,r)

~""'(e,, . . . , e,„)=0,
where k = 1,2, . . . .

x5(elk r+r) I93)

I.94)
(101}

At the instability K=K, two complex conjugate eigen-
values lie on the imaginary axes. They correspond to os-
cillatory solutions with the frequencies

1. Linear stability analysis

The stationary solutions of the nonlinear delay system
are defined by Eqs. (15) and (16) in I and C, respectively.
In our case we obtain

qg„, = l~, (95)

where I denotes an arbitrary integer. In the vicinity of
these stationary solutions the linearized problem is given

by Eqs. (18)—(20) where the density irr is calculated as a
functional derivative according to (21),

f1+=+K, .

From the deviations IC —K, in Eq. (101) we read off that
the transversality condition [d A, (IC ) idK ] ~ x r~ %0 is

fulfilled. This means that a Hopf bifurcation occurs at
K =K, .

The biorthonormal set of eigenfunctions corresponding
to the linearized infinitesimal generator AL and its ad-

joint AL can be directly obtained by specializing Eqs.
{24) and (43),

~{e)=( —1)'+'KS(e+r) . 4'(6) =N) e (s) =Vie
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Using Eqs. (96) and (98) the normalization constants N&

from Eq. (50) explicitly read
The coefficients are calculated from Eqs. (81), (94), and
(105),

1N~= &1+A,r
(104) 1 ~u N(3) =N(3)

6K' (I+X+r)'" '

We note that in the case of a scalar delay system the
eigenfunctions P and g can be transformed into each
other by substituting 8= —s. The dynamics of the linear
evolution equation is related to its adjoint one by a simple
time inversion.

2. Order-parameter equations

In the vicinity of this instability two modes become un-
stable. Their corresponding eigenvalues (101) are denot-
ed by A, „—

+ with the property A, „+=(A,„}'.The infinite-
dimensional extended state space C therefore decomposes
into a two-dimensional unstable subspace G and a
remaining infinite-dimensional subspace S. According to
(55) and (56) a biorthonormal basis of Q can be represent-
ed by the matrices

N (3)
112

(109)
1

6K (1+A,„+r)(1+A, r)'

—u(t)=A, +u(t)
Q

[N'„'iu (t)+3N'„~u (t)u*(t)+1+X„'r

+3N', ,zu(t)u" (t)

+N,"„'u"(t}], (110)

With the abave-mentioned approximation (107) and Eqs.
(105), (106), and (108) the first of both order-parameter
equations (78) reads

a „(e)=

4„(s)=

x+ee" x„-ee"

S
+

e

+I+X„'r
S

e

+1+A,„-r

+I+1,„+r Q I+A,„r
(105)

whereas the second one for u * is the complex conjugate
to (110). In order to derive the normal form of the
order-parameter equations we apply the rotating-wave
approximation [32,33]. From the linear part of Eqs. (110)
and (102) we read off that the order parameters vary near
an instability as

iK t —iK tu(t)-e ', u'(t)-e

Keeping only nonlinear terms which oscillate in phase
with the respective order parameter, Eq. (110} can be
transformed to the normal form of a Hopf bifurcation,

We denote the components of the order parameter u by
u(t) and its complex conjugate u '(t) and collect the cor-
responding eigenvalues into the diagonal matrix A„ac-
cording to

—u(t) =A.„+u(t) b iu(t)i u—(t) .
d
dt

(112)

The complex-valued coefficient b is calculated from Eqs.
(109) and (110),

B(t)u(t)=, , A„=
u '(t)

a+ 0

0 (106)
E, v. K,b= +l +O(K —K, ) .

2[1+(K r} ] 2[1+(K 1.) ]
It is our aim to derive the order-parameter equations (78)
in the case of the Hopf bifurcation of our model equation
up to lowest order in the nonlinearities. According to
Eq. (94) the lowest order of the nonlinearity is given by
r =3. As a consequence of (82) the center manifold h also
starts with terms of order r=3. Therefore we can ap-
proximate the nonlinearity in the order-parameter equa-
tions (78) in the same way as in (79),

JV[4„(~ )u(t)+h(. ,u(t))]=A '[4„(~ )u(t)] .

(107)

This means that the stable modes do not inhuence the
order-parameter equations in lowest order. In our case
Eq. (79) reduces to

JV' '[4„( )u(t}]=N'ii', u (t)+3N'„2u (t)u'(t)

(113)

In order to adequately discuss the periodic orbit corre-
sponding to the normal form (112) we introduce polar
coordinates according to

u(t)=r(t)e'~'" . (114)

(115)

—P(t)=1m(}i,„+)—roIm(b)=K, [1+O((K—K, ) }j .
d

(116)

Taking into account the expansions (101) and (113) in the
deviations E—E, the steady state is characterized by

Re(A. „+ ) E —E,ro= =2+1+(K,r) ' +O((K —K, ) },Re(b) E,

+3N",,',u(t)u "(t)+N',»u "(t) .

(108)
We note that in our case the amplitude-dependent fre-
quency shift arising from the nonlinearities compensates
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the frequency dependence of the order K —K, due to the
linear stability analysis.

(121) this creates a singularity in two terms. Therefore a
limiting procedure e ~0 has to be performed for
P.=—iK, +e„

3. Center manifold

The results of the preceding subsection have shown
that the center manifold h does not contribute to the
order-parameter equations in its lowest order. However,
for the sake of completeness, we shall give its explicit rep-
resentation for the chosen model equation. In lowest or-
der (r =3) Eq. (82) reduces to

Gii2(6)= llm
e l

e(1+iK,r) 2K, I iK—,r
1

iA. ,O, e ' (I+re)
e(1+iK, r),

iK, O
Be I

2K, . 1
—iK, .

— (123)

h(e, u(t), u'(t))=H„, (6)u'(t)+3H„~(6}u (t)u*(t)

+3H, z, (6)u(t)u *(t)'

+H2~~(6)u *(t}' . 117I

Since the center manifold h represents a real function
the coefficients have the properties H, 2z

=- H*„, and

H»2 =H», . Therefore it is sufficie to determine H „,
and H&~2. Specializing Eq. (83) we obtain the result that
in our case of a scalar delay equation the coefficients
H - are proportional to the coefficients X, , given(3)

JIJPJ3 1

by Eq. (109),

(118)

The weighting tensor 6. . . has to be calculated from

G. . . ( 6 ) = ( [A L
—

( k, + iL, +k, },'/]

and the eigenvalues k have to be identified with a„' and

for j=1,2, respectively. From Eqs. (32), (54), and

(58) we obtain

Applying Eqs. (97), (103), and (105) we obtain for the
weighting tensor the result

(I+A, „, r)(k„—A, )

0
u

+ (I+I,, r}(k„--)i!

h,6
+

k+Ke /'i A
ii J-

Because we want to evaluate some components of the
weighting tensor at the instability, we note that we have
in this case A, „+—=+iK, and K =K, . Taking into account
the transcendental characteristic equation {98),Eq. (121i
reduces for j, =j,=j3 = 1 to

iK 0
2e ' e

1+iK. i 1
—iK r

3iK 0—e

Equivalently we evaluate 6. .. for j,=j2=1, j&=2.
However, this choice leads to 1=2k,&+X2=iK„which
represents an eigenvalue of A„. As can be seen from Eq.

Combining the expressions in (23), (118), (122), and (123)
one could determine the unknown coeScients H», and

H „2 of the center manifold for all values of 6.

C. Experimental results

Our investigations of the dynamical behavior of
phase-locked loops under the inAuence of time delays
were motivated by recent experimental and theoretical
studies of the chaotic dynamics of second-order phase-
locked loops driven by external signals [45—48]. These
systems are modeled by a three-dimensional nonlinear
evolution equation and consequently show chaotic
behavior in some parameter ranges. In contrast to that,
we are not aware of similar studies with PLL's influenced

by time delays although in this case one could use its sim-

plest representative, namely, a first-order PLL to induce
irregular behavior of the output signal. In order to eluci-
date the complex phenomena which arise when we take
Into account time delays in nonlinear feedback loops, we

report on experimental measurements performed on such
first-order phase-locked loops where the finite propaga-
tion time of signals was achieved by inserting delay lines
in the feedback loop [49,50].

For small values of the control parameters the PLL
operates in its synchronous range, producing a dc-output
signal. Increasing the control parameters we observe a»
oscillatory instability (Sec. IIC1}. However, no loss of
synchronization is associated with this instability. The

synchronization even is retained up to still higher values
of the control parameters where the loop exhibits a

period-doubling route to chaos (Sec. II C 2'}. In the chaot-
ic regime the output signal begins to jump in an irregular
way, indicating a loss of synchronization. With
modified experimental setup we were able to detect the
corresponding cycle slipping motion.

ln our experiments we induced the above-mentioned
instabilities by implementing analog and numerical delay
lines into the feedback loop. In the case of the analog de-

lay lines (Thomson Sintra LR H807), the time lag is fixed

to 15 and 30 psec. In order to guarantee a constant time

delay over a broad frequency range, we have to operate
the loop at a reference frequency of 135 MHz. The
chosen phase detector I', HP 10514A Mixer) with nearly
sinusoidal characteristic represents the only nonlinear
element in the circuit. As we use a low-pass filter with a
( utoA frequency of approximately 200 kHz, its inhuence
on the dynamics can be neglected. The time delays pro-
vided hy the numerical delay line vary between 70 and

500 p, sec. Because «f its relatively low sampling rate the
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numerical delay line has to be implemented behind the
low-pass filter and not at the VCO output. According to
the considerations in Sec. IIA1 this experimental rear-
rangement does not modify the model equation for the
phase error signal.

1. Oscillatory instability

In a first step we are interested in the examination of
the locking behavior of the loop at fixed time delay ~ by
choosing the open loop gain K as the control parameter.
Experimentally E can be altered by varying either the
amplitudes of the two oscillators or the sensitivity of the
VCO. At low values of the control parameter the loop
settles down to its fixed points [compare Eq. (95)], pro-
ducing a dc current at the output of the mixer. This
well-known behavior of a first-order phase-locked loop
keeps until we reach a critical value of the control param-
eter at E =81 kHz where the phase error signal begins to
oscillate. Performing the same investigation with
different delay times we could assure that this instability
is uniquely due to delay effects. In Fig. 4 the experimen-
tally observed frequency at the onset of the oscillation is
plotted versus different values of the time delay. We no-
tice from Fig. 4 that the theoretical results [compare Eqs.
(99), (102)] are in good agreement with the experimental
data.

Since the locking range of the loop is proportional to
the open-loop gain, we see from the instability condition
Er=ml2 that especially in applications where signals
have to be tracked over a wide frequency range, even
small time delays can induce such an instability. It
should be noted, however, that the oscillatory motion of
the phase error signal is not associated with a loss of
synchronization of the loop. Indeed, varying the frequen-
cy deviation of the two oscillators, a dc component will
be superimposed to the oscillating signal, indicating that
the loop still synchronizes.
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FIG. 4. First oscillatory instability of a first-order PLL with
time delay. Bullets represent experimental data obtained with
analog delay lines, circles correspond to the numerical delay
line, and the dashed line illustrates the theoretical result.

FIG. 5. Power spectrum of a first-order PLL with time delay
at the onset of a chaotic motion of the phase error signal for
different values of K. (a) Periodic solution, (b) period-2 solution,
(c) period-4 solution, and (d) chaotic solution.
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2. Chaotic i nstabi li ties

When we wish to operate the loop in its full nonlinear
domain we have to increase the control parameters fur-
ther. Due to the appearance of higher harmonics the nu-
merical delay line can no longer be used in this regime.
Therefore we have restricted our following investigations
to the time delay ~=15 @sec prescribed by the chosen
analog delay line.

A period-doubling route to chaos can be experimental-
ly detected at control parameter values exceeding
K ) 180 kHz. We have resolved the doubling route up to
period 8. A further increase of the control parameter
leads to a broadband spectrum, indicating a chaotic
motion of the phase error signal of the loop. The power
spectra corresponding to the experimentally observed in-
stabilities at the onset of the chaotic motion are
represented in Fig. 5.

The experimentally measured critical values of the
open-loop gain for these instabilities are summarized in
Table I.

Since no analytical expressions are available to com-
pare the experimentally observed hierarchy of instabili-
ties with theoretical results, we simulate Eq. (90) by using
the electrical simulation program pSFICE. In order to ap-
propriately model the nonlinear delay system we have to
remark that in the chaotic domain the experiments yield
a nonvanishing dc component ( =70 mV) of the phase er-
ror signal although the two oscillators are tuned. This
additional dc component could not be removed by replac-
ing the phase detector. Consequently we have to regard
this drift as being due to a "spurious" frequency devia-
tion. Indeed, taking into account a nonvanishing &u

—~,)
in the numerical simulations we observe the same transi-
tion to chaos via a period-doubling route to chaos. Fig-
ure 6 represents the numerical simulations of the dynam-
ics of the phase error signal and its power spectrum in

the period-2 regime.
When the open-loop gain exceeds K=211 kHz the

loop desynchronizes. This desynchronization is associat-
ed with irregular jumps of the phase error signal in multi-

ples of 2', a so-called cycle slipping motion. We post-
pone the discussion of this very important phenomenon
to the next subsection, since a modified experimental ap-
paratus is necessary to investigate these phase jumps.
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FIG. 6. Numerical simulations of the model equation for a
nonvanishing frequency deviation at the onset of chaos. (a)
Period-2 solution; (b) corresponding power spectrum.

3. Cycle slipping behavior

Experimentally, phase jumps in multiples of +2~ can-
not be detected at the output of a phase detector. This is
due to the fact that a mixer is insensitive to signals whose
phase is shifted by +2~. Therefore we were led to modify
our experimental setup in such a way that a detection of
the cycle slipping motion became possible (Fig. '7).

The idea consists in the application of frequency divid-

TABLE I. Experimentally observed instabilities of the phase error signal for different values of the

open-loop gain. The time delay was fixed at ~=15 psec. For the amplitudes of the two oscillators we

have chosen A =B=+5 dBm.

Open-loop gain K (kHz)

&81
81

180
187
188

& 188
& 211

Instability

dc output (stationary state)
Oscillatory instability
Period-2 bifurcation
Period-4 bifurcation
Period-8 bifurcation

Chaos
Cycle slipping motion

Locking condition

Synchronous
operation

Out of lock
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!
Reference I

signal

Delay line

Output

s)g llul

white or 1/f noise sources introduced at the output of
the first phase detector leave the spectrum unchanged.
Therefore we conclude that the cycle slipping process is
due to an intrinsic deterministic efFect of the nonlinear
dynamics of the loop. Recent investigations of the chaot-
ic dynamics in Josephson junctions [51] leading to a simi-
lar cycle slipping motion of the quantum phase difFerence
across the junction seem to confirm this conjecture.

FIG. 7. Experimental apparatus to detect phase jumps in a
6rst-order PLL with time delay.

I

(a) I

ers in order to reduce the phase jumps to values lower
than +2m.. At the output of an additionally introduced
phase detector these jumps can be detected. In the exper-
imental setup we chose digital frequency dividers with a
division rate of %=10which lead to phase jumps in mu1-

tiples of +2~/10. The jumps occur in a very irregular
fashion. Laminar" regions corresponding to a syn-
chronized motion of the loop are interrupted by "bursts"
destroying the synchronous operation (Fig. 8).

Quite surprisingly, a spectral analysis clearly demon-
strates that the cycle slipping motion is associated with a
1/f spectrum [49,50]. We can exclude that this spectral
distribution is due to a fluctuating environment, since
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FIG. 8. Cycle slipping of a 6rst-order PLL with time delay.
(a) Temporal domain; (b) power spectrum.

FIG. 9. Numerical simulations of the model equation (90) in
the cycle slipping domain. (a) Temporal domain; (b) reconstruc-
tion of the attractors corresponding to the cycle slipping motion
in the phase plane from a time series; (c) Fourier transform
S&( V) of the phase error signal P; (d) Fourier transform S ( V)3'3

of the output signal y3.
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From the nutnerical simulations of Eq. (90), as shown
in Figs. 9(a)—9(d) we deduce that the cycle slipping
motion occurs when the amplitude of the "bursts"
crosses a separatrix between different attractors separated
by ~b, $~=2sr. In this case the phase error signal no
longer evolves in the attracting region of one attractor
(synchronous operation) but jumps irregularly between
different attractors (out-of-lock condition). In Fig. 9(b)
the attractors corresponding to the cycle slipping motion
are represented in the phase space spanned by P(t --r)
and ttt(t). In Figs. 9(c) and 9(d) the spectral distribution
of the phase error signal P is compared to the one ob-
tained at the output of the first phase detector y, . In the
latter case the I /f spectrum is replaced by a nearly white
continuous spectrum corresponding to the situation
where phase jumps no longer appear.

In applications cycle slippings are an annoying feature
since they influence significantly the quality properties of
a control system. Therefore much effort has been made
to tackle this problem. In most cases a drastic reduction
of the number of cycle slippings per second can be
achieved by minimizing the influences from a fluctuating
environment. However, in the case where time delays are
involved, there is no need for fluctuations to induce these
phase jumps. Delay-induced instabilities leading to a cy-
cle slipping motion are likely to occur, especially in cases
where signals have to be tracked over a wide frequency
I ange.

D. Conclusion

Our discussion of delay-induced instabilities has been
based on several goals. In a first step we performed a for-
mulation of delay equations as a special class of function-
al differential equations in an extended infinite-
dimensional state space. From these considerations we
were able to derive an elimination technique for the
stable modes in the vicinity of an instability which goes
far beyond "naive' adiabatic elimination techniques.
The resulting order-parameter equations which deter-
mine the macroscopic behavior of the system close to an
instability have been shown to be of the form of nonlinear
ordinary differential equations. In developing these sys-
tematic methods we were guided by the fundamental con-
cepts of synergetics, that is, the order-parameter concept
and the so-called slaving principle. In a second step we

described an experimental setup which could be modeled
by a comparably simple nonlinear delay-differential equa-
tion. The first instability of this device has been exten-
sively treated by our rigorous mathematical methods.
Theoretical results have been successfully compared with
experimental data. The experiments, however, exhibit a
lot of further instabilities which cannot be handled
analytically yet. This gap has partly been bridged by nu-

merical simulations. In a future work we plan to further
reduce the gap between the feasible analytical tools and
observed delay-induced instabilities.
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