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Cellular automata (CA) dynamics are ordered in terms of two global parameters, computable a
priori f'rom the description of rules. While one of them (activity) has been used before, the second
one is new; it estimates the average sensitivity of rules to sxnall con6gurational changes. For two
well-known families of rules, the Wolfram complexity classes cluster satisfactorily. The observed
simultaneous occurrence of sharp and smooth transitions from ordered to disordered dynamics in
CA can be explained with the two-parameter diagram.

PACS number(s): 05.45.+b, 02.60.—x, 05.70.—a, 89.80.+h

In recent years cellular automata (CA) have played two
important roles. As totally discrete models (in space,
time and state variable) they have proved very useful
for the computer simulation of diverse spatially extended
problems in physics, chemistry, and biology [1—6]. They
have also been an important tool in the classification of
complex spatiotemporal behavior [7] and in the under-
standing of the origins of complexity in physical systems
[8]. In this paper we address the related problem of or
dering CA rules in terms of parameters that can be cal-
culated a priori from the description of a rule, without
performing simulations. We do this in terms of the well-
studied activity parameter [9], described below, and of
a new parameter which estimates average sensitivity to
small changes in configuration. The two main results are
that rules cluster satisfactorily in the two-parameter di-
agram according to their Wolfram class [7(a)], and that
the diagram can explain the simulational observation [9]
that either first- or second-order transitions from ordered
to disordered dynamics can be observed over the same
range of the activity parameter.

This work concentrates on one-dimensional, two-state
(It = 2) totalistic rules with radius r = 2. For these, sites
which can take on the values zero or one are updated
simultaneously at integer time steps based on determin-
istic functions f of the sum of the five neighbors. Upon
defining zero as a quiescent state (the outcome of the
neighborhood 00000 is 0), 32 rules remain in this family.
Results for elementary CA (l't = 2, r = 1) will also be
sketched here, and will be presented in detail elsewhere
[10]. These two families have been chosen because simu-
lations of their behavior are quite well documented (Ref.
[3]). The four Wolfram classes are represented in this set
of 32 rules. They are as follows: (1) evolution leading to a
homogeneous state (all zeros or ones); (2) evolution lead-
ing to a set of separated simple or periodic structures; (3)
evolution leading to chaotic patterns; and (4) evolution
leading to complex localized structures, sometimes long-
lived. Examples of these classes can be found in Ref. [3].
Classes 1 and 2 are considered to be ordered, class 3 is
chaotic, and class 4 is somewhere in between, exhibiting
complex structures that live for very long times [11].

Langton and co-workers [9] identified a global param-
eter that turns out to be a useful predictor of the com-
plexity of a CA rule. Their activity parameter A is the
fraction of nonzero outputs of the CA transition func-
tion f when all possible arguments (neighborhoods) of
f are weighted equally. The activity parameter (0
A ( 1) estimates roughly the asymptotic fraction of ac-
tive (nonzero) sites. Clearly, rules where most sites go to
zero or to one very quickly tend to homogeneous global
states (class 1), while on the other hand at intermedi-
ate values of activity there are more global states to be
explored and one would expect more disorder [12]. In
Ref. [9], several effectively continuous measures of com-
plexity [13] were monitored as A was increased. A corre-
lation between complexity and activity was found, but
it has become clear that this parameter alone cannot
predict the dynamics of a rule. For example, the iden-
tity rule, which freezes in time all initial conditions, has
A = 1i2 and yet is quite ordered. When the number
of states or neighborhood size is large enough that A is
suitably fine-grained, the order-to-chaos transition with
increasing activity sometimes happens gradually (remi-
niscent of a second-order transition, usually via class 4
rules), and other times suddenly, as in a first-order phase
transition [9]. This points to the need for additional pa-
rameters. Attempts have been made by defining general-
ized versions of thermodynamic quantities or quantities
derivable from mean-field theories [9], but no satisfactory
answers have emerged yet.

To address this need we have used a sensitivity param-
eter (p), motivated by the numerical observation that
the Wol&am classes are not only characterized by their
spatiotemporal patterns, but also by their sensitivity to
changes of the values of one or a few sites [see Ref. [7(a)]
for example]. We therefore define the sensitivity param-
eter as the &action of changes in the evolution caused by
changing the value of a site, averaged over all sites of all
neighborhoods in the rule table:

).):~, (1)
n 2=1

where n are the possible neighborhoods in the rule ta-
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FIG. 1. Phase diagram of rules for totslistic (k = 2, r =
2) cellular automata. Horizontal axis: activity parameter.
Vertical axis: sensitivity parameter. Circles: ordered rules
(Wolfram classes 1 snd 2, with class 2 rules encircled snd
labeled C2); squares: complex rules (Wolfram class 4); tri-
angles: disordered or chaotic rules (Wolfram class 3). Open
symbols correspond to rules with large A, which have been
re8ected about the A = 1/2 axis. The arrows correspond to s
first-order phase transition (A), snd to s second-order phase
transition (B). Any symbol msy correspond to more than one
rule.

ble, and m is the number of bits in the neighborhood.
The Boolean derivative for CA [14] is Bf/Bs = 1 if
f(sii, sq, ) g f(s». . . ,

—s~, . . .), this is, if the value
of f is sensitive to the value of the bit s~, and zero oth-
erwise. The minus sign is taken to mean bit complemen-
tation. This estimates the average sensitivity to changes
in a rule in the same spirit as A estimates the asymptotic
concentration of active sites, and is in some sense anal-
ogous to a spatial Lyapounov exponent. A crucial point
of this work is that average sensitivity can be estimated
a priori and used as a predictor of complexity, instead
of measured from simulations and used as a measure of
complexity as has been done in Ref. [15] for the average
difference pattern spreading rate.

A two-parameter diagram of totalistic (k = 2, r = 2)
rules is shown in Fig. 1. It is seen that (1) all class 1
rules cluster at low (A, p), (2) class 2 rules are contained
in two separate clusters, at intermediate (A, p), (3) class
4 rules occupy a high-sensitivity, medium-activity region
and (4) class 3 rules are quite prevalent and occupy much
of the parameter space. The clustering of rules by Vol-
&am class into distinct portions of rule space is satisfac-
tory, but several comments are in order. First, the line
between ordered rules and chaotic rules is sometimes as
sharp as the coarse-graining, b, A = 1/32, allows; this in-
deed suggests possible first-order dynamical phase transi-
tions as activity is increased. Second, the isolated bubble
of class 2 rules at higher activity was expected [9], and

corresponds in this case to rules in which neighborhoods
of sum 3 and 4 (and 5) produce ones at the next time
step. The resulting &oxen patterns of thick bands of ones
and zeros are typical of class 2. Third, we have folded the
diagram along the line A = 1/2, as low and high activ-
ity are dynamically equivalent; the rules for A ) 1/2 are
shown in empty rather than full symbols. Fourth, the
arrows A and B demonstrate how, for the same value
of activity, one can observe either sharper or smoother
transitions depending on the sensitivity parameters of the
rules. Fifth, as the sensitivity parameter increases with
A = 1/2 fixed, we see the expected sequence of classes
(1-2, 4, and 3). Sixth, the class 3 rule with very high ac-
tivity and low sensitivity which folds near the bottom left
corner of the diagram is atypical [16]. Seventh, the sub-
class of totalistic, quiescent rules may not be indicative
of the larger space of 2 (k = 2, r = 2) rules because of
special symmetries. Finally, the activity-sensitivity dia-
gram for the 88 independent elementary CA looks quite
similar, but it only has three convex domains for classes
1, 2, and3.

The results in this paper help us understand the space
of CA rules, which can exhibit spatiotemporal patterns
ranging &om ordered to complex to chaotic. In particu-
lar, we have proposed a new parameter, which estimates
a priori the average sensitivity of rules to small per-
turbations. The resulting diagrams in parameter space
show that the rules cluster according to their Wol&am
classes. In fact, p alone appears to be a better predic-
tor of complexity than A. There are exceptions, such
as the class 2 pocket with higher A, p, , which remind us
that such simple parameters do not capture all the sub-
tleties of rule dynamics. Exceptions probably exist even
with larger k, r, and dimension. The diagrams also illus-
trate how different types of dynamical phase transitions
can occur over the same range of the activity parame-
ter. It is encouraging that the two parameters work well

in low-dimensional, small-radius rules, where correlations
are known to be the worst; we are currently investigat-
ing the rule space of higher-dimensional CA and hope
that this work will be extended to study the relation
between the parameters presented here and those used
to describe continuous-variable complex systems such as
coupled-map lattices.

Two final remarks are in order. One is that p, may
be refined by separating the sensitivity to the central
and peripheral sites (corresponding roughly to informa-
tion generation and transmission); this is currently being
investigated. The second remark is that ordering in terms
of such simple parameters is heuristic rather than rigor-
ous: the use of the activity parameter has recently been
criticized [17]. However, careful exainination of the rules
that escape simple predictions can lead to increasingly
sharp definitions of difBcult concepts such as complexity.
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