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Correspondence in quasiperiodic and chaotic maps:
Quantization via the von Neumann equation
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A generalized approach to the quantization of a large class of maps on a torus, i.e., quantization
via the von Neumann equation, is described and a number of issues related to the quantization of
model systems are discussed. The approach yields well-behaved mixed quantum states for tori for
which the corresponding Schrodinger equation has no solutions, as well as an extended spectrum
for tori where the Schrodinger equation can be solved. Quantum-classical correspondence is demon-
strated for the class of mappings considered, with the Wigner-Weyl density p(p, q, t) going to the
correct classical limit. An application to the cat map yields, in a direct manner, nonchaotic quantum
dynamics, plus the exact chaotic classical propagator in the correspondence limit.

PACS number(s): 05.45.+b, 03.65.—w

I. INTRODUCTION

Quantization of systems with classical analogs proceed
by a well known procedure. Specifically, one replaces
coordinates or momenta by operators in the Hamilto-
nian, constructs the Schrodinger equation and imposes
boundary conditions which arise directly &om the classi-
cal physics. In this paper we show for the case of maps
on a torus, model systems in nonlinear dynamics, that
modifications to this procedure are essential to allow the
quantum dynamics to unambiguously approach the cor-
rect classical limit.

Area-preserving mappings on the torus are model sys-
tems which have long been used to illustrate the essence
of regular or chaotic classical dynamics because they
are of low dimensionality and can be readily propa-
gated. These maps are essentially systems which are con-
fined to finite coordinate- and momentum-space regions
0 & q ( a, 0 & p ( b, with rules of dynamic evolu-
tion which confine the system to this region through a
dependence on q mod a, p mod b. In addition, time evo-
lution is in discrete steps. Much of the current interest
[1—6] in quantizing these mappings stems from the expec-
tation that they will prove useful in understanding the
role of classical chaos in quantum dynamics and in un-

derstanding quantum-classical correspondence. Indeed,
little is known about quantum-classical correspondence
for systems whose classical analog is chaotic [7]. While
the correspondence principle requires that quantum me-
chanics should produce the classical laws in the limit that
Planck's constant approaches zero [8], the characteristics
of the limit are such as to make this verification extremely
difficult [7].

Central to the issues of classical-quantum correspon-
dence is the specific prescription used to quantize a given
classical system. In this paper we show that an alterna-
tive extended quantization procedure allows a method of
quantizing mappings on a torus which yields solutions
having a number of desirable features which do not arise

in the traditional quantization via the Schrodinger equa-
tion.

Motivation for reconsidering the quantization proce-
dure for maps on a torus stems from an examination
of the results of previous efforts in this area. Hannay
and Berry [2] and Balazs and Voros [5] chose to di-

rectly quantize the Schrodinger propagator while Ford
and co-workers [1] quantize certain maps by introducing
a kicked-oscillator Hamiltonian ( —oo ( q, p ( oo)

The dynamics generated by this Hamiltonian stroboscop-
ically produces the classical dynamics of the map. They
then construct the propagator for this system. The re-

striction of the classical dynamics to a torus 0 & q ( a,
0 & p ( b is introduced by imposing periodic bound-

ary conditions on the wave functions in both the posi-
tion and momentum representations. The results of this
procedure have been the subject of considerable contro-
versy. Specifically, Ford and co-workers [1] showed that
although classical cat map dynamics is algorithmically
complex, the quantum cat does not show this type of
random behavior in the classical limit. Berry and co-

workers, however, argue [7] that such measures are less

useful indicators of correspondence failure than believed

by Ford and co-workers. Further, GrafIi and co-workers

[9] have recently shown that the quantum cat is mixing
in a specific limit, N m oo along the subsequence of %
prime, where h = 1IN. This is in contrast with Ford's
demonstration of quasiperiodic dynamics when taking a
somewhat different approach to the classical limit.

Clearly the traditional quantization procedure leads to
a quantum cat map whose behavior as 6 ~ 0 is, at best,
subtle. In addition, the traditional approach leads to two
other features which we regard as undesirable: (a) only

a restricted class of classical tori, those with ab = h%, %
integer, can be quantized [10]. Indeed, some mappings
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can only be quantized for N even [1,5]; and (b) the re-
sultant wave functions are highly singular, being a set of
h functions.

In this paper we show that introducing a transla-
tionally invariant Hamiltonian, quantizing the associated
von Neumann (quantum Liouville) equation Bp/Bt
[H, p]/ih for the density matrix p, and obtaining solu-
tions satisfying Bloch boundary conditions, allows quan-
tization of tori for all ab, is physically complete, leads to
smooth well behaved solutions and is measure preserv-
ing. Further, we show that the correct classical propaga-
tor and the exact classical dynamics emerge directly from
the quantum propagator in the classical limit, with the
limit taken as the complete sequence N ~ oo. Hence the
classical limit of our quantum propagator for the cat map
generates algorithmically complex dynamics, the system
is mixing, etc.

Note that our approach yields density-matrix solutions
for cases (e.g. , ab P hNj for which there are no pure
states. The fact that density-matrix solutions exist when
wave functions do not is of considerable interest and is
emphasized below.

This paper is organized as follows: Sec. II summa-
rizes aspects of the traditional quantization procedure
and treats the case of e = 0 in Eq. (1) explicitly. The ex-
tended quantization procedure is then introduced in Sec.
III where it is also applied to the case of Eq. (1) with
e = 0. Examining this case allows us to emphasize the
different spectra and solutions obtained by this approach
and to show that both eigenfunctions and eigenvalues of
the von Neumann equation directly approach the clas-
sical limit. In Sec. IV we generalize the discussion to
the case of e g 0 and use the von Neumann quantiza-
tion scheme to obtain the quantum propagator. Classi-
cal and quantum map dynamics are expressed in a form
suitable for the study of correspondence. Section V then
explores the quantum dynamics in the correspondence
limit where we show that all m.aps treated reduce to the
correct classical limit. In the application to the quantum
cat we show that its quantum dynamics is not ergodic,
but that the chaotic classical cat is nonetheless recovered
in the h ~ 0 limit. Throughout this treatment we make
extensive use of the Wigner-Weyl representation [11,12],
a (p, q)-dependent representation of quantum mechanics
whose form encourages a direct comparison with classi-
cal dynamics. In Sec. VI we address the question of why
there are no pure states for the quantum cat, showing
that the system best resembles a discretized Langevin
process. Finally, Sec. VII contains a summary and re-
marks on future work.

A. Boundary conditions

Traditional quantization procedures [1,2] define the dy-
namics on the full phase space, —oo ( p, q & oo, but im-
pose periodic boundary conditions on the wave function
in both the coordinate [@(q)] and momentum represen-
tations [g(p)], i.e. ,

4(q) = 0(q+ a) —= ~q(a)4(q)

&(p) = &(p+b) =—& (b)&(p)

(2)

where Eqs. (2) and (3) implicitly define the coordinate
and momentum translation operators

T~(a) = exp(i@a/h), T„(b) = exp( —iqb/5). (4)

As a consequence of Eqs. (2) and (3), dynamics within
each (q, p) unit cell is expected to refiect the charac-
ter of torus dynamics [i.e. , dynamics with variables (q
mod a) and (p mod b)]. From Eq. (3) it follows that
(1 —e '+~")g(q) = 0 which implies that g(q) = 0 un-
less q = nh/b where n C Z. Similarly, from Eq. (2) it
follows that (I —e' ~")Q(p) = 0 which implies g(p) = 0
unless p = mh/a where m C Z. Imposing both con-
ditions simultaneously gives (I —e' ~")g(q) = 0 and
(1 —e ' ~")g(p) = 0 so that we must have ab = hN
where N E Z. Fixing N one then obtains the class of
allowed wave functions

with gi+~ = Qi. This condition implies that

von Neumann equation (or quantum Liouville equation)
for mixed-state dynamics and, customarily, the choice of
boundary condition is dictated by features of the phys-
ical system. Quantum mappings on the torus have no
known physical realization, and so some freedom would
appear to exist for the choice of boundary conditions.
Below we discuss the limitations of quantization via the
Schrodinger equation, both for (previously adopted) peri-
odic boundary conditions as well as for Bloch boundary
conditions. We later show that a physically complete
theory of quantum mappings on a torus does result &om
a von Neumann based quantization procedure in con-
cert with Bloch type boundary conditions. Of general
interest is the difFerent way in which the boundary con-
ditions, implemented in these two procedures and both
apparently consistent with the classical map, aH'ect the
quantum picture.

II. TRADITIONAL QUANTIZATION

Constructing the appropriate quantum generalization
of a given classical system requires a correspondence rule
for replacing classical observables by quantum operators,
a choice of a dynamical state equation and a statement
of the associated boundary conditions. The appropriate
dynamical state equations are normally assumed to be
the Schrodinger equation for pure-state dynamics and the

where the n~ coeKcients are arbitrary. In the momentum
representation these states take the form

g(p) = V b ) ) @g,b(p —(j + k/N)b),
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where QI, = ~Nnl, .Thus, in general (independent of
the Hamiltonian 0) periodic boundary conditions in p, q
lead to a discrete spectrum with non-normalizable wave
functions, comprised of sets of b functions. The tradi-
tional interpretation of ~g~ as a probability is inapplica-
ble. Note that it is impossible to quantize any mapping
on a torus by this route unless ab = hN, a consequence of
the Fourier transform relationship between p and q and of
the requirement to simultaneously fit waves in both the q
and p directions. With ab g hN neither the Hamiltonian,
nor any other operator, has eigenvalues. The quantiza-
tion procedure is thus incomplete insofar as only a small
number of classical tori can be quantized [10]. Finally,
note that these conclusions are independent of the system
and so apply to any mapping confined to a torus.

The Wigner-Weyl picture [11,12] provides a (p, q)-
dependent quantum representation in the density-matrix
formulation which allows a direct comparison with clas-
sical mechanics in phase space. One can readily demon-
strate that in this picture the dynamics lies on points
in phase space which are rational multiples of a and b.
Ford and co-workers show [1] that this behavior survives
in the classical limit and is responsible for nonalgorith-
mically complex dynamics for the classical limit of the
quantum cat. It is obviously also the case for any map
quantized by this procedure.

The situation is similar if Bloch type boundary condi-
tions are adopted. That is, Bloch boundary conditions
on the wave function

&( + ) = '"""&()

with constant qo, po again yield states

Q(q) = ~a ) g~h(q —qo —j a/N)

only when ab = h, ¹ Here

N
ipoaj /Nh& 2mij l/N—e Z 0!le 'J

l=v

where the o.l coeKcients are arbitrary. In the momentum
representation

tonian eigenfunctions [13(a)]

&l(p) = V'b/N ) ~(p —0+»/N)b)

and associated discrete spectrum E~ = (tb/N) /2»J, , l =
1, ..., ¹ We also consider, for comparison with results
below, the solution from the perspective of the von Neu-

mann (or quantum Liouville) equation:

c»p/Bt = -i[II, j]/»i = iLqp. - (12)

Both may be obtained directly &om the Hamilto-
nian solutions and the latter conveniently expressed in
the Wigner-Weyl representation. Specifically (k, t

1, ... , N):

AA, i
——(EI, —Et)/»i = (k —t )b /(2pN ) (14)

and pA, ~

——~gg)(Q~~ so that the Wigner-Weyl representa-
tion of p~ ~, denoted pg ~(p, q), is given by [11,12]

P~iI~~)=t 'f ~~'Iv —a'I2lla)

x(@iraq+ q'/2)e' ' "

=6 dp' p+p' 2

x (vj (
~p —p'/2) e'~~ ~".

Using Eq. (11) we have

pg ((p, q) = 2a ' )
n, m, =—oo

( ( k+»l l
x6/ 2p —

/

n+m+
)

b /.
E I, N))

e2vri(n —rn)qN/a 2mi(A: —l)q/ae

A simple change in the integers of summation in this
expression for ps ~(p, q) and use of the identity [14]

Here p is the density operator and Eq. (12) defines the
quantum Liouville operator Lq. The eigenvalues Al, l and
eigenfunctions PI, l of the Lq satisfy

1
IqP~, ~

= [II,Pa—,i] = &I,isa, i

4(p) = +be '""~" ) ) Na~(» —»o —(j +k/N)b)
j=—oo k=1

(10)

where vtrI, = ~Na~. Bloch boundary conditions will,
however, prove useful in the extended quantization
scheme discussed below.

B. The case of e = 0

gives

( ) (2N)
—i 2~~(&—&iq/~

x ) (—1) "6(q —ma/2N)
n, rn= —~

k+&1
xg( p —

I
n+ Ib/21.

E

Consider now, for illustration purposes, the case of
e = 0. Here Eq. (1) gives N = ab/h independent Hamil-

Thus the eigenfunctions of Lq in this representation are
b functions localized on a discrete number of points of
the torus which are rational multiples of a and b, i.e., a
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b function "brush" in phase space. Note that Eq. (17) is
repeatedly used throughout this paper although it is not
always cited.

The results in this subsection are used later below for
comparison with the extended quantization results.

III. EXTENDED QUANTIZATION

An examination of a different approach to map quan-
tization procedure is hence well motivated. The ex-
tended quantization procedure which we advocate entails
three new features: (a) the introduction of "mod oper-
ators" which produce a properly symmetrized Hamilto-
nian, (b) solving the von Neumann [Eq. (12)], rather
than Schrodinger, equation and (c) use of Bloch bound-
ary conditions on the density matrix. The latter is mo-
tivated immediately below. [Throughout this paper, as
above, we denote quantum density operators by jand the
Wigner-Weyl representation by p(p, q). In addition, ana-
log quantities in classical mechanics, such as the phase-
space density, will carry a "c" superscript. ]

A. Boundary conditions

Consider then the von Neumann equation with either
of the two choices of boundary condition, i.e., periodic
and Bloch type. From the perspective of the density ma-
trix, periodic boundary conditions on the wave function
imply Tp = p, pT = p for T = T~(a) and T = T~(b). In
the Wigner-Weyl representation [11]

qb»q) = t ' f &q')q —q'lqli lq+q'lq)e've '" (»)

these conditions take the form

e'~ "p(p, q 6 a/2) = e '" ~"p(p, q 6 a/2) = p(p, q),

e'~ ~"p(p 6 b/2, q) = e ' ) "p(p + b/2, q) = p(p, q).

The following requirements on the density result &om
Eq. (20): (a) (1 —e' ~ ~")p(p, q) = 0 which implies q =
ht/2b where I C Z, (b) (1 —e' i' )")p(p, q) = 0 which im-
plies p = hk/2a where k 6 Z, and (c) (1—e' s~")p(p, q) =
0 which implies that ab = hN where N 6 Z. The result-
ing states are mixtures of the b-type wave functions of
Eq. (5) localized on the rational points of the torus and
they exist only when ab = hN. Hence this combination
of dynamic law and boundary condition regenerate the
same difhculty as that associated with the Schrodinger
approach and is, once again, independent of the system.
This is the case since Eq (20) is an. exact statement of the
requirement of periodicity on the wave function, trans-
ferred to the density matrix. It results in precisely the
same restriction as it did in its application in the wave
function picture [15].

A similar situation does not, however, arise with the
application of Bloch boundary conditions to the density
matrix p. Specifically, here Eq. (8) implies that

B. Mod operators

We consider solutions to the von Neumann equation
with Bloch type boundary conditions. To do so we first
introduce the operators (pmod b) and (qmod a). These
are obtained as a direct extension of the classical Fourier
expansions for (q mod a) and (p mod b), i.e., as extensions
of

1
(qmod a)/a = Qmod 1 = —+ ) fp,2 27rm

1
(pmod b)/b = Pmod 1 = —+ ) f„,p,

2 27m
m+0

(22)

where f„(P,Q) = exp[2vri(nP + mQ)] and where we
have introduced the convenient dimensionless variables
Q = q/a, P = p/b. Specifically, the quantum operators,
analogs of Eq. (22), are

OO

(pmod b)/b = Pmod 1 = —+ ) f„,p,
2 27m "' '

n+0

with eigenvalues Pmod 1 and conjugate variable [17(a)]

OO

(qmod a)/a = Qmod 1 = —+ ) fp, (24)
2 2~m )™

with eigenvalues Qmod 1. Here the unitary operators
f„are obtained by Weyl quantizing [ll] f„(P,Q) =
exp[2n. i(nP + mQ)], i.e.,

j =h f d fdqqe "q" + q~ f dve'~&")q+v/2)

x (q —v/2I

dq e ' ~lq —nba/2)(q + naa/2I

dp e '
Ip + mob/2) (p —mob/2I, (25)

(q+ al pal lq+ a) = (q'+ alii)H'&Iq+ a)
= (q'I@')(&slq)
= (q'I pi'lq) (»)

with a similar result in the momentuxn-space picture.
Thus the phase exp(ippa/h) associated with the wave
function drops out, resulting in a quite diferent bound-
ary condition in the density-matrix picture than in
the wave function picture. Specifically, the conditions
T pT = p imply Bloch boundary conditions on the wave
function g if p = lg)()Ibl, but densities p can exist which
satisfy T ipT = p and which do not take the form of a
weighted sum over pure states satisfying Bloch boundary
conditions on the wave function. These boundary condi-
tions will prove extremely useful in conjunction with the
introduction of mod operators, as described below.
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where a = b,/ab is a dimensionless form of Planck's con-
stant. Although Eq. (25) provides forms most useful for
computations, applying the coordinate translation oper-
ator inside the integral allows us to rewrite Eq. (25) in a
far more attractive form:

We utilize this approach below to examine the case of
~ = 0. Speci6cally, we solve the von Neumann equation
[Eq. (12)] using the Hamiltonian of Eq. (27) coupled
with the Bloch boundary conditions which require Eq.
(31). The general case e g 0 is considered in Sec. III.

f„=exp(2+i(nP + mQ)), (26)
C. The case of e = 0

where (Q, P) = (q/a, p/b) are the scaled coordinate and
momentum operators. The f„operators [16], whose
properties are discussed in Appendix A, will allow us to
write the quantum operator analog of the Fourier trans-
forrns necessary to treat periodic systems on tori.

The introduction of these operators allows us to revise
the Hamiltonian in Eq. (1) to read

H = (pmod b) /2p, + e(qmod a) /2 ) b(s —t/T)

(27)

H = (pmod b) /2p = b (Pmod 1) /2p (32)

and the associated von Neumann equation

g2
Lqp = [(Pmod 1),p] =iBp/Ot.

2ph

Eigenfunctions of the Liouville operator satisfy

Consider the extended quantization procedure applied
to the case of e = 0. The relevant Hamiltonian is then

[»(b)1

This new Hamiltonian satisfies [H, Tp(b)] = [H, T~(a)] =
0, i.e., H refiects the desired cell-like character of the
full phase space. This character is also demanded of the
eigenfunctions p; ~ of the von Neumann equation, i.e. , by
requiring the generalized Bloch boundary conditions on

p~

p = T„'(b)pTp(b),

Lqp = Ap. (34)

OO

p„[(Pmod 1)2,f„]
2ph

Inserting Eqs. (31) and (33) into Eq. (34) we obtain

p = T (a)pT (a).
(26) ) p„ f„(35).

n, m= —oo

These conditions have the form, in the Wigner-Weyl rep-
resentation, of

Using Eq. (23) it can be readily shown that, for arbitrary
Po (i.e. , arbitrary po/b),

p(», q+a) = p(», q),

p(»+b, q) = p(»»q)
(29) ) e ' '" '[(Pmod 1)',f„]

Hence these conditions correspond precisely to the
boundary conditions one would impose on a classical
phase-space density if the density (rather than the wave
function) were periodic in p, q.

States satisfying Eqs. (29) must, by Fourier's theorem,
be of the form

—2ninPO
"

(36)

= ([(Po + mu/2)mod 1] —[(Po —mn/2)mod 1] j

1
p(»»q) = —

b ). p-;f.,ab
n, m= —oo

Hence we can choose pn~ = b~&e ~'n '. The eigen-

functions and eigenvalues of Iq with Bloch boundary
conditions are then given by

) p„exp(2vri(nP + mQ) )ab
n, rn= —oo

(30)
pj,p. =(ab) ' ) 2wi[n(p po)ls+j q/—~j (37)

in the Wigner-Weyl representation and so distributions
satisfying Bloch boundary conditions are expected to sat-
isfy the analogous quantum Fourier expansion:

or, alternatively, using the momentum representation

[Eq. (25)] of f„and Eq. (17)

1,b ): p.—, f.,

n, m= —oo

) p„exp(2~i(nP + mQ) ). (31)

p, ,p. ——a ' ) ~po+nb+ ajar/a)(po+nb —~j~/a~

(36)

with eigenvalues
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- 2
&p, ja~

A~,p, = &
—+ mod1

2ph ( b ab )

We assume a solution of the form p, = 0 e and(c) —in8

substitute this expression into Eq. (44). We obtain

&p,
xIlod 1 )

I b ub)
(39)

mb . e-i"8-
p (c) g —its ~ II i roe —)

%+0

p,.„,(p, q) = a 'e' "'/ ) 6(p —p —nb). (40)

where j is an integer, 0 & pp ( b, and the arguments of
the bras and kets in Eq. (38) correspond to eigenvalues
of p. The Wigner-Weyl representation p~ „,(p, q) of these
solutions makes evident their character:

or

(,) gamb 2mb .sin(k8 )
pa k

(45)

(46)

Bp(')/Bt = (H, p
' ) = iL,p

' . — (41)

Here (, ) denotes the Poisson bracket, p(') is the classical
phase-space density, and this equation defines the classi-
cal Liouville operator I,. Eigenfunctions and eigenvalues
of L, are given by the solutions to the classical Liouville
eigenvalue problem

L,p
' = —i(pmod b/p)Bp

'
/Bq = A

'
p

' . (42)

Stationary states (A~ „, = 0) are of two types, arising
&om either j = 0 or pp

——0. The stationary states with

j = 0 are uniform in q and belong to the point spectrum,
whereas the p, q integral over the stationary states with

j P 0 and pp
——0 are zero, characteristic of elements of

the continuous spectrum. The overall spectrum of I.q is
continuous, due to the continuous pp label.

Several aspects of these solutions are worth emphasiz-
ing. First, Eqs. (38) and (39) provide solutions for all
values of a and b. Second, the eigenfunctions in Eq. (38)
are, in general, mixed states, since wave functions exist
only for ab = hN whereas Eq. (38) applies to all ab. If
the condition ab = hN is satisfied then it is possible to
recombine some of the degenerate Liouville eigenstates to
produce pure states. Even then, however, the pure states
are only a small &action of all of the possible solutions.

To permit a comparison of Eqs. (16), (38), and (39)
to the classical limit, consider solutions to the classical
Liouville equation for motion on a torus with the appro-
priate classical boundary conditions [which are the same
as Eq. (29)]. That is, we consider the classical dynamics
via the Liouville equation [12]:

Using the identity [19]

Slii(k8)
k

(47)

we have

paA( )
8

mb
(48)

Defining 8 /2x = pp/b, pp g [O, b), and choosing 0
b ~ so that p{; = 6 ~e '"&'/s gives resultant classi-
cal eigensolutions

(c) ( ) ( g)
—1 2mi jq/t'a g 2m in(p —p0)/b

gP0% & j

= a e "~/ ) b(p —pp —nb), (49)

with associated eigenvalues

= 2mjpp/pa(c) (50)

with 0 & pp & b. Here the second identity results from
an application of Eq. (17).

A comparison of the classical [Eqs. (49) and (50)] and
quantum [Eqs. (37) and (39)] results shows that the
quantum and classical eigenfunctions are identical and
the quantum eigenvalues go to the proper classical limit
as h m 0. This is not the case with the results of the
traditional quantization procedure, as discussed by Ford
and co-workers [1].

Solutions to Eq. (42) are expected to satisfy Eq. (29).
Hence p{') must take the form of Eq. (30) and so (with

classical Fourier coefficients being denoted p„' )

(C)

~(&) 7I mb (&) .mb ) w PQ

pa ' pa, k —n
(44)

{c) +(Pmod b)m p(c) 2' {np/s+mq/a) 0pn~ e
a

nqT7L= —CX3 P

(43)

Using Eq. (23) and taking matrix elements in the Fourier
basis

D. Remarks on extended quantisation

The procedure above involves two modifications to the
standard quantization approach: (a) the introduction of
modular variables and operators into both the classical
and quantum problem, and (b) the use of the von Neu-
mann equation in quant»m mechanics. The need for the
latter stems Rom the fact that the solutions which we
find are, in fact, not pure states and are not comprised
of averages over pure states. That is, we find that solu-
tions to the von Neumann equation exist where Hamilto-
nian eigenfunctions do not. The need for modular vari-
ables and operators is also worth emphasizing. Specif-
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ically, note that the solutions Eq. (38) and Eq. (40)
are not eigenfunctions of their respective quantum and
classical Liouville operators if these operators are writ-
ten in terms of nonmodular p, q variables. Indeed eigen-
functions of the Liouville operators with Cartesian p, q
variables and periodic boundary conditions do not ex-
ist for mappings on the torus. This is easily seen as
follows. Consider the Liouville problem in p, q. Since
the Hamiltonian in Eq. (1) with e = 0 is quadratic it
gives rise to a quantum Liouville operator which, in the
Wigner-Weyl representation, is identical to the classical
Liouville operator . Thus, to obtain both the quantum
and classical Liouville eigenfunctions for e = 0 we would
need only consider the classical Liouville eigenequation
L,p(') = A'p( ) where L, = i(p/p)B/—Bq. Taking ma-
trix elements in the Fourier basis would again yield Eq.
(44) which as we have seen has the solutions given by
Eq. (40). But consideration of these solutions shows that
they are eigensolutions of I,, = —i(pmod b/y)B/O, q, and
not of I, = —i(p/p)c)/c)q. Thus the procedure, starting
with Cartesian p, q variables, generates an inconsistency
whose origin is readily apparent. That is, although the
Hamiltonian is of the form given by Eq. (1), the Hilbert
space chosen to solve the problem is that spanned by
the Fourier basis functions. But the Hamiltonian in Eq.
(1) and its associated Liouville operator cannot be de-
composed on this Fourier basis, i.e., they do not satisfy
the translational invariances of the Fourier basis. Hence
mathematical inconsistency and an incorrect form for the
quantum propagator result.

The advantages of the von Neumann approach over the
conventional Hamiltonian quantization are now evident.
Equations (38) and (39) provide a solution for any value
of ab, are integrable over any of the periodic unit cells,
and are well behaved. Further, in the classical limit (h ~
0), A~ „, -+ A

'
[compare Eqs. (39) and (50)] so that the

classical limit is properly reached by both eigenfunctions
and eigenvalues.

IV. CLASSICAL AND QUANTUM MAPPING
DYNAMICS (e g 0)

sical propagator

A. (T) = TexpI —i
(M+i~T

(52)

where L, (t) is the classical Liouville operator associated
with Eq. (51) and where the integral is over a time in-
terval beginning just after the Mth kick to just after the
(M + 1)st kick. Then the dynamics is given by

zilod 1

where

/

mod 1
& P-+i ) ( P- )

(I &
')('q l

p [
inod+'q)( ") (54)

«.)(p q 0) = — )
n, m= —oo

p(~) (())f (55)

p()(P, Q, MT)= — ) p(') (MT)f„
n, m= —oo

= A, (T) p(')(P, Q, O). (56)

A straightforward analysis of the effect of A, (T) on
p(')(P, Q, O) gives

These linear mappings P are such that I = (Q2+rl(QP—
ilP2 is a constant of the motion when ~2 + g(~ & 2.
However, when ~2 + il(~ ) 2, I is a hyperbola which
is wrapped densely around the torus by the "mod 1"
operation and so effectively destroyed. We examine the
quantum dynamics of the map in both these regimes and
obtain results for all il, (, including the Arnold cat map

[18] (g = ( = 1), and systems like the quasiperiodic dis-
cretized particle in a box [20] (( = 0).

To obtain the time evolution of the phase-space density
which at time zero is p( )(P, Q, O), we Fourier expand in

f„At time .zero, and later time MT, we have

Here we focus on the more general case of e g 0, obtain
the propagator, and show that it readily yields the correct
classical limit.

A~(T)p (P& q~ 0): ) pyp ( ) f~ (57)

A. Classical mechanics

Consider then the Hamiltonian [Eq. (1)] in reduced
modular variables (q = Tb/pa C Z and ( = eTa/b E-
Z):

where (b'(nm) is the transpose of the matrix in Eq.
(54) multiplying the column vector with elements n, m.
Clearly, evolution of the map, from this perspective, cor-
responds to the interchange of coefficients in the Fourier
basis f„We define. the classical propagator G, of
the Fourier coeKcients, for particular reference with the
quantum result obtained later below, as

H(P, Q, t) = rl(Pmod 1)2T

p(') (T) = ) G (n, m;k, l)p„', (0).
A:,l= —ao

(58)

—((Qmod 1)' ) B(s —t/T)). (51)

The classical dynamics of the map is defined by the clas-

Comparison of Eq. (56) for M = 1 and Eq. (57) reveals
that

G~(n, m; A,', l) = 8(i, ~) y~(~~) ~ (59)

Generalization to the step from time MT to time
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(M + 1)T gives

p&'& ((M+1)T) = ) G, (n, m;k, l)pI;&(MT) (60)
p„((M + ].)T) = ) G(n, m; k, l)pa, i(MT) (65)

k, l=—oo

so that

p& &(P, Q, (M+1)T)

= —) ) G, (n, m; k, l)ps''I(MT) f„
abnm A, l

Doing so will allow an analysis of the quantum dynam-
ics in the Fourier basis as well as a direct comparison
with the classical result. Indeed this comparison with
the classical limit benefits considerably &om use of the
Wigner-Weyl representation. In this representation Eq.
(64) assumes the form

(61)

Equation (61) provides a general expression for the time
evolution of the classical phase-space density in terms
of the classical propagator G, matrix elements as coeffi-
cients in a Fourier expansion.

p(P, Q, MT) = — ) p„, (MT) f„

so that, given Eq. (65),

p(P, Q, (M+ 1)T)

(66)

B. Quantum mechanics ) ) G(n, m; k, l) ps, i (MT) f„, (67).
n, ,~ .7e, l

Consider now the quantum dynamics with the Hamil-
tonian, the analog of Eq. (51) with the appropriate in-
troduction of mod operators,

H(t) = & g(Pmod 1)2T

lim pr, i(MT) = ps i(MT)(~) (68)

and

A comparison of Eq. (67) with Eq. (61) shows that
classical-quantum correspondence requires [21]

—((qmod 1) ) b(s —s/T) I.
8=—OO

(62)
lim G(n, m;k, l) = G, (n, m;k, l).
a-+0 (69)

The associated time evolution operator is

U(T) y —i f&M+')r dt's(tl/ti (63)

where the integration is performed from just after the
Mth kick to just after the (M + 1)st kick. The resultant

U(T) is M independent.
The goal of our calculation below is to obtain the quan-

tum analog of G, . To do so is complicated in execution
but simple in its essence. Specifically, we introduce the
Fourier operator basis [Eq. (26)] for the quantum distri-
bution p at time MT as

p(MT) = — ) p„, (MT)f„ (64)

and endeavor to express the time evolution of the Fourier
coefficients p„as the quantum analog of Eq. (60), i.e.,
as

quantum propagator

The time evolved density operator satisfies

p((M + 1)T) = U (T)p(MT) U (T). (70)

We transform to the Wigner-Weyl representation and fo-
cus on the initial step &om time 0 to T; the same algebra
pertains to the general step from time MT to (M+ 1)T.
Equation (70) in the Wigner-Weyl representation is

Equation (68) holds if Eq. (69) holds and if ps, i(0) =
p&'&(0). However, the latter equality is assured, as seen

by comparing Eq. (66) with Eq. (55), at time zero. Thus
to prove the correspondence limit for the fundamental
dynamical entity p(P, Q, MT) requires that we show Eq.
(69). This is done in Sec'. V after we obtain a general
expression for the quantum G(n, m; k, l). Readers unin-
terested in the details of this derivation should proceed
to Eq. (95).

p(P*Q T) =,—5 ) .1
P dec' ~ q —V 2XU0T U0t TKfq+e 2 (71)

where

K = exp(iz((Qmod 1) /o. ),

Ue(T) = exp{—imrI(Pmod 1) /n),

(72)
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A A

so that U(T) = KUo. [ Here again we employ a convention where capital letters denote scaled variables, i.e. , P = p/b,
Q = q/a, V = v/a and below X = z/a. ] The matrix element in Eq. (71) can be written as

(q —v/2~KUo(T) f„Uo (T)Kt ~q + v/2)

dq' e * Q
(q —v/2~KUo(T)]q' —naa/2)(q'+ nna/2~Uo(T)Kt~q+ v/2), (73)

A A

which involves matrix elements over KUo(T). These matrix elements may be rewritten as (see Appendix B)

(z~KUo(T) ~z') = exp(iver((Xmod 1) /a) ) gk(r))b(z —z' —kna), (74)

where

gk(Z) = —an'sv //a. 27rxkv
(75)

Inserting Eq. (74) into Eq. (73) gives

(q v/2(KU (T)f Ut(T)Kt(q + v/2) — ) gk(r))g (r))e' ([(Q—v/2)mod i]'/ e
— ([(Q+&/ ) 2od i]'/

k, L=—oo

x™e«-(k+) /')b(v —(n+ l —k)~a). (76)

Inserting Eq. (76) into Eq. (71) gives, after some algebra,

p(P, Q, T) = — )1

n, m= —oo
(0) 27ri(nP+mQ) (p Q) (77)

with

x n nx 4 x x e r i 2ni(l —k)P —isa(k+1)m in'$[(Q —a(n —k+l)/2)mod i] /a in([(Q+a(—n k+l)/2)mod —i] /a (78)e e

Equations (77) and (78) provide an expression for prop-
agation of the quantum map in phase space. However,
extensive algebraic manipulation is necessary to extract
the propagator in the Fourier basis. We begin by noting
that we can write

Weyl representation. Since

p(P, Q, T) = —) p„(T)e' ' " +
a

n jm

(s2)

b a

p, = dpo dqo p(Po, Qo, O)e '(" '+ Q' (79)
0 0

so that Eq. (77) can be written in the form

the Fourier coefBcients of the propagated Wigner func-
tions are

b a

pn, m(T) = duo dqo p(Po Qo T)e ' *'" '+
0 0

p(» Q T) = duo dqo p(Po, Qo, o)
0 0

x r(P, Q, T; Po, Qo, 0),

where

K(P, Q, T; Po Qo, 0)

(so)

(s3)

Given Eqs. (80)—(82), the goal is to rewrite the propa-
gation of p„(0) in terms of Eq. (65), so as to extract
G(n, m; k, l), i.e., in the first iteration we want

1b—
n, m= —~

2ni[n(P Pp)+m(Q —Qp)] —
(p Q) (81)

7

p„(T) = ) G(n, m; k, l) pk l(0).
k, L=—oo

(s4)

is the kernel of the Liouville propagator in the Wigner-
We begin by noting that Eq. (81) can be manipulated,
in accord with Appendix C, into the form
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(
2m'i[nP+mQ] g ( q 4 /

)
—2xi[(a+k —l)Pp+mQp] —isa(k+l)m

ab
~~fQ= —OO Ic)L=—aa

xe.ge((tqo —a(n, —k —L)/2jmod 1) /a —i~(([QO+~(~+&+l)/2Imo& 1) /o.e

and so Eq. (80) can be written as

6 0
mi [n, +rnQ] g d (P q 0)

0 0

Comparing Eq. (86) to Eq. (82) we identify

I
p(P, Q T) = — )

)e
—2+i [(n+k —i)Pp +m Qo ] —isa (k+ f)rn

k,L=—ce

io'ti[Qo —a(a —k —l)/2]mod 11 /a im t([—Qo+a(n +0+ )i/2]m od 1) /a (86)

5 a OO

p (T) — dpe Qq p(P Q 0) Q ~„(+)g(rl)e
zni[—(a+ l p—+mQp] is'a—(k+l)m

im(([QO —a(n —A, —J)/2Imod j.) /a —ix(([@0+a(m+k+/)(2jmod j.j /a

Using the identity (see Appendix B for a proof)

—imz(zmod l) /a & ( ) —2mix j
III&&zj e 7 (88)

one obtains

(89)

This can immediately be generalized to the iterative form giving p„((M + 1)T) in terms of p„at time MT
However, although this equation correctly describes the manner in which the Fourier coefficieats Of a Wigner distri-
bution are mapped under the quant~~~ Liouville propagator it is too complicated to be of use. Let I]..' = n+ A: —j a,z.d
i = m + i —j. Under this change in the integers of s»limation Eq. (89) becomes

p, (T) =
i', j,k', f=—ao

u*-+-- (Oa,'-(()a +- (~)a (~)p .'(o)e * (90)

But the sums over j and I may be done explicitly. To begin with

OO l
(e)g —&'()i — ) f gpJg/''f f —&1/ — I "f 2('+J— )' —2 "()d

g= —OO J= OQ
0 0

(91)

and use of identity (17) yields

&OO j. 1) g*. (()g;+- (()e "' " = dv dv'e' f" e ' ~ / e ~' ' m S(v' —(v+ nn)mod l.)
OQ 0 0

j. —ix(I(v+am)mod 1I /a im(v /a 2+i(i' —m, )(v+o.n, )

0

Similar calculations give

OO l
ejgq (gq —2+i(cxra) j g ( —im([(v'+ai')mod lj /a im(v' /a 2+i(k' —&)(v +~i )pe e e

t= —ao 0

(92)

(94)

Insertion of these results into Eq. (90), setting k' = k and i' = l, and simplifying, gives the desired result, i.e. , Eq.
(84) with
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1 1

G( . k lh isa(kl —rrm) d d r —i rr([(v+arr)mod 1] /a irr(v /a 2rri(l m—)v —irrq[(v'+al)mod 1] /aj v ve e e e
0 0

i7rgv' /a 27ri(A: —n)v'e (95)

as the propagator of the Fourier coefficients [22]. This can be immediately generalized to give Eq. (65) with the same
propagator G. The crucial difference between the classical G, [Eqs.(58),(59)] and the quantum propagator G is clear
insofar as the quantum propagator mixes contributions from all I(', l components to produce each n, m whereas G,
does not.

Note that propagator (95) moves distributions forward in time. To obtain its inverse, i.e., the propagator which
moves distributions backward in time, simply take the complex conjugate of Eq. (95) and interchange n with k, and
m with l (see Appendix D for a proof).

As a simple check on the validity of the quantization procedure we redo the "free particle" case, i.e. , ( = 0. In this
case G is given by

1

G( .y lq g irram(k n) —
d ixq[—(v+am)mod 1] /a irrv /a 2rri(ir n)v—

0
(96)

and the eigenequation is

) G(n, m;k, l)pgi = e '" p„
A:, l=—oo

(97)

Consider a solution of the form pg ( = O(e '"s'. Substitution and use of Eq. (17) yields

—i7ramn —i7rq[(v+am)mod 1] /a i7rv /a —27rinv

0

(g

( 27l
—nm/2 mod1 =e '" e

)
(98)

and this implies that

&0
+ nm/2 i mod 1

aT ( 27l

]'g —am/2 mod 1
27l'

- 2

(gg)

V. CORRESPONDENCE

Choosing 2„——~& where po C [0, b) gives the same solu-
tions [Eqs. (38) and (39)] which we obtained previously.

this result holds for all maps of the form given by Eq.
(54), including the classical chaotic cat map.

Having demonstrated that these quantum maps give
the correct classical limit it is necessary to obtain its
dynamical characteristics in the case of h g 0. It is
straightforward to demonstrate that, independent of the
value of g, (, the quantum propagator has at least two

eigenfunctions with unit eigenvalue and hence that the
quantum dynamics is nonergodic. Two such eigenfunc-
tions are the uniform distribution and the Schrodinger
propagator. To see this consider the uniform distribu-
tion 1~ ((0) = bI, oh& o under propagation. Using Eq. (95)
we have

Given Eq. (95) it is straightforward to examine the
dynamics in the classical limit (n ~ 0). We do so at fixed
finite time so that, with respect to the issue of ergodic
properties, we are taking the correct order of limits, h m
0 prior to any long time limit [7].

For each set of values (v, v', n, l) there exists a suffi-

ciently small n such that (v + an)mod 1 = v + nn and
(v'+ nl)mod 1 = v' + nl. Thus in the a m 0 limit

1 1

G(n, m; k, l) m dv dv'e

Xe2~i(I —n —&l)v'

—~l,m+(n ~Ic,n+gl = ~l,m+(n ~ic,n+gm+q(n
= &(i,g),y („m), (100)

which is the correct classical limit, Eq. (59). Note that

(T) = G(n, m;0, 0)
1 1

—2%tmna

0 0
2 ~ ~ I

Xei 7r(v /a —2mimv —27rinve e
1

=b„0 dv e ' =b„0b P.
0

( —i~(t(v+an)mod 1] /adpe

(101)

Thus the uniform distribution is an eigenfunction with

unit eigenvalue. [This result also implies that the dy-

namics is measure (i.e., area) preserving. ]
Second, note that the Schrodinger propagator is

an eigenfunction of the Liouville propagator since

Ut(U) U = U ~ (U) U = U. It remains to demonstrate

that the Wigner function associated with U is I on a
unit cell. To see this note the form of U in the Wigner-

Weyl representation:
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p(w) (p Q) ) ( )
a (()

i—rrnrarra 2rri(raP+rraQ)

n, rn= —oo

(lo2)

Then

dP d U~ ~P, = dP d
n, rn, Ie,l=—oo

( ) g ) ( ) (g)
rri [(ra —k)P+ (rra —I)Qj —irr (rarra —Iai) n (103)

= ): l»(~)l' ). Igi(()l'
k= —oo l=—oo

2=1 =1

(104)

(105)

since

). go+i, (z)gi', (z) = 6i
k= —oo

(106)

The latter identity is proven in Appendix B.
Thus U~ ~ is an L eigenfunction of the mapping with

eigenvalue 1, as is the uniform distribution and so [18] the
mappings are not ergodic. Note, furthermore, the a ~ 0
limit of U~ ~ displays an essential singularity. Hence this
eigenfunction does not exist classically, a result which is
essential to achieve the proper ergodic classical limit for
classically ergodic cases like the cat map.

The extended quantization procedure therefore pro-
vides a straightforward treatment of the cat map, a sys-
tem which has been the subject of considerable contro-
versy.

VI. WHY NO HAMILTONIAN
EIGENF UNCTION S?

In addition to the explicit results on maps, this work
has also introduced a quantization procedure leading
to results which difFer significantly from the traditional
Schrodinger equation approach. This difFerence arises
primarily &om the fact that periodic boundary condi-
tions applied to the density matrix [T ipT = p for
T = Tq(a) and T = Tz(b)] allow for solutions when sim-
ilar boundary conditions, applied to the wave function,
preclude the possibility of a solution. Formally this is so
because periodic boundary conditions on the wave func-
tions (corresponding to the condition Tp = p, pT = p,
on the density matrix) are a far more restrictive require-
ment than the condition T ipT = p. Nonetheless it is
of interest to examine the character of the mapping dy-
namics and to expose the physics underlying the lack of
wave functions.

Consider the Arnold cat map [18] as a specific example.
Written explicitly, the cat map [g = ( = 1 in Eq. (54)]
reads

Q„+imod 1 —Q„mod 1 = P„mod 1+V(Q„mod 1,P„mod 1),

P„+imod 1 —P„mod 1 = P„mod 1+Q„mod 1+F(Q„mod 1, P„mod 1),

(107)

(108)

where

V(Qmod 1,Pmod 1) = —ly~, ~~, (Qmod 1, Pmod 1), (log)

I'(Qmod 1,Pmod 1) = —ly~, ~~, (Qmod 1,Pmod 1) —2y~, (Qmod 1, Pmod 1).

Here y~ is the characteristic function on the set B and the phase space regions A; are de6ned by

(llo)

A2 ——(2 & Qmod 1 & 1}x (I —2Qmod 1 & Pmod 1 & 1 —Qmod 1},

As ——(0 & Qmod 1 & 2 }x (I —Qmod 1 & Pmod 1 & 2 —2Qmod 1},

A4 = (z & Qmod 1 & 1}x (2 —2Qmod 1 & Pmod 1 & 1}.

(112)

Equations (107) and (108) show that the changes in q
and p under the mapping depend upon an external boost
V and external force I which are functions of position
and momentum. Thus the cat map equations are a dis-
cretization of a I.angevin type process

6fg

d, =S/S +V(q, p),

dp t9C

z,
= —(.u —

&
++(I,q),

(114)
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with a negative coe%cient of friction ( = —1 and poten-
tial 4 = —q /2. Since this set of equations describes the
Hamiltonian dynamics of a particle moving in the vicinity
of a single hyperbolic point if V = ( = F = 0, Eqs. (44)
and (45) constitute a set of perturbed dynamics around
an unstable point. Thus the classical cat map can be re-
garded as a system subject to external boosts and forces,
rather than a stroboscopic viewing of a true Hamiltonian
system. Since the system is one which is subjected to ex-
ternal boosts and forces, it does not admit a pure-state
description.

type process, i.e. , Eqs. (114), a fertile general area for
further study.
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VII. SUMMARY

In summary, we have introduced a von Neumann
based quantization procedure in concert with Bloch type
boundary conditions in order to achieve a physically com-
plete quantization of mappings on a torus [17(b)]. The
more traditional approach [1,2] of quantizing the map-
pings via the Schrodinger equation with associated pe-
riodic boundary conditions yields solutions only for tori
satisfying ab = hN, and excessively restricts the map-
ping dynamics to the dynamics on a set of rational
points in (q, p) space, associated with a discrete Liou-
ville spectrum. Alternative approaches such as apply-
ing Bloch type boundary conditions on the wave func-
tion or periodic boundary conditions on the density ma-
trix encounter similar difBculties. From the perspective
of the density matrix periodic boundary conditions im-

ply Tp = p, pT = p for T = T~(a) and T = T„(b).
Adopting Bloch boundary conditions on the density ma-
trix (T pT = p), the only remaining possibility, allows
for a broader class of solutions obtainable even when wave
functions do not exist. The fact that pure states do not in
general exist is a consequence of the fact that boundary
conditions here correspond to the application of external
forces to the system.

The resultant quantum system has a continuous Liou-
ville spectrum, and the von Neumann quantized cat map
dynamics is not ergodic until the proper classical limit is
reached. This result demonstrates a straightforward lim-

iting procedure which completely recovers the full chaotic
classical dynamics in the 6 -+ 0 limit. Further studies are
in progress to ascertain the character of the quantum dy-
namics and its dependence on h as the system approaches
the classical limit. Further, this study suggests the possi-
bility of quantization via a generalized von Neumann (or
continuity) equation for systems described as a Langevin

I

APPENDIX A

Here we discuss briefly the algebra generated by the
P

operators f„Itis .trivial to show that these operators

satisfy the following conditions: (1) closure f„ fg i =
e' "' " f„+g m+i, (2) associativity (f„,mfa, , i)f;,~

f„(f ii f; ~), (3) the existence of an identity fo o = 1, (4)
the existence of inverses f„ f „=1 = f „ f„
and (5) ft = f „, = (f„) which implies that
they are unitary operators. Furthermore, (6) every el-

ement of this algebra can be generated from the set
P

10) —10) 01) 0 —1 ~

APPENDIX B

1

e izz(zmo—d i) /a d b( )
i@zv /a—

0
OO

2m'(v —z)g —cnzv /cx

g =—OO

) g, (z)e ' "*. (81)

The second identity is that of Eq. (106). Again using
identity (17)

Here we will prove some of the simple formulas used
in this paper. Underlying all of these formulas is the
identity in Eq. (17). We have defined integrals g~(z) =
f 2 'k

dve ' '" /' e ' " and here we will prove two simple
identities and one formula specific to the quantum map
problem involving these integrals.

The first identity is that of Eq. (88). Using identity
(17)

OO 1 1 OO

II j iii~ j~ ii i~
~ d/ I —i~zv j~ i~zv' /~ 27' iAv & ~ 2mij (v —v')e

j=—OO
0 G g:—OO

dv er I izzv /a inzv' /a 2zikv vl &)—e

1
dve2 '" =BI, G.

0
(82)

The formula specific to the quantum map problem is Eq. (74). The proof is as follows:
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(ziKUp(T)ix') = e'"~(

ei~((Xmod

ei~((Xmod

im((X mod

1) /a g & &I e
—imp(Pmod 1) /a

oo
1) /a J ip(z —z')/A —imp(Pmod 1) /a

2vrh

1)'/a i r 'p(*-~' —a~k)/a

k= —oo

) gs (ri) 6(2: —z' —o.ak), (B3)

where we have used identity (88) and the closure relation for momentum.

APPENDIX C

Here we will show that Eq. (81) can be put in the form of Eq. (85). To begin, we substitute expression (78) for

(P, Q) into Eq. (81). This gives

~(P q T.P q ()) ) e2ni[n(P PP)+m—(q QP)] —) ( ) ( ) ( —)'
n~m= —oo k, l=—oo

xe—im'a(k+l)m ix(([Q—a(n —k+l)/2]mod 1) /a —ix)([@+a(n—k+l)/2]mod 1)~/ae e

Using identity (17) for the sum over m then gives

(C1)

e(P, Q, T; Pp, Qp, 0) = e '"( ') b(Q —Qp —(k + l)a/2 —m)g~(ri)gi'(r))e
n, m, k, l=—oo

i&(([q—a(n —k+l)/2]mod 1) /a —ix(([@+a(n—k+l)/2]mod 1) /a (C2)

e ' ')6(Q —Qp —(k + l)a/2 —m)gi, (rI)gi'(r))e
n, m, k, l=—oo

ix(([QO —a(n —2k)/2]mod 1) /a —im(([@0+a(n+2l)/2]mod 1) /a (C3)

Now using identity (17) in reverse we obtain

K(P, Q, T;Pp, qp, 0) = 2ni[aa(P —Pp)+na(q —Qp)] l i p l
)

2ni(l k)P —ina—(la+i)na

n, m, k, l=—oo

in(([Qp —a(n —2ia)/2]mod 1} /a —in(([qp+a(n+2l)/2]mod 1} /a (C4)

Making the change in the integer of summation n' = n+l —k we then obtain

tc(P, q, T; Pp, q p, 0) = 2aai(aa'P+mQ) l i p l
)

2ni[(n'+la l—)Pp+mgp] i—na(la+i)na—
n', m, k, l=—oo

ix(([QO —a(n' —k —l)/2]mod 1) /a —ix(([@0+a(n'+k+l)/2]mod 1) /a (C5)

Now setting n' = n and changing the order of the factors we obtain Eq. (85).

APPENDIX D

Here we will show that taking the complex conjugate of propagator (95) and interchanging n and k, and m and l
gives the inverse of propagator (95). This inverse propagator propagates distributions backward in time. The inverse
propagator according to this prescription is

1 1
g—1(& ~.k li eina(lal nna) d&

— d&aein([(v+ala)mod 1] /ae —iaa(v /ae2ni(l —m)v
)

0 0
imp[(v'+am)mod 1] /a —ixgv' /a 2+i(k —n) v'
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To verify that G ~ is indeed the inverse of G we need only show that

) G(n, mr s)G (r s k I) =b„gb i= ) G (n, mr s)G(r s k I). (D2)
rts= —oo r~s:—oo

We begin with the first equality;

OO OO 1 1 1

) G n m. r Shy —1(„8-I )i — im(kl —nm)a X dV dVI dVII dVIII —im([(v+an)mod 1] /av v' v" v' e
r)8=—oo r) 8=—oo 0 0 0

ix(v /a 2ni(s —m}v —i7rq[(v'+as)mod 1] /a i7rriv' /a 27ri(r —n)v' in([(v" +ak}mod 1] /a
—i7r(v" /a 2mi(l —e}v" i7rq[(v'"+as)mod 1] /a —ixvyv"' /a 27ri(k —r)v"'

(D3)

Using identity (17) to do the sum over r gives the delta function b(v'" —v') and then doing the integral over v"' we

obtain
OO OO 1 1

g . )G—1( . y )) im(k —nm)a g d g d
—im([(v+an)mo 1] /a

m& ~& 8/

r, s=—oo r, s=—oo 0 0 0

iver(v

/a 27ri(e —m) v —i7rg[(v'+as}mod 1] /a i7rriv' /a 2+i(r —n)

iver([(v" +ak)mod 1] /a —ix(v" /a 2@i(l—s)v" ivy[(v'+as)mod 1] /a

xe-' &""/ e' '("- }
'

oo 1 1 1
iw(kl nm)a —) d d I d It —ivy'[(v+an, )mod lj /a

r e=—oo)

X eider(v /a 2mi(e —m)v 27ri(k —n)v' im([(v" +ak)mod 1] /a —i7r(v" /a 2mi(l —s)v"

(D4)

(D5)

Now performing the sum over s, again through the use of identity (17), gives the delta function b(v" —v) and doing
the integral over v" we obtain

OO 1 1

Q(~ m p g)Q 1(p g. y )3 ei7 (kl —nm)a dv d Ie —ia([(v+an)mod 1] /aeix(v /a
j ) ) j

r)8=—oo 0 0

27ri(l —m}v im([(v+ak)mod 1] /a —ia(v /a 2~i(k —n)v'xe

Doing the integral over v' gives a factor b„A, and we obtain

OO 1
gl . hg —1( .p )5 im(kl —nm, )a dVe

—im([(v+an)mod 1] /a iver(v /a 27ri(l —m}v

r) 8=—oo

i7r([(v+ak)mod 1] /a —im(v /ag n, k (D7)

=ei~(kl —nm)a 2mi(l —m, )vg n, k ~ (D8)

Finally, doing the integral over v we obtain a factor b l and so

) G(n, m;r, s)G (r, s;k, t) = b„qb
r, s=—oo

as we claimed. The identity in Eq. (D2) can be proven in the same fashion.
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