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The Kac model, a spin chain with exponentially decreasing long-range interaction, is investigated
by means of a simple functional representation of the transfer operator. An analogy between the
thermodynamics of spin chains and of one-dimensional (1D) chaotic maps allows us to use techniques
worked out for generalized Frobenius-Perron equations to extract properties of the spin system, such
as free energy and the decay rate of the correlation function. Although the Kac chain does not exhibit
a phase transition, we 6nd that the correlation decay shows a nonanalytic behavior at some 6nite
temperature. We are also interested in a generalized version of the Kac model where the interaction
still decays exponentially but in an oscillating fashion. This leads to the appearance of complicated
patterns in the free energy caused by frustration which is a typical effect for disordered systems.
By working out the analogy with 1D chaotic maps in more detail, we show how one can construct
maps with the same thermodynamics as the spin chain. The associated maps turn out to be not
smoothly differentiable, and their derivatives exhibit fractal properties.

PACS number(s): 64.60.Cn, 05.50.+q, 05.45.+b

I. INTRODUCTION

The thermodynamical formalism of dynamical systems
establishes a connection between multi&actal-like prop-
erties of low-dimensional chaotic processes and the sta-
tistical physics of spin chains. The key observation is
that codes of length n appearing in the symbolic descrip-
tion of the dynamics can uniquely be mapped onto the
microstates of spin chains of length n. The number of
different codes needed in the symbolic dynamics corre-
sponds to the number of possible spin orientations. Bi-
nary encoding corresponds to Ising type spins.

Based on classical mathematical papers [1—3], this for-
malism has recently become a common tool for both
mathematicians [4—6] and physicists [7—30]. Research
has mainly been focused on the determination of the
spin chains associated with given chaotic systems. These
studies showed [31—38] that apart from a few trivial ex-
amples, like, e.g. , the tent map, even simple maps lead
to systems characterized by rather complicated (long-
ranged and multispin) interactions.

Here we follow an approach going in the opposite di-
rection. We select a nontrivial spin system with a rel-
atively simple interaction and ask what the associated
one-dimensional map looks like. It will turn out that
the map is no longer smooth and its derivative possesses
&actal properties. More precisely, there is a class of such
maps belonging to the same spin system.

Our working example is the so-called Kac model [39—
42], a spin chain with exponentially decreasing long-range
interaction. The essential parameter is the spatial decay
rate A of the interaction.

An appealing feature of this model is that methods
known from the theory of dynamical systems can success-
fully be applied to computing its thermal properties. This
is based on a result obtained by Viswanathan and Mayer

[43) who showed that the free-energy density E(P) of the
Kac model at inverse temperature P can be obtained from
the largest eigenvalue of an operator l'. acting on smooth
functions g(x) defined as

8 g(z) = ) exp(Poz) g(Ao y Az).

H&(x) = ) l
F,'(z)

I &(F (z))
a=0, 1

(2)

Here @ is a function defined on the support of the map

f(x), and —oo ( P ( oo is a weighting parameter. The
free energy F(P) of the map f obtained in the spirit of
thermodynamical formalism [3,7,9] is connected with the
largest eigenvalue of H [25].

Although the complete equivalence of Eqs. (1) and (2)
is not obvious at a 6rst glance, their similarity is strik-
ing. They both represent a binary structure, and the
largest eigenvalues can be obtained by letting the oper-
ators repeatedly act on some function and by extracting
the growth rate of the iteration.

This operator, which will be derived in Sec. III, is much
easier to handle than the standard transfer matrix that
is infinite dimensional in this case. The form of Eq. (1)
ensures that the &ee energy can be obtained by study-
ing the iteration of simple functions, i.e., by solving the
eigenvalue equation in an iterative way.

This is the point where an analogy with a branch of
the dynamical system's theory can be found. The so-
called generalized Frobenius-Perron operator [24—30] has
widely been used to characterize scaling properties of
one-dimensional maps. For a single humped map f(z)
with two inverse branches F,(y), e = 0, 1, the operator
H is given as
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We used the numerical techniques worked out for gen-
eralized Frobenius-Perron equations to solve for the lead-

ing and for a few next to leading eigenvalues of Eq.
(1). It turns out that the procedure is much faster than
the application of the transfer-matrix method and allows
thus for studying the temperature dependence in a broad
range.

The finding of a one-dimensional xnap whose &ee en-

ergy E(P) is the same, apart from an energy constant,
as the free energy X(P) of the Kac model, means that
Eqs. (1) and (2) can really be equivalent. This will be
seen to hold, however, if the associated map f(x) is not
smoothly differentiable.

In order to see the results in a broader context, we also
allow for generalizations of the Kac model obtained by
introducing a homogeneous magnetic field and by letting
the interaction parameter A of the model to be complex.
The latter corresponds to an interaction which decays in
an oscillating fashion whose wavelength is governed by
the imaginary part of A.

The paper is organized as follows. In Sec. II the Kac
model and its generalizations are introduced. Next (Sec.
III), a brief summary of the transfer operator method
is given, and the application of this method to the Kac
model leads to the operator 8 defined by Eq. (1). The
properties of the free energy and the associated eigen-
function are discussed in Sec. IV. Introducing an exter-
nal field leads to symmetry breaking in the eigenfunction,
while a complex extension of the coupling constant re-
sults in the appearance of interesting patterns in the &ee
energy. Methods for determining the second and third
eigenvalues are presented in Secs. V and VI. We show
that between the moduli of these eigenvalues a level cross-
ing occurs which implies the existence of two P regimes
with qualitatively difFerent decay properties in the corre-
lation function or in the finite size corrections of the spin
system. Finally, the map associated with the Kac model
is constructed in Sec. VII and the relevance of the energy
constant for the form of the map is studied in Sec. VIII.
Some concluding remarks are given in Sec. IX.

II. THE KAC MODEL

The Kac inodel [39—42] is a chain of two-state spins of
Ising type characterized by an exponentially decreasing
interaction. Its Hamiltonian in the presence of a constant
magnetic field h is given by

in cases where A & 1 and, consequently, where no @haec
trunsition takes place because of the exponential decay
of the interaction. Thus we know that the free energy is
analytic, but cannot exclude the existence of nonanalytic
behavior in the second eigenvalue. Such nonanalyticity
has been found, for example, in the surface correlation
function for the two-dimensional Ising model in the pres-
ence of enhanced surface couplings [44]. One of our aims
will be, therefore, to coxnpute the free energy and some
next-to-leading eigenvalues in a broad range of the in-
verse temperature which, to our knowledge, has not been
discussed in the literature.

It is interesting to note that the Kac chain also ap-
pears in the theory of Frenkel-Kontorova-like models
of amorphous solids. Associating an appropriate sym-
bolic encoding (o;}to equilibrium configurations of the
one-dimensional Frenkel-Kontorova chain with piecewise
parabolic interactions, one finds that the total energy of
configuration (o;} is given, up to an additive constant,
by Eq. (3) [45]. In cases when all binary configurations
are allowed in the disordered system, like, e.g. , in a pa-
rameter range of the Reichert-Schilling model [46], there
is a one-to-one correspondence between the Kac and the
Frenkel-Kontorova models.

We shall also be interested in a version of the Kac
model which contains a complex interaction parameter A

but is defined by the real Hamiltonian

(4)

Here we assume that
~

A ~( 1. The physical relevance of
this case can be seen by introducing &p as the phase of A

and noting that the interaction between two sites of dis-
tance z decays exponentially but now with an oscillating
amplitude

~

A
~

cos pz. This oscillation mimics the effect
of the indirect exchange interaction between spins which
is mediated by electrons and is known to lead to RKKY
type interaction in realistic spin models [48] where the
decay is, however, algebraic. The extended model also
enables us to study an effect which is typical for dis-
ordered systems, the Pustrction [49]. This means that
there exist spin triples which have no configuration that
satisfies all the bonds.

III. THE TRANSFER OPERATOR

where J is a coupling constant and 0 ( A & 1 describes
the decay of the interaction. The lattice constant will be
taken to be»~sty. Historically, the Kac xnodel was intro-
duced as a nontrivial example for demonstrating the exis-
tence of a second order phase transition in a system with
long-range interaction. The limit A —+ 1, J + 0 leads
in a nontrivial way to the degeneration of the highest
eigenvalues and a mean field behavior which has exten-
sively been studied [40,42]. Here we shall be interested

In this section we brieHy summarize the transfer op-
erator approach [3,50] which can be viewed as an ex-
tension of the transfer-matrix method [51,52] to systems
with infinite range interactions. Let us consider a semi-
infinite chain of spins characterized by the configuration
g = ((i, (3,(3p ~ ~ ~ p(, , . . .) where i labels the site of spin

We assume that the spins can take two values, —1
or 1, only. Now let us add a new spin o to site 0. The
key observation is that the average value of any smooth
physical quantity g(o, $), like, e.g. , the magnetization, at
inverse temperature P and at fixed configuration ( can
be computed by the use of an operator l: defined by



2028 PENTEK, TOROCZKAI, MAYER, AND TEL 49

~g(() = ) exp[ p~(~ ()] g(~ ~)

where W(0, () denotes the interaction energy of spin 0.

with the semi-infinite chain at configuration (. Note that
Eq. (5) describes nothing but the averaging process over
the new microstates appeared by adding the spin cr as
illustrated by Fig. 1.

The importance of transfer operator l. lies in its re-
peated applicability when adding further spins to the
system at its left end. After n )) 1 iterations, the orig-
inal configuration ( becomes gradually irrelevant and as
n ~ oo the procedure describes properties of the spin
system valid in the thermodynamic limit. In particular,
l:"g is expected to grow as exp [

—PP(P)n] where P(P)
is the free energy density of the system. On the other
hand, exp [

—PX(P)n] should grow as the nth power of
the largest eigenvalue Ai(P) of the transfer operator in
the class of smooth functions. Consequently, Ai(P) is
positive and we have

A (P) e
—P&(P)

(for a rigorous proof see [50]). More precisely, one can
write

l'."g
A7(P)

where g~ is an eigenfunction belonging to the first eigen-
value of the transfer operator and the formula is valid for
any smooth g in a broad class of functions (for details
see the discussion in Sec. V). Thus one can always use,
e.g. , the identity function g(() = 1 when computing the
largest eigenvalue and the corresponding eigenfunction.
Since the operator 8 is positive [50], it also follows that
the largest eigenvalue Ai(p) is separated from the rest of
the spectrum: Ai(p) ) A2(p) & As(p). . . . Consequently,
the convergence is exponentially fast.

In the case of the Ising chain with nearest-neighbor
interaction, one can immediately rewrite Eq. (5) in a
matrix form and the matrix representation of l'. turns
out then to be the transfer matrix [51]. The real advan-
tage of the transfer operator is that it provides a method
applicable to cases with long-range interactions when the
classical transfer matrix would be of oo x oo type and,
therefore, difBcult to handle. It is of particular impor-
tance that the action of the operator can then, in certain
cases, be transformed into a simple functional recursion
[50] the numerical solution of which is much easier than
that of a matrix representation of Eq. (5) obtained by

truncating the interactions at some finite distance.
The transfer operator for the Kac model follows kom

Eqs. (3) and (5) to be

Zg(() = ) exp Po J) f;A*+ Ii g(~ () (8)

The key point is that l:g(() depends on the combination

*=) gA'

only. Due to the infinity of all possible spin configu-
rations, the quantity z is a variable taking real values
between —A/(1 —A) and A/(1 —A). By considering the
physical quantity g at a configuration ( to be some func-
tion of z, i.e. , g(() = g(z), the same physical quantity
g(a, () of the chain supplemented by spin o can be writ-
ten as

g(0, () = g(oA+(iA +(2A + ) = g(Ao +Az). (10)

Zg(z) = ) exp [po (Jz + h)] g(AO + Az). (11)

This representation of the transfer operator was first ob-
tained by Viswanathan and Mayer [43,50]. These authors
also showed that their form was equivalent to the integral
operator derived by Kac [39] from which it also follows
that the spectrum of l. is real and discrete. That the
spectrum of the two transfer operators are the same was
shown by Moritz in his diploma thesis [53].

For the complex version, see Eq. (4), the transfer op-
erator

/J
Eg(f) = ) exp Po —) (;(A'+ A") + & g(0, ()

a=+i ( i=i

All the real numbers x which correspond to a given spin
configuration ( are mapped onto OA + Az, correspond-
ing to another configuration (0, (). By extending the
variable 2: on the whole real axis, the nonphysical x val-

ues, which do not correspond to a configuration ( or are
larger in modulus than A/(1 —A), are mapped onto an-
other nonphysical value or a value larger in modulus than
A/(1 —A) again. Therefore, in what follows, we consider
x as a continuous real variable without any restriction,
because this assumption does not affect the computation
of the relevant physical quantities. This means that g
can be chosen to be in the space of single-variable real
functions since the action of the operator does not lead
out of this space. Consequently, the transfer operator
can be represented by the form

is a function of both variables

FIG. 1. Schematic diagram illustrating the action of the
transfer operator when averaging out the spin variable a at a
fixed con jguration (.

z, =) gA' and z, =) gA*.

When writing g((, (2, . . .) = g(zi, z2) one immediately
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finds that g(n, $i, f2, . . .) is of the form g(Ao + Azi, A'0'+
A'z2), i.e., g can now be represented as a function holo-
morphic in two complex variables zi and z2. The corre-
sponding transfer operator then reads as

t'z
Cg(zi, z2) = ) exp Po

I

—(zi+ z2) + h
I

xg(AtT + Azi, A'0 + A*z2). (14)

This equation is a straightforward bivariate extension of
Eq. (11).

Proceeding as in [50] one shows that 8 is of traceclass
when acting in the above-mentioned space of functions

g, holomorphic in zi and z2 in the disks
I

z; I( R if R )
I

A
I /(1 —

I
A I). Arg»ments similar to the ones given in

[50] show that 8 has a leading positive eigenvalue strictly
larger in modulus than the remaining eigenvalues.

Note that in both operators (11) and (14) the coupling
constant J appears only as a coefficient of P. Conse-
quently, by an appropriate rescaling of the inverse tem-
perature and the magnetic field we can always choose

nitude longer (and less accurate) than by means of the
functional iteration described above.

A. The real case

Figure 2 shows the kee energy obtained in this way
at dHFerent values of the interaction parameter A and of
the magnetic field, respectively. A smooth dependence
on these quantities has been found.

The dHference between cases with and without mag-
netic field becomes more drastic when taking into con-
sideration the corresponding eigenfunctions, too. In the
absence of any external field the eigenfunction is even
but this symmetry is lost by switching on the field. The
asymmetry is the stronger the larger is the magnetic field.

By substituting the form

g(2:)
—= exp(a I

z I)

into the eigenvalue equation for
I
z I)) 1, one easily finds

that

provided the coupling is of ferromagnetic type, i.e., J &
0. Antiferromagnetic cases can then be obtained by ap-
plying the transformation P -+ —P, h -+ —h.

The determination of the leading eigenvalues and
eigenfunctions of operators (11)and (14) is based on their
repeated application to some test functions which is car-
ried out numerically by repetitive function calls just like
in the case of the generalized Frobenius-Perron equations.

0
—1n (2)

(20)

IV. THE FREE ENERGY -8

The free energy P(13) of the Kac model at inverse tem-
perature P has been computed from the relation

—10
—10 10

—Px(P)n

valid for n » 1 or, equivalently, from

PE(P) = ln

(16)

0
-1n(2j

As initial functions we chose, if not stated otherwise,
g(z) = 1 in the real case and g(zi, z2)—:1 in the complex
case. The error of the computation has been estimated
by evaluating

(gn, +ig) (pter ig)—
b(P) = ln

Because of the exponentially fast convergence in n, an
error of 10 can be reached at a number of n = 10 in a
broad range of P values. It is worth comparing the efli-
ciency of this approach with that of the classical transfer
matrix method. By truncating the range of interaction
at a size of m = 7, the CPU time needed for the compu-
tation of the largest eigenvalue of the 2 x 2 transfer
matrix, by letting it act on an arbitrary vector and ex-
tracting the growth rate, was about two orders of mag-

—8

—10
-10 10

FIG. 2. Free energy of the Kac chain at different values of
the interaction parameter and of the magnetic field (a) A=0.3
(0), 0.5 (+), 0.7 ( ) at h = 0; (b) h =0 (&&), 0.5 (+), 1.0 (Cl)
at A = 0.3. Results were obtained by iterating the transfer
operator (11) n = 10 times and by using relation (17). The
maximal error in the range IP I( 5 is 10 and grows up to
10 around IP I- 10.



2030 PENTEK, TOROCZKAI, MAYER, AND TEL

for any value of the magnetic field. This means that the
eigenfunctions belonging to any finite eigenvalue are ex-
ponentially increasing for large positive or negative values
of x, unless the temperature is infinite.

In view of this observation, it is worth plotting the
eigenfunction gi (z) after dividing it with cosh(nz) which
makes the graph bounded. Figure 3 exhibits the first
eigenfunction with this normalization at different values
of the magnetic field. The convergence toward the limit-

ing value w'ith n is also shown. Note the strong asymme-

try in both the function's form and the convergence rate
in the presence of the field.

B. The complex case

In the case of complex interaction parameter A an in-

teresting new phenomenon shows up. The &ee energy
does not exhibit a monotonic behavior by increasing
the imaginary part A; at a fixed real part A„. An-

other appearance of the same fact is an oscillating be-
havior found in the &ee energy when plotted as a func-
tion of the phase p at

~

A ]
fixed. This can be under-

stood by recalling that the interaction energy between
two spins g; and o.;+s is proportional to ] A ~" cos(ky).
Consequently, the total interaction energy appears as a
weighted sum of terms of the type

~

A ~" cos(kp), i.e. ,
it is of a kind of Fourier series. As a function of y, it
shows therefore interference patterns which also survive
in the free energy taken at finite temperatures (see Fig.
4). The strength of the interference depends on A. In
particular, when

~

A ~(( 1 the nearest-neighbor interac-
tions dominate and the system is close to an Ising chain
with coupling constant

~

A
] cos(y). The free energy

is then well approximated by that of the Ising model,
i.e. , PE(P) = —lncosh [P ~

A
~

cos (&p)]. This x periodic-
ity can clearly be seen in Fig. 4(a). Note that the niax-
imuni at y = vr/2 corresponds to a configuration where
the interaction energy exactly vanishes at the first neigh-
bors. This is a very loosely bounded state and possesses 7

therefore, a free energy value lying closest to that of the
free spin chain (—ln2). By increasing

~

A ~, longer and
longer interactions play a dominant role and this leads
to complicated y dependences [see, e.g. , Fig. 4(b)].

The effect of lustration can occur at any complex
value of A if there exist spin triples with at least one
bond which is not satisfied energetically, i.e. , the spin
pair belonging to this bond is not in its lowest energy

0. 8

0. 6

0. 4

0
—10 I 0

n=6 ' n=7
/' ---'-'---L

0. 6

ice

2

0
-10

FIG. 3. The eigenfunctions gq of the transfer operator cor-
responding to the largest eigenvalue: (a) h = 0, the eigen-
function is even; (b) Ii = 0.1, the symmetry of the eigen-
functions is destroyed by the magnetic Geld. Notice in each
figure the very fast convergence (the eigenfunctions are plot-
ted for n = 3, 4, . . . , 7). The eigenfunctions were computed at
A = 0.3 and P = 1.2 via Eq. (7). The diverging asymptotic
behavior has been removed by plotting gi = gi/cosh(nx).

FIG. 4. The free energy at P = 1.2 for h = 0 as function
of the phase 0 & y & 2x of A. Results are obtained after
n = 14 iterations of the transfer operator. The maximal error

—2is 10 . (a) ~

A ~= 0.3. The two maxima belong to the case
+chen the interaction energy vanishes at nearest neighbors at

y = s'/2 and 3s/2. (b) ~
A ~= 0.7. The small wavelength

oscillations are interference effects.
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state. A sufficient condition for f'rustration is, there-
fore, that the nearest-neighbor interaction is negative,
cos (~p) & 0 but the next-nearest-neighbor interaction is
positive, cos (2~p) & 0, or if both kind of bonds have pos-
itive signs: cos (~p) & 0 and cos (2&p) & 0. This is fulfilled
in the range x/4 & ~p & 3x/4. Thus we see that &ustra-
tion is accompanied with a loose bond and a relatively
large vaLue of the &ee energy.

V. HIGHER EIGENVALUES

gn+lg (z)
p2(P)=, n » 1

gag (21)

will be different from the largest eigenvalue Ai(P). We
shall call p2 the iteratively obtained largest eigenvalue in
the space of odd functions.

Our finding is that p2(P) is positive and monotonically
increasing with P in a range P ) P, . Below a critical
value P, & 0, however, pz(P) becomes negative and at
P, a jump occurs (see Fig. 5). This behavior seems to
be associated with a drastic change in the form of the
eigenfunctions g2 belonging to p2. For P & P, g2 is a

6.0

When studying higher eigenvalues of the transfer op-
erator we restrict our attention to the real case without
any magnetic field since similar effects are expected to
show up in more complicated cases, too.

Let us first observe that because of the symmetry of
the transfer operator, the image Zg(z) of g(z) is an even
(odd) function if g(z) was even (odd). In other words, the
class of even (odd) functions forms an invariant subspace
of the function space. The eigenfunction belonging to
the first eigenvalue is even [50] as also illustrated by Fig.
3(a). It can be obtained by applying l: several times to
any g(z) which is not antisymmetric. Iterations then lead
into the class of even functions. An application of 8 to
odd functions, however, will stay within this class, and
the quantity p~ obtained as

monotonic increasing function but develops several nodes
below P, .

An approximate critical value P( ) easily follows from
a simple argument. By taking gp(z)—:z, the first image
function is

gi(z) = 2A[sinh (Pz) + z cosh (Pz)].

Consequently, g~ possesses two nontrivial nodes

z' = —tanh(Pz')

(22)

(23)

g2(z) sinh(nz) G
~

ln] z ~+~ ~,
2x

)(lnl A
(24)

where a is given by Eq. (20), G is a 2n'-periodic function
and or is an arbitrary constant.

100

80

60

40

20

0

provided P & P( ) where P( ) = —1. Note that this is
exactly the same argument one uses in the mean-field
theory of ferromagnets [47).

The condition found above for the development of
nodes in the eigenfunction is necessary but not sufficient.
It can happen that l:go(z) does not have yet any node
but 82go(z) does. The true critical value P, belongs to
the case when 8"~™go(z)first develops nodes. In fact,

P, = —1 turns out to be just a zeroth order result valid
for A -+ 0. The true critical value has numerically been

found to be larger than P,(o)

One can easily convince himself that for P & P, an in
finity of nodes evolves and they asymptotically follow a
geometric series with quotient I/A (see Fig. 6 and Ap-
pendix A). By taking into account this rule and the
general asymptotic form of any eigenfunction found in
Eq. (19), we conclude that g2(z) must behave for large
values of ~z~ as

pi pz
2.0

*
*

~ A

~*
*

~ ~

-20

-40
—60

0.0—
-100

—30 —20 —10 10 20 30

0 1 I I I

—5.0
I
I

rs&IlPTII/Twt ~

Tillrs�&
~ (s&s sos ~ tI ~ r

p 0.0

FIG. 5. The first iteratively obtained eigenvalues pz = Aj.

and p2 belonging to the class of even and odd eigenfunctions,
respectively, at A = 0.3 and h, = 0. Notice the jump in pz at
P —1. The number of iterations used was n = 10. The
maximal error is 10 . It is easy to check that ps(P = 0) = 2A.

FIG. 6. The eigenfunction g~ below the critical point. Here

P = —2 & P, A = 0.3, and h = 0 is taken. In order to
visualize the structure of g2, we plotted a transformed ver-
sion Tgs (z) = sgn[g2 (z)] ln (1+

~ g2 (z) ~) (full line). The heavy
dashed line has a slope P/(1 —A) in agreement with the form
given by Eq. (24). For comparison, the eigenfunction be-
longing to pq above P, (P = 1.2 & P, ) is also shown (dashed
line) and is diIIicult to distinguish &om a straight line in this
representation.
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VI. LEVEL CROSSINGS

As an explanation of the jump in the iteratively ob-
tained second largest eigenvalue p2 at P„we first note
that the iteration process 2"go(z) is always dominated
by that eigenvalue which is largest in modulus. Thus p2
in Eq. (21) has the property

~ p2(P) ~&~ A;(P)
~

for any
eigenvalue A;(P) in the class of antisymmetric functions.
We also note that this property does not exclude the pos-
sibility that pq is negative.

Numerically, Eq. (21) converges very fast except in the
neighborhood of P, where the convergence becomes bad;
therefore, relation (21) cannot be used in practice to find

p2 there. Usually, when iterating linear operators, this
effect is due to a crossing of two eigenvalue branches. To
see if this is the case here, we also computed p4(P), the
second largest iteratively obtained eigenvalue in the space
of odd functions which is defined via the asymptotic form

~"go(z) =P2(P) ( )+P."(P) (*)+

The coefficients A(z), B(z) are n-independent quantities.
Eigenvalue p4 then follows &om the relation

L. O

!

ooI

! I

! r
—

r r r-m-mr}'r r r ~ r r 1 r I r r ~"r 1~1
—:3.0 p 0.0

FIG. 7. The eigenvalues Aq, A4 at A = 0.3, h = 0. The level
crossing of the curves Az and ! A4! (dashed line) causes the
critical behavior at P, = —0.947. The heavy line is the largest
iteratively obtainable eigenvalue belonging to the odd eigen-
functions (pz). Around the critical point the eigenvalues were
computed by means of the method described in Appendix
B. The eigenfunctions belonging to Aq and A4 are of similar
type as the ones belonging to the second largest iteratively
obtained eigenvalue for P & P, and P ( P„respectively (see
Fig. 6).

&""go(z) —p2(p) &"go(z)
&"go(z) —p2(P) &" 'go(*)

(26)

This formula is valid apart from a neighborhood of P,
where p2(P) and p4(P) cannot be found by means of Eqs.
(21) and (26). En this regime we used a difFerent method
to compute p2 and p4 which is described in Appendix B.

We have found that p4 in the range p ( p, is the ana-
lytical continuation of p2 &om p & p, and, analogously,
p4 in the range P & P, is the analytical continuation of
p2 from p ( p, . Consequently, we can also say that there
are two eigenvalues A2(P) and A4(P) which are analytic
expressions of P with the following properties:

the eigenvalues. Thus A2(P) is really the second largest
eigenvalue of 8 but it is not greater than the modulus of
all other eigenvalues in the whole P region.

In a different vein, we started iterations of the op-
erator 8 with functions which are neither symmetric
nor antisymmetric. We observed that the quantity
Q"+ go(z)/Q"go(z) in this case goes to the first eigen-
value Ai(P) = pi(P) found when starting from the class
of symmetric functions, and the convergence to A~ is gov-
erned by p2(P):

(p)
p2(P) for P Pc
p4(P) for P ( P„ (27)

~"g.( ) = p"(P)D(*)+p". (P)E( )+
(30)

A (p)
P4(P) «r P &P.
p2(P) for P + P

and at P = P, A2(P) = —A4(P). These functions are
plotted in Fig. 7 for A = 0.3. This is supported very well

by the fact that the form of A2(P) can be analytically
given for A = 1/2. One can easily check that the second
largest eigenvalue is then given by

A2(p) = ep (29)

and the corresponding eigenfunction is sinh (2Pz).
Therefore, the nonanalytic behavior of p2(P) at P, is

explained as a level crossing between the moduli of the
analytic curves A2 and A4, see Fig. 7. It is to be noted
that A2(P) defined above is strictly positive; for all other
eigenvalues A2 & A, for any temperature. The spectrum
is not degenerate, i.e., the curves A; do not cross each
other. Level crossing occurs in the absolute values of

go(z) is here neither symmetric nor antisymmetric.
We have also checked that the second highest itera-

tively obtained eigenvalue p2 of the operator 2 is the
same as the one computed from the transfer matrix of
the Kac model, although this procedure is less accurate.

When applying the transfer matrix to a spin system
with finite range interactions, the ratio of the next-to-
leading and leading eigenvalue determines the decay rate
of the correlation function [47]. The same quantity simul-
taneously controls how the finite size corrections vanish
when the thermodynamic limit is taken [54]. Repeated
applications of the transfer matrix corresponds to an it-
erative solution of the transfer operator problem. There-
fore, it is the iteratively obtained second largest eigen-
value p2 that is relevant &om the point of view of the
aforementioned quantities in systems with long-range in-
teractions. In other words, the correlation function be-
tween two spins crI, and oI,+„ofthe infinite chain can be
written as g,. 2 c;[A;(P)/Ai(P)]' where the coefficients c,
are constant [39]. This is an analytic function for finite
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r in both r and P. In the limit r -+ oo the decay is dom-
inated by the eigenvalue largest in modulu8 and goes as
[pz(P)/Aq(P)]". Thus, at P, a nonanalytic behavior de-
velopes in this limit. The jump occurring in pz(P) jAq(P)
implies that the decay of the correlations and the finite
size corrections is qualitatively difFerent in the Kac model
depending on the sign of P —P . The decay is monotonic
for P & P, and is oscillating with an alternating sign for

P &P..
Finally, we discuss briefiy properties of the spectrum

of the generalized Kac models. In the field-free version
of the complex case, the eigenfunctions are either sym-
metric or antisymmetric under the reflection (zq, z2) ~
(—zq, —z2). Indeed, the case P = 0 shows that the highest
positive eigenvalue has an even eigenfunction, whereas
the second highest eigenvalue, which is degenerate in
modulus, has antisymmetric eigenfunctions. This follows
f'rom the fact that with p also the complex conjugate p'
is an eigenvalue of l:: if g(zq, zz) is the eigenfunction to
p then g'(zq, zz) = [g(z~, zz)]' is the eigenfunction to p'.
For P near zero the second highest eigenvalue is certainly
complex and hence degenerate in absolute value. We do
not know if for some real P the pair of eigenvalues reaches
the real line. In this case the second highest eigenvalue
would be degenerate. Contrary to the case of real A the
spectrum of the transfer operator for complex A is hence
not real for all real temperatures P.

Although even and odd functions do not form an in-
variant subspace in the presence of a magnetic field, our
numerical investigations prove that the jump in p2 at
some negative temperature persists until the value of h
or

~
A

~
becomes of order unity. We note that the phe-

nomenon of level crossing is also present among the mod-
uli of higher order eigenvalues in all versions of the Kac
model.

It is worth mentioning that for the purpose of inves-
tigating a broad range of eigenvalues, the zeta function
formalism [16,55,56] provides a technically more powerful
framework than the iterative approach. By an appropri-
ate tail resnmmation, the convergence can be made even
faster than exponential. This method, however, does
not yield any information concerning the eigenfunctions
which are essential for characterizing the microscopic spin
configurations.

shift. The following properties are assumed:

(i) f maps the unit interval I = [0, 1] onto itself or
partially outside I;

(ii) The origin and the unity are two fixed points of
the map f;

(iii) f possesses two inverse branches denoted by F„
a=0, 1:

f(F.(u)) =~ and F.(f(*))=&.

The F, 's are called the presentation functions [28]. They
are assumed to be defined on the entire unit interval.
This ensures that the dynamics of the map can be sym-
bolically described by a complete set of binary codes and
corresponds to the appearance of all binary microstates
in an Ising type chain. We use the convention that e = 0
marks the inverse of the left branch of f

In the thermodynamical formalism of dynamical sys-
tems the free energy F(P) of a 1D map is defined via the
partition sum [9]

) exp[Pin/(ey. . .e )] e ~ ~p ", n && 1, (32)

where l(eq. . .e„) denotes the length of the cylinder
I„(eq. . .e„) labeled by the symbolic code (eq. . .c„).The
set of the cylinders I„(eq. . .e„) is nothing but the set of
all the 2" nth preimages of the unit interval. According
to the standard notation [23], the symbolic code e takes
on 0 or 1 depending on whether the presentation function
Fo or F1 is taken in the construction of the preimages,
i.e., the cylinders are labeled according to the rule

(F„oF„o o F,„)(I)= I„(eye2. . .E„). '

This means that the first code eq specifies whether the
cylinder lies below the left (0) or the right (1) branch
of the map. Similarly, code ez provides the same infor-
mation concerning the jth image of the cylinder under

First, we study the general question of how one can find
a map associated with a binary spin chain with arbitrary
two-body interactions. The Hamiltonian of the system
of length n can then be written as

VII. ASSOCIATED ONE-DIMENSIONAL MAPS 0 = nEp —h) o;+ ) ) V(~;, o;ig), (34)

The thermodynamical formalism of one-dimensional
(1D) maps with chaotic invariant sets defines quantities
[3,9] which are the analogs of thermodynamical potentials
expressed in terms of the map's properties. It implies
that there exists an associated spin system the thermody-
namics of which is governed by the same potential. The
way to find a spin system for a given dynamics has exten-
sively been studied [31—38]. Here we follow the opposite
way and ask how a map with the same thermodynamics
as a given spin system can be constructed. Even for Ising
type spin chains there seem to exist several possibilities
for this construction. In order to be specific, we restrict
our attention to a class of 1D maps f(z) which is topo-
logically similar to (but more general than) the Bernoulli Z 1) 2) ~ ~ ~ ) AO (35)

where V is the interaction energy between two spins 0;
and o;+g and h stands for a homogenous external mag-
netic field. Note that for later reference we introduced
an energy constant Eo. Its value is completely irrelevant
for measurable thermodynamical quantities but is, as we
shall see, essential in the construction of the associated
map.

In order to find such a xnap one has to define a one-to-
one correspondence between the sets (o;)„and {e;}„of
spin configurations and symbolic codes. We have chosen
the form [32]
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This implies that spin state +1 (—1) corresponds to code
0 (1).

Knowing the one-to-one correspondence between mi-
crostates and symbolic codes, one can identify the Boltz-
mann factors appearing in the partition sum of the map
[Eq. (32)] and of the spin system described by Eq. (34).
This leads to the relation

Here (ei. . . e„) denotes that symbolic code which

uniquely corresponds to the spin configuration
0$) ~ ~ ~ $0+ ~

The next step in the construction is to write down Eq.
(36) taken at n + 1. Because we have defined the order
in which the symbols appear according to Eq. (33), we

can write

n+1
ln l (epei. . .e„) = (n + 1)E—p + h ) o,

n n —4+1
—) ) V(o o+i),

i=1 A;=1

(37)

where ep C (0, I) is the new symbol corresponding to the
last spin o„+i. By taking the difference between Eq. (37)
and Eq. (36), we obtain

ln
" " = Ep+o„+,h——) V(o, , o„+,). (38)

t(epei. . . e~)
t(ei. . . e„)

Note that the left-hand side of Eq. (38) is just the loga-
rithm of the "daughter-to-mother" ratio [28] playing an
important role in the theory of 1D maps. For n &) 1
this ratio can be approximated by the derivative of the
inverse map taken at some arbitrarily chosen point inside
the cylinder I„(ei.. . e„). This implies that we approxi-
mate the map on the cylinder sets I„with straight lines
which is a legitimate approximation for large n. Conse-

quently, one can write

n —1n—i

ln/(e, . . . e„) = —nZp+ h) o; —) ) V(o;, o,+g).
i=i %=1

(36)

the y's are. If the cylinders were all of equal length, y
would be just y:—g,. i e;2 ', i.e. , the binary number
representation of the symbolic code (e;) on the unit in-

terval. Since this is in general not the case, we apply a
self-consistent procedure to determine the presentation
functions explicitly. As a first approximation, we assume
that the cylinders of level n are all of equal length. The

presentation functions F, are then constructed as con-~ (o)

tinuous piecewise linear functions on these cylinders the
slopes of which are given by (39). Next, we redefine the
cylinder set by taking subsequent images of the unit inter-
val with respect to these presentation functions. By iter-
ating this procedure, one obtains a series of presentation
functions F, , F, , . . . which converge to a limit F,(y)
and the corresponding partition tends to the generating
partition taken with respect to the limiting functions. A
sufBcient condition of convergence is that the presenta-
tion functions have to be contracting, i.e., ~

F,'
~

( 1 for any
y. The essence of this procedure can best be illustrated
by the example of a piecewise linear map corresponding
to an Ising chain with nearest-neighbor interaction which
is given in Appendix C.

Equation (39) defines the associated map f in terms of
the magnetic field, energy constant, and the symbolic in-

teraction functions. Note that the latter are independent
of h. Equation (39) also shows how the energy constant
inQuences the form of the presentation function. The role
of Eo is so essential, as we shall see below, that an associ-
ated map can only be found if it is greater than a critical
value Eo*.

VIII. SELF-SIMILARITY PROPERTIES
AND THE DEPENDENCE

ON THE ENERGY CONSTANT

Let us turn now to the particular case of the Kac
model. We write down the formulas for the complex case
which immediately turn into the results valid in the real
case in the limit A; —+ 0. The interaction energy of two

spins 0;, o~ is —cr.o. .A~~ '~ plus complex conjugate, there-
fore, the symbolic interaction function takes the form

F,' = exp [
—Ep + (1 —2e)h —u, (y)], (39) u, (y) = (—1)'2 lim ) o„+i;(A*+A").

i=1
(41)

where e = 0, 1 and y is an arbitrary chosen point within
the cylinder I„(ei.. . e„). The quantity By expressing the spin variables through the symbolic

codes via Eq. (35), we obtain
n

up(i)(y) = lim ) V[o.;, o.„+i ——1(—1)]
i=1

(40) n

u, (y) = (—1)' — lim ) e, (A*+ A'*) . (42)

gives the interaction energy of the last spin with a given
configuration of the semi-infinite chain expressed as a
function of position y of the cylinder I ((e,j) rather than
of the corresponding spin configuration (o';f. These func-
tions will be called the symbolic interaction functions and
are easy to construct numerically.

It has to be emphasized that Eq. (39) determines the
presentation functions in terms of the location y of the
cylinders. Unfortunately, it is not known a priori what

We recall that variable y is the position of the cylinder
I ((e;)) that has to be determined by means of the self-

consistent procedure described in the preceding section.
Before performing this computation it is worth plot-

ting the symbolic interaction functions as functions of y,
the binary number representation of (e;). Finite approx-
imants to u, (y) have been determined numerically and
the results are exhibited in Fig. 8 for a few values of A.
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FIG. 8. Symbolic interaction functions uo(y) = —uz(y) plotted at (a) A = 0.3, (b) A = 0.7, and at
~

A ~= 0.5 with (c) y = z'/2
and (d) p = z/4. These plots were obtained by dividing the y axis into equal boxes of size 2 " with n = 10 and plotting the
right-hand side of Eq. (42) vs y = P, , e;2

Note the apparent fractal features.
A few remarks are in order. The codes e; and the spin

variables g; introduced in Sec. III are in one-to-one corre-
spondence. Therefore, the symbolic interaction function
yields essentially the relation between the spin configu-
ration ( and the variable z defined by Eq. (9) or zq + z2
where z; has been given by Eq. (13). Figure 8 clearly
shows that in the real case the relation between ( and z
is one-to-one for A ( 1/2 only. This is refiected by the
fact that u, (y) is the inverse of a devil's staircase func-
tion as long as A ( 1/2, and becomes a Weierstrass-like
function for A ) 1/2 [57]. [At the borderline situation
A = 1/2 the graph of u, (y) is just a straight line. ) It is
interesting to note that the same functions also appear
in the context of a Brownian diffusion problem [59].

The interaction parameter uniquely determines the
&actal properties of the symbolic interaction function.
This can best be seen in the real case. The symbolic
interaction function is self-affin [58] for any real A, i.e.,
has the generalized homogeneity property

u, (y) = a u, (ay), (43)

where H is called the roughness exponent [58]. It is easy
to check that the symbolic interaction function is invari-
ant under contracting the range of the y by 1/2 and si-

multaneously rescaling the variable u, by a factor of A.

Thus a = 1/2 and for the roughness exponent we obtain

ln I/A
1.2 (44)

The values where the plateaus of u, (y) are located for
A ( 1/2 are just the points of the invariant set of the
piecewise linear map f (z) = z/A —cr the inverse of which
appears in operator (ll). The invariant set of this map
is a Cantor set of the &actal dimension

ln2
ln (I/A)

(45)

For A ) 1/2 the graph of u, (y) is similar to that of a
Weierstrass function. A scaling argument applied to the
graph of u, (y) yields for its fractal dimension [57,58]

Dp ——2 —H. (46)

Since the values the function u, (y) and u, (y) can take
on are the same as they depend on the code only, these
results also imply that the original symbolic interaction
functions u, (y) have fractal properties. In view of a pre-
vious comment, they also characterize the complex na-
ture of the relation between spin configurations ( and
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the variable x appearing in the transfer operator.
We are now in a position to discuss the form of the

associated maps and their &ee energies. Since the qual-
itative results are the same, in what follows we do not
treat the cases of real and complex interaction parame-
ter separately.

By combining Eq. (39) and Eq. (42), and using the self-
consistent procedure for determining the cylinder posi-
tion y, the presentation functions associated with the Kac
model can be determined for every energy constant Eo.
The free energy of the map will thus be F(P) = E(P)+Eo
where T stands for the free energy computed with Eo = 0
in Sec. IV. The quantity PF(P), which is just the neg-
ative of the topological pressure of the map [9], differs
from PP(P) in a linear term PEo. By taking larger and
larger positive values of Eo, the shape of the curve PF(P)
is changing mainly because of the increase in the slope
of the right asymptote. It is only at sufficently large val-
ues of Eo that this slope becomes positive. The graph
of PF(P) can only in such a case be similar to the one
known for dynamical systems [9,25] which intersects the
P axis at some positive value corresponding to the fractal
(Hausdorff) dimension of the chaotic set (see Fig. 9).

It is worth emphasizing that there is one single value

Eo of the energy constant which corresponds to a map
exhibiting permanent chaotic behavior. This is the case
(sometimes called fully developed chaotic map) when the
unit interval I is mapped under f exactly two-to-one onto
itself and when I is the attractor of the dynamics. The
dimension is then unity and, therefore, F(P) must vanish
at P = 1 from which one finds the critical value Eo =
Eo as Eo: E(1) [for the corresponding presentation
functions see Fig. 10(a)].

For Eo greater than Eo the free energy F(P) vanishes
at some positive Po & 1, and the &actal dimension of the
chaotic set is less than unity. The corresponding map

F.(y}
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FIG. 9. The free energy of maps associated with the Kac
model at different energy constants Es (A = 0.3, h = 0). The
energy constant Ep ——0.753. . . corresponds to a fully devel-
oped chaotic map (heavy dashed line). Maps with E ) E'
h ave fractal invariant sets with Dp ( 1. The free energy cor-
responding to Ep ——0.8 has been plotted as a dotted line.

or Ep ( Ep ( Ep the presentation functions overlap and a
dynamics can only be de6ned in a random sense. The free en-
ergy plotted for Ep = 0.6 (dashed dotted line) clearly shows
that the intersection with the horizontal axis lies then at a
value larger than one. For Es ( Es* = A/(1 —A) = 3j7 no
associated map exists. Thus the free energy with Eo ——0 (full
hne) can never appear in a chaotic context.

FIG. 10. Presentation functions corresponding to the Kac
model at difFerent Ep values for A = 0.3 obtained b
constructing the symbolic interaction functions up to level
n = 10. (a) Fully developed chaotic map, Es = 0.753... = Eo,
(b) map with a gap, Ep = 0.8 ) Ep, and (c) map with over-

lapping branches, Ep = 0.6 ( Ep. Dashed lines in the first
two cases show the efFect of a magnetic field h = 0.3. Note
that although the presentation functions are not smoothly
difFerentiable because of the fractal nature of the symbolic in-
teraction functions, in these Sgures they appear to be smooth.
This is due to the fact that the jumps in u, are rather small
as compared to the energy constant Es [see Eq. (39)]. In the
limit Ep ~ Ep both presentation functions would approach
for h = 0 the diagonal. For Ep ( Ep' no associated map
exists.
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then possesses a gap and generates transient chaos [60].
The escape rate m from the chaotic repeller underlying
such a dynamics is just F(1) &om which tc = Ep + P(1)
follows. This means that increasing E0 beyond E0 leads
to maps with increasing escape rates (shorter chaotic
lifetimes) and Lyapunov exponents, and with decreasing
fractal dimensions [see Fig. 10(b)].

If E0 becomes less than E0, the presentation functions
start to overlap [Fig. 10(c)]. One cannot speak any longer
about a map f since the dynamics is not unique in the
range of overlap. Nevertheless, the presentation func-
tions are still well defined. One can also introduce a
random dynamics by taking the branches of F0 and F1
with certain probabilities p and 1 —p. This random map
has a strange attractor which is covered by the cylin-
ders constructed via Eq. (36) [61,62]. The free energy
Il(P) built up on the basis of these cylinders does not
depend on the choice of the probability p and vanishes
at some Pp ) 1. By further decreasing Ep one reaches a
value Ep' when Pp becomes infinite. If no magnetic field
is present in the Kac model, this value is found to be
Ep' = A j(1—A) which is just (—1) times the slope of the
right asymptote to PX(P). As a consequence, the deriva-
tive of the presentation functions becomes then unity at
both fixed points and the random dynamics is then inter-
mittent [62]. The corresponding PF(P) curve approaches
the horizontal axis from below as P ~ oo as shown in Fig.
9. Below Ep' one cannot find any meaningfully defined

map associated with the Kac model.
To check if the pictures provided by the transfer opera-

tor Eq. (1) and the Frobenius-Perron (FP) operator Eq.
(2) are consistent, we studied the FP operator acting on
the map associated with the Kac model, i.e., with presen-
tation functions defined via Eqs. (39) and (42) shown in
Fig. 10. We found that the &ee energy computed as the
logarithm of the largest eigenvalue times (—1) of these
maps was the same as that of the Kac model up to the
additive constant Ep. Thus we numerically showed that
Eqs. (1) and (2) have equivalent largest eigenvalues pro-
vided the presentation functions are chosen as described
above.

IX. CONCLUDING REMARKS

The treatment of the Kac model by means of meth-
ods known &om the theory of dynamical systems became
possible because a representation of the transfer opera-
tor was found on simple function spaces. An analogous
procedure has been worked out [50] for spin chains with
interactions decaying faster than exponentially or with
an exponential decay but multiplied with a polynomial
expression of the distance. The case of an exponential
decay divided by a polynomial of the distance would be
of primary interest since it contains the case of polyno-
mial interactions in the limit when the exponential decay
tends to zero. Then a phase transition occurs provided
the interaction decays slower than the second power of
the distance [47]. Unfortunately, in such cases a siin-
ple functional representation of the transfer operator and
the correct functions it has to act on has not been found

yet. The situation as described in [50] seems to be quite
similar to the problem one encounters in the discussion
of the Frobenius-Perron operator for maps with neutral
Axed points, where the good function spaces are also not
known. Perhaps there is an intimate connection between
these two problems.

Next, let us address the following question: what prop-
erties must a spin system have in order to lead to a
smooth map of the interval? We emphasize that the
map associated with the Kac model turned out to be not
smoothly differentiable. It seems that spin chains with
smoothly varying two-body interaction are always asso-
ciated with such types of maps. In order to end up with
an associated smooth map one thus has to include spin
models with different types of multispin interactions. We
believe that the smoothness of the associated map is a
very special property and maps with fractal features will
be found in most cases.

It is worth mentioning that the most general form of
the Frobenius-Perron operator associated with a map
f(z) is of the form [3]

a=0, 1

(47)

where P, (z) can be a general function, and f, i(z) de-
notes the two inverse branches of the map. Comparing
this with Eqs. (1) and (11) we immediately see that with
the choice

P, (z) = —(1 —2e)(Jz+ h), (48)

H~ is exactly the same as l: provided the map is de-
fined by the presentation functions A(1 —2e + y). With
this choice of P„ the map associated with the Kac
model is a piecewise linear one. The smoothness of
the associated maps thus also depends on P but seems
to be an exceptional property in the space of P func-
tions, too. The choice we investigated corresponds to
P, (z) = —ln ~E,'(z) ~, which leads to Eq. (2). This
is a natural choice in the theory of dynamical systems
and has intensively been studied. The famous relation
E(Dp) = 0, for example, only holds with this choice of
P. According to a recent finding [56] one can always con-
struct a P(2:) for any given spin chain so that the asso-
ciated map is smooth but eventually higher dimensional.
In view of this observation it would be interesting look-
ing for two- and higher-dimensional dynamical systems
associated with the Kac model.
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APPENDIX A: PROPERTIES OF THE ODD
EIGENFUNCTION BELOW P,

In this appendix we show that the eigenfunction g2
belonging to the largest eigenvalue p2 in the class of odd
functions has infinitely many nodes below P, . Let z' & 0
be a node of g2(x) whose eigenvalue equation is given by

g2(A + Ax) + e 92( A + Ax) p 2(P)y 2( z) (A1)

I.et us now choose the value of z so that

(A2)

1+X"+'C(x)
1+X"+'—'C(x) '

where the abbreviations

X=——
p2

(B4)

co p2 c1 p2

p~X —co p2X —cqX

and at i = 1 and 2 we get

(B5)

and C(z) = A( x)/8( z) have been used. Eliminating the
function C(x) from (B3) taken at i = 0 and 1 we get

Inserting (A2) in (Al) results in

(2A+**) = (P) (1+**/A).

cx —pa

p2X —cg

C2 p2

p2X —c2X (B6)

2A+ x* & z*, & 1+z'/A, (A4)

Since for P & P, the eigenvalue p2(P) is negative, from
this relation and &om the continuity of g2 we conclude
that another node zz must exist in the interval

Finally, these equations yield for p2

p2(ci —cp) + p2ci(cp —c2) + cpci(c2 —ci) = 0, (B7)

with solutions p2 . Using the Viete formulas and (B4)—
(B6) the properties

or p2
——p4 and p2

——p4
+ + (B8)

1+z*/A & z', & 2A + x' (A5)

2A + x„* & x„'+, & 1+z„*/A. (A6)

depending on whether z* & 2A(A —1/2)/(1 —A) or not.
Therefore, any node z* of g2 determines another one zz )
z* for P & P, . By taking the origin as the first node
zp ——0, the next one zi is found to lie in the range (2A, 1)
if 0 & A & 1/2 and in the range (1,2A) if 1/2 & A & 1.
In an analogous way, z~ determines z&, . . . , and so on. If
n is large enough, Eq. (A4) holds and one has

follow. Thus measuring the quantities cp, ei, and c2 we
can compute both p2 and p4 as the solutions of (B7). This
method seems to be very powerful, because for n = 9 we
get p2 and p4 even around P, with a precision up to 8—9
digits which is impossible from Eqs. (21) and (26). We
observed that for even values of n the quantities co and c2
go to infinity while ci tends to zero when P approaches P,
which supports the fact that p2 ———p4 and A(z)—:B(z)
at P, . Equation (B8) also shows that p4 for P & P, is
the analytical continuation of p2 from P & P„and vice
versa, as mentioned before.

Numerical evidence shows that z„*+& is very close to the
upper bound, i.e., x„'+i —1+z„*/A. This yields for x„* a
geometrical series: x„'+i z„*/A with ratio 1/A & 1.

APPENDIX C: PRESENTATION FUNCTIONS
FOR THE ISING MODEL

APPENDIX B: COMPUTATION OF CROSSING
EIGENVALUE S

The interaction energy in an Ising chain is given as

V(o;, o,+i) = —Jo;o.;+i.

Here we present a numerical method allowing us to
compute the two eigenvalue branches p2 and p4 around
their intersection point P, . Let us perform the computa-
tion for the quantity (21) for levels n —1, n, and n+ 1,
respectively, and introduce the notation

l:"+*gp(x)
+' 'goz' (B1)

~"»(z) = p2&(z) + p4B(z). (B2)

Then we get for c;

Assuming that eigenvalues p2 and p4 cross each other at
P„we can approximate l:"gp(x) by the first two terms
of Eq. (25) for n » 1:

Thus the symbolic interaction is of the form

u, (y) = (—1)'+' lim Jcr„. (C2)

It can take two values only: +J and —J. Equation (39)
then implies that the slope of the presentation functions
can be one of the four values exp [

—Ep + (1 —2e)h+ J].
The sign of J depends on the erst code ez of the cylin-
ders. It has to be positive if eq ——0 on the lower branch
(e = 0) or ei ——1 on the upper branch (e = 1). One has to
determine where the division points between these seg-

ments lie. We use arbitrary division points yo, y~
(o) (o)

The approximate presentation functions Fo and Fz
are first constructed on the intervals [0, yp ] and [yi, 1],(o) (o)

respectively, with slopes ai ——exp( —Ep + h+ J) and
a4 —— exp (—Ep —h + J). Then we add two new
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x")"1

points are also changed to some zo and zi . By re-(~) (~)

peating the procedure we can show that the series of yo(")

and yi(" belonging to the presentation functions F(") are
determined by the recursive formulas,

„(0)
0

and

yo = —+
I

———
I yo

(„+i) 1 f 1 11 (~)
a2 (ai a2)

(C3)

yIP) ym)
0 1

FIG. 11. Iteration procedure E, , E, , . . . , to construct
the presentation function for the Ising model. The heavy line
obtained in the limit of infinite iterations represents the exact
presentation functions Eo, Eq. The inverse slopes of the pre-
sentation functions' branches are denoted by a~, . . . , a4. Arbi-
trary initial division points yo and y~ were taken. The di-
agram shows that the convergence is exponentially fast. This
also illustrates the method how the presentation functions
were determined for the Kac model.

branches with slopes az —— exp( —Eo+h —J) and
as = exp ( Eo —h——J) so that the presentation func-

ions I"0 +x are continuous in yo 3,nd y~ . This con-(o) (o) (o) (o)

struction determines the end points zo( ), z( ) uniquely
(see Fig. 11). Next, we construct the new division points

yo i by takmg the preimages of zo and zi with respect(~) (o) (o)

to branches 0 and 1, respectively. Consequently, the end

end

ai
pp =

aya2 + ay —a2
(C5)

yi ——1— a4

a4a3 + a4 —a3
(C6)

are independent of the initial choice. This defines the ex-
act presentation functions F, corresponding to the Ising
chain at energy constant zero. They are piecewise lin-
ear functions containing two straight line segments. The
break points are mapped exactly onto the end points [38).
This is nothing but the condition that the partition is a
Markov partition.

y, =1-——
i

———i(l-y, )
(+i) 1 (1 1) ()

as (a4 as)

Since all the slopes a; are larger than 1, the iteration is
converying, and the limiting values
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