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The crossover between the surface and bulk values of the order-parameter critical exponent (B) is in-
vestigated for the site-percolation model in a rectangular geometry (L XM, L <<M) with free boundary
conditions. Due to the reduction in the connectivity, when the space is cut by the surfaces of the sample
which cannot be penetrated by the percolating clusters, B decays exponentially from the surface value
(B, =0.40) to the bulk value (8, =5/36). This decay is interpreted in terms of multiscaling which implies
that each row of the percolating cluster (taken in the M direction) has its own scaling and consequently a

different fractal dimension.

PACS number(s): 64.60.Ak, 68.35.Rh, 64.60.Fr

I. INTRODUCTION

Percolation theory has applications in diverse areas of
physics and physical chemistry such as fluid flow through
porous media, gelation, electrical conduction in metal-
insulator samples, epidemic growth, etc. (For reviews
see, for example, [1-4].) Interest has centered on the
properties of percolating clusters at criticality, since this
is where universal behavior emerges. Within this con-
text, we have recently studied [5,6] the critical behavior
of the site-percolation model in the square lattice using
the L XM (L <<M) geometry and assuming free bound-
ary conditions at the edges of the sample. The study is
based upon finite-size scaling arguments and Monte Carlo
simulations. The L XM geometry is particularly useful
to the study of the percolative behavior of adsorbed
monolayers on regularly stepped surfaces (M =step
length, L =terrace width). The same geometry has been
used by various authors in order to investigate different
properties of the model; see, for example, [7-11] and
references therein.

Due to the constraint L <<M and the free boundary
conditions used, the preferential growth of percolating
clusters in the L direction is observed not only at critical-
ity but also rather far below the threshold, as is shown in
Fig. 1. Due to the reduction in the connectivity, when
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FIG. 1. Typical snapshot configurations for rectangular sam-
ples of size L =12, M =132 taken at different values of the oc-
cupation probability p. Sites taken by percolating clusters in the
L direction are shown in black squares, other occupied sites are
shown in black points, and empty sites are left white. (a)
p =0.50, (b) p =p,=0.5927.
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the space is cut by the surfaces of the sample which can-
not be penetrated by the percolating clusters, some
features of the critical behavior are modified. In fact,
critical behavior at surfaces and the development of
methods for calculating the associated critical exponents
are subjects of great interest not only in the field of per-
colation theory ([12—-16] and references therein) but also
in the study of thermally driven critical phenomena
([17,18] and references therein). The surface exponents
are related to each other and to the bulk exponents such
that if only one of the surface exponents is known the
others may be determined [12-18]. In particular, it is
well known that the surface (B;) and bulk (8,) critical
exponents associated with the order parameter are
different, i.e., B,=0.4 [14,15] and B,=5/36 [1-4] for
percolation in two dimensions. Therefore, the main pur-
pose of the present work is to analyze, at criticality, the
crossover behavior between B, and 3,. Exponents are
evaluated computing the pair connectedness function by
means of the Monte Carlo method. An interesting
feature of the present study is that the crossover between
Bs; and B, can be described in terms of a quite general
scaling approach called multiscaling [19]. Multiscaling
means that an infinity of exponents are obtained by con-
tinuously varying a given characteristic parameter. More
specifically, in the case studied in this work one has a
very rich cluster structure because the percolating cluster
fractal dimension crosses over continuously from
D;=1—B;/v to D,=2—p, /v, for the surface and the
bulk, respectively, where v=% is the critical exponent of
the correlation length which is the same at the surface
and in the bulk.

II. RESULTS AND DISCUSSION

The site-percolation model is studied in the square lat-
tice using the L XM (L <<M) geometry and assuming
free boundary conditions at the edges of the sample. In
order to appreciate the dramatic effect of the reduction in
the connectivity at and close to the surfaces of the sample
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it is convenient to analyze the density profile of the per-
colating clusters in the L direction defined as the proba-
bility P (i,L) of a site located in the ith row parallel to the
M direction belonging to a percolating cluster, i.e.,
M
PU,L)=(pM)""3 c(i,j), i=1,...
j=1

L, (1)

where all lengths, e.g., L, M, i, and j are measured in lat-
tice units, p.=0.592 75 is the critical occupation proba-
bility, and ¢ (i,j)=1 [c(i,j)=0] if the site {i,j} belongs
to a percolating cluster (otherwise). Note that in the lim-
it L << M the profiles are independent of M.

Figure 2 shows plots of density profiles vs (i —L /2)
obtained using lattices of different sizes. Due to the miss-
ing neighbors effect at i =1 and L the profiles are deplet-
ed close to those boundaries. This effect propagates into
the bulk, and the profiles are symmetric around i =L /2,
as is shown in Fig. 2. This fact can be understood be-
cause the correlation length &, which would become
&= oo in an infinite system at criticality, stays at the or-
der £=L in the present case due to the geometric con-
straint. Density profiles obtained for p <p, are also sym-
metric and peaked at i =L /2. Because of the symmetry,
the data corresponding to rows equidistant from i =L /2
are averaged over in the following. It should be noted
that the order-parameter profiles of the ferromagnetic Is-
ing model in the absence of magnetic field [18] (or
equivalently the coverage profiles of the lattice gas model
[20]) also exhibit a similar symmetry, but in contrast to
the density profiles shown in Fig. 2 the former profiles
smoothly flatten out close to the critical temperature.

Critical exponents of the order parameter are deter-
mined by computing the pair connectedness function
G (r,i), which is also known as the correlation function.
G (r,i) is defined as the probability that two sites of the
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FIG. 2. Plots of the density profiles P(i,L) vs i —(1/2)L for
lattices of different size (L Xm): W, 9X420; V, 12X440; @,
16 X576; and O, 25X 150. All lengths are measured in lattice
units. Lines have been drawn to guide the eyes.

ith row (i =1,...,L) at a distance r belong to the same
percolating cluster. Note that due to the geometry used
(L XM, L <<M) it is only interesting to study the pair
connectedness function calculated parallel to the M direc-
tion. At p, one has that G (r,i) behaves as [1-4]

G(ri)« r"*B(i)/v , 2)

where the dependence of the exponent 8 on the distance
to the surface has been written explicitly. Note that, as
quoted in the Introduction, v=4/3 is the critical ex-
ponent of the correlation length. The physical reason
why this exponent is the same at the surface and in the
bulk follows from the fact that only a single divergent
length, namely, £ < |p —p.| ™, has to be considered in or-
der to describe both the bulk and surface critical
behavior [12].

Figure 3 shows log-log plots of G (7,i) vs r evaluated
for i=1 and L /2. Here two different regimes charac-
teristic of G (r,i) can clearly be observed: (i) the algebraic
regime for r <L and (ii) the exponential decay for
L <r<M [21]. So, it is worth mentioning that only the
obtained straight lines within the algebraic regime of
G (r,i) allow us to evaluate reliable critical exponents. In
fact, for i =1 one gets B, /v=0.30+0.03, in good agree-
ment with Monte Carlo results 0.31 [14] and
0.299+0.005 [15], and in marginal agreement with the
(presumable) exact value B;/v=1 [16]. On the other
hand, for L/2=50 one gets B(50)/v=0.10410.005,
which means that the bulk value 3, /v=5/48=0.104 is
practically recovered.

The crossover of the critical exponent between the sur-
face and the bulk behavior becomes evident in Fig. 4(a),
which shows a plot of 8(i)/v vs i. A more detailed view
of the crossover is shown in Fig. 4(b). From Figs. 4(a)
and 4(b) it follows that (i) /v drops drastically close to
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FIG. 3. Plots of the pair connectedness function G (7,i) vs r
for i=1 (@) and i =L /2 (V), respectively. All lengths are
measured in lattice units. The lattice size is L =100, M =700
and data are averaged over 200 different samples.
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the surface and then approaches the bulk value. This
behavior suggests an exponential decay of the form

[Bli/L)—B,1/v={[B,—B,1/v} exp[—C(i —1)/L],
3)

where for i =1 (i— ) the values B(i)=p, [B(i)=PB,]
are recovered, respectively, and C is a constant. Note
that the multiscaling hypothesis has been drawn explicit-
ly by assuming B(i,L)=p(i /L) [19]. In order to test the
conjecture of Eq. (3), Fig. S5 shows plots of
[B(i,L)—B,1/v vs (i —1)/L for lattices of different size.
The obtained straight line and the excellent data collaps-
ing strongly support the validity of Eq. (3) and the multi-
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FIG. 4. Plots of the critical exponent ratio B(i)/v vs i. The
exponent values were obtained from the correlation function
calculated over the ith row (i=1,...,L) in the M direction.
All lengths are measured in lattice units. (a) The lattice size is
L =20, M =600 and data are averaged over 8X 10° different
samples. (b) The lattice size is L =100, M =600 and data are
averaged over 3 X 10? different samples.
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FIG. 5. Semilogarithmic plot of [B(i)—B,]/v vs (i —1)/L
obtained using data from different lattice sizes: L =50, M =700
(@); L=100, M =600 (V); and L =70, M =900 (w). All
lengths are measured in lattice units. Exponents are obtained
after averaging over 10°—10° different samples.

scaling behavior. From the slope of the straight line the
value C=—5.5 is obtained by a mean-square fit of
the data. Also, the intersection gives [B,—pB,]/v
=(0.20010.005, in excellent agreement with the expected
value, namely, [B, —f,]/v=0.1958.

Multiscaling behavior is expected to be a general
feature of many dynamic processes such as diffusion-
limited aggregation (DLA) [19], spinoidal decomposition,
when a system initially disordered at high temperature is
suddenly quenched below the critical point [19], damage
spreading in magnetic systems, such as the three-
dimensional ferromagnetic Ising model [22], etc. In or-
der to understand the physical picture behind multiscal-
ing behavior let us analyze the growth of a DLA. Ac-
cording to the discovery of Plischke and Racz [23] one
has to make the distinction between two regions: a
frozen region characterized by practically zero growth
probability and an active region where most of the
growth occurs. Consequently, the density profile exhibits
a different power-law decay at different distances from
the center of the aggregate, and therefore the outer (ac-
tive) regions of the DLA have lower fractal dimensions
than the inner (frozen) regions [19]. Let us now reconcile
the fact that the percolating clusters studied in the
present work are ‘‘static” aggregates while the above
physical picture holds for dynamic growth. For this pur-
pose we consider a percolating cluster at criticality and in
the L = o limit. After fixing arbitrarily a certain origin
at 0, let us cut the cluster by an edge at a distance L,
from 0. The reduction in the connectivity caused by the
cut will propagate up to O (remember that the correlation
length is infinite). So, we will measure B, at L, and a B
value close to 8, at 0. If we perform a second cut at
L, > L, we observe that some mass of the cluster already
mutilated by the first cut will now contribute to G (r) at
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0. So, we will again measure 3, at L, but a 3 value closer
than in the previous case, to 3, at 0. This process can
continue indefinitely, but even for very large L distances
one has, due to the infinite correlation length, a small but
finite probability of growth at O and consequently the
values measured at the origin will asymptotically ap-
proach B,. Therefore, the inner and outer regions of the
DLA are qualitatively similar to the region close to 0 and
that close to L in the present case, respectively.

The observed multiscaling behavior implies that each
row i of the percolating cluster (taken in the M direction)
has its own scaling and consequently different fractal di-
mension.

III. CONCLUSIONS

Evaluation of the pair connectedness function parallel
to the M direction on percolating clusters at p. allows us

to determine the dependence of the exponents ratio 5/v
on the distance to the edge of the sample. For i =1 and
L — o« the surface and bulk order-parameter exponents
B, and B, are obtained, respectively. Furthermore, evi-
dence is presented to show an exponential crossover from
B, to B, which is interpreted in terms of a multiscaling
behavior.
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