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We investigate the thermodynamic and critical properties of an interacting-domain-wall model
which is derived &om the triangular-lattice antiferromagnetic Ising model with the anisotropic
nearest- and next-nearest-neighbor interactions. The model is equivalent to the general five-vertex
model. Diagonalizing the transfer matrix exactly by the Bethe Ansatz method, we obtain the phase
diagram displaying the commensurate and incommensurate (IC) phases separated by the Pokrovsky-

Talapov transitions. The phase diagram exhibits commensurate phases where the domain-wall den-

sity q is locked at the values of 0, ~, and 1. The IC phase is a critical state described by the Gaussian
fixed point. The e8ective Gaussian coupling constant is obtained analytically and numerically for
the IC phase using the finite-size-scaling predictions of the conformal-field theory. It takes the value

~ in the noninteracting limit and also at the boundaries of q = 0 or 1 phase and the value 2 at the
boundary of q =

~ phase, while it varies smoothly throughout the IC region.

PACS number(s): 05.50.+q, 05.70.Jk, 64.60.Fr, 64.70.Rh

I. INTRODUCTION

There has been much interest in the two-dimensional
statistical-mechanical systems which exhibit modulated
phases on the periodic substrate [1]. Among those sys-
tems are monolayers of physisorbed gas on solid sur-
face which display incommensurate (IC) and commen-
surate (C) phases. In .the domain-wall description of
IC phases [2], domain walls separating commensurate
patches are considered as the basic fiuctuating degrees
of &eedom. The domain walls can be arranged either
parallel to each other (striped domain wall) or in hexag-
onal pattern (honeycomb domain wall) depending on the
domain-wall crossing energy [3]. The simplest type of
commensurate-incommensurate (C-IC) transition is the
Pokrovsky —Talapov (PT) transition [4] which describes
the transition into striped IC phase. Here, the fiuctua-
tions of the striped domain wall cause an effective repul-
sive interaction between walls. The interaction varies as
1/P if l is the average distance between walls. Due to
this repulsive interaction between domain walls, the C-
IC transition to the striped IC phase is a continuous tran-
sition with the specific-heat exponent cr = 1/2 and the
domain-wall density displays a square-root dependence
on the chemical potential of domain wall if we approach
the phase boundary from the incommensurate side. The
theory is explicitly realized in fermion models of striped
IC phases where domain walls are represented as world
lines of fermions living in a one-dimensional chain. A
&ee-fermion model is also obtained as a low temperature
approximation to the anisotropic next-nearest-neighbor
Ising (ANNNI) model [5]. In these models, the IC phase
is a critical phase where the correlation functions de-
cay by the power laws of the distance rather than by
the exponential function of the distance. Recently, Park
and Widom showed that the IC phase modeled by the
&ee-fermion Hamiltonian is described in the continu»~
limit by the Gaussian model with the coupling constant

g = 1/2 by an explicit calculation of the toroidal parti-
tion function [6]. The effect of domain-wall interaction
has also been studied in the fermion model derived &om
an approximation to the ANNNI model [7] and in a phe-
nomenological model [6].

In this paper, we consider an exactly solvable inter-
acting domain-wall model derived &om the triangular-
lattice antiferromagnetic Ising model (TAFIM). It is well

known that the TAFIM with only nearest-neighbor cou-

pling has infinitely degenerate ground states due to &us-

tration on each elementary triangle. Each ground state
can be mapped into a configuration of covering the plane

by three types of diamonds. Blote and Hilhorst [8] intro-
duced a solid-on-solid model derived from these configu-
rations. Regarding two types of diamonds as domain-wall

excitations, one also obtains a striped domain-wall con-

figuration. Blote and Hilhorst [8] utilized this connection
to obtain exact solution to the noninteracting domain-
wall problem. As the fugacities of walls change, there
is a phase transition from an ordered phase to the criti-
cally disordered phase which is described by the Gauss-
ian fixed point with the coupling constant g = 2. The
nature of the transition is found to be that of the PT
transition [4]. Nienhuis, Hilhorst, and Blote [9] identified
various spin-wave and vortex operators of the Gaussian
model in terms of the solid-on-solid model and argued
that infinitesimal next-nearest-neighbor (NNN) interac-
tions and magnetic Seld in TAFIM would change the cou-

pling constant g of the Gaussian model. From this they
suggested a schematic phase diagram in the parameter
space composed of the nearest-neighbor interactions, the
NNN interactions and the external magnetic field. More
recently the e6ect of the external magnetic field on g has
been studied by Blote et al. [10] and the behaviors pre-
dicted in Ref. [9] is confirmed.

We show in Sec. II that the ground-state conagurations
of the TAFIM under the general boundary conditions
are equivalent to the striped domain-mall configurations.
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When the NNN interactions in the TAFIM are turned on
in an anisotropic manner, they correspond to extra ener-
gies between adjacent domain walls. Only the same types
of walls can touch each other and there are two types of
wall interactions. We also show in Sec. II that the striped
domain-wall configuration is exactly mapped to the arrow
configuration of the five-vertex model. But, if both types
of wall interactions are present, the Boltzmann weight
cannot be represented by a product of vertex weights.
However, when only one type of domain walls interact
with each other, it can be written as a product of vertex
weights and the partially interacting domain-wall model
reduces to the general five-vertex model.

In Sec. III, we diagonalize the transfer matrix of the
five-vertex model using the Bethe Ansatz method. We
develop Bethe ansatz solutions both for domain walls and
domain-wall holes. From these solutions, we obtain a full
phase diagram of the partially interacting model. The
phase diagram displays the C and IC phases separated
by the PT transition and the first order transition. It also
exhibits a new commensurate phase where the domain-
wall density is locked to the value 1/2 for a range of
the chemical potential of the wall. This phase does not
appear in the noninteracting domain-wall models and is a
feature resulting from the domain-wall interactions. This
is akin to the antiferromagnetically ordered phase of the
ANNNI model.

In Sec. IV, we investigate the critical properties of
the IC phase. It is shown that the interaction between
domain walls causes a continuous variation of the cou-
pling constant g of the Gaussian model resulting in non-
universal critical behaviors. It is studied by analytic per-
turbative calculations and numerical calculations. We
discuss and summarize our result in Sec. V and present
discussions on the Yang —Baxter equation and the ca]cu-
lation of the modular covariant partition functions of the
T = 0 TAFIM under the general boundary conditions in
Appendixes A and B, respectively.

II. TRANSFER MATRIX FORMULATION
OF INTERACTING DOMAIN-WALL MODEL

We write the Hamiltonian 'R including 1/kT of the
TAFIM with the nearest- and next-nearest-neighbor in-
teraction as

where s,. = +1 is an Ising spin variable at site i, the first
(second) sum is over the nearest (next nearest) neighbor
pairs of sites, K+ 8 (s' ), a = 1, 2, 3, are the anisotropic
nearest (next nearest) neighbor couplings whose index a
depends on the direction of the bond (ij) (((ij))) as shown
in Fig. 1(a), and finally Af is the number of lattice sites.

Monte Carlo simulation and other studies [11,12] show
that this system has rich critical phenomena in the
full parameter space. But, we will only consider the
zero-temperature limit of this system. By the zero-
temperature limit, we actually mean the infinite-coupling
limit K ~ —oo leaving b~'s and c~'s Bnite. Equation

FIG. 1. (a) Correspondence between the anisotropic cou-

plinm;s and the lattice directions in the TAFIM with near-
est- and next-nearest-neighbor interactions. (b) Labeling of
three types of diamonds. Types 1 and 2 are considered as
domain-wall excitations.

(1) in this limit will be called the T = 0 TAFIM. Here,
only those configurations which have precisely one pair of
parallel spins around each elementary triangle are ener-
getically allowed. Though this imposes much restriction
on the spin configurations, it is important to study this
limiting case because the T = 0 TAFIM is equivalent
to many interesting problems, e.g. , the diamond and/or
dimer covering problem [8] and the triangular solid-on-
solid model [9,13]. Moreover, the T P 0 behavior of the
TAFIM can be inferred &om the T = 0 behavior.

Here, we will show that the T = 0 TAFIM with
NNN interactions is equivalent to the interacting striped
domain-wall model where the NNN interaction s~ (j =
1,2) plays the role of wall-wall interactions. If we draw
lines between all nearest-neighbor pairs of antiparal-
lel spina for a given ground-state configuration of the
TAFIM, the resulting configuration is that of a cover-

ing of the plane by diamonds. Figure 2 shows a typi-
cal TAFIM ground state and its corresponding diamond
covering configuration. The three types of diamonds
are called types 1, 2, and 3, respectively as shown in
Fig. 1(b). Strictly speaking, there is two-to-one corre-
spondence because of the global spin-reversal symmetry
of the TAFIM in the absence of magnetic field.

Prom a diamond covering configuration, a striped
domain-wall configuration is obtained by regarding the
diamonds of types 1 and 2 as domain-wall excitations.
Type-3 diamonds are regarded as the vacuum. Thick
lines on the faces of types 1 and 2 diamonds in Fig. 1(b)
and Fig. 2 visualize the domain walls. A section of do-
main walls which is obtained &om the diamond of types
1 and 2 will be called the domain wall of types 1 and
2, respectively. Two walls are defined to be interacting
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(b)

2 N —1 N

FIG. 2. A typical striped domain-wall conSguration de-
rived &om a ground state of the TAFIM on a 4 x 6 lattice.
The Riled circles represent spin up states and empty circles
represent spin down states. We use the periodic boundary
condition along the horizontal direction and the antiperiodic
boundary condition along the vertical direction. So, the re-
sulting domain-wall configuration has even Q and odd A.

when their sides touch each other. The thermodynamic
parameters which control the equilibrium property of in-
teracting striped domain-wall system are the fugacities
z1 and x2 of domain walls of types 1 and 2, respectively,
and the fugacities y1 and y2 for each pair of adjacent
domain walls of types 1 and 2, respectively. Note that
different types of domain walls cannot be adjacent. The
partition function Z„„ for the interacting domain-wall
model is

(2)

where the summation is taken over all striped domain-
wall configurations and n; is the total length of domain
wall of type i and /; is the total member of incidents where
domain walls of type i touch each other and share a side,
i.e., the number of wall-wall interactions of type i.

When ss ——0 in Eq. (1), the energy of the T = 0
TAFIM can be written in terms of n; and l;. Nearest-
neighbor interactions contribute [8] simply

i=112,3

where (i, j, k) is the cyclic permutation of (1,2, 3) and
fats —Af n1 n2 is the —total nu—mber of type-3 diamonds.
From now on we set hs ——0 without loss of generality.
To relate the NNN interaction energies to l;, consider
first the bonds connecting NNN pair of sites along the
direction l. [See Fig. 1(a).] They cross either (a) two
type-2 domain walls or (b) two type-3 diamonds or (c)
one type-2 wall and one type-3 diamond or (d) one type-
1 domain wall. These possibilities are shown in Fig. 3. If
we let n, nq, n and ng be the number of cases (a), (b),
(c) and (d), respectively, the bonds contribute s1(n +
ns —n, —n~) to the energy. But one can easily identify

nq = n1 and n = lq. Moreover each of type-2 walls is
crossed by two NNN bonds so that it appears twice in
the list of Fig. 3 while the total number of type-2 walls
countedin Fig. 3is 2n +n, . Thus 2n2 ——2n +n, . These
relations, together with the sum rule n +ns+ n, + nq =
JV, give the energy

s1(JV + 4l2 —4n2 —2n1)

Similar counting holds for NNN bonds along the direction
2.

Putting these together, the ground-state energy of
Eq. (1) for ss ——0 becomes

E0 — 2(~1 + ~1 + 2s2)~1 2(~2 + s2 + 2~1)112

+4s2tl + 4~1t2 + +(bl + b2 + sl + &2) (3)

Thus the fugacities for the interacting domain-wall model
are related to anisotropic coupling energies of the TAFIM
model as

+1 —exp [2(&1 —bs) + 2s1 + 4&2] )

x2 ——exp [2(h2 —bs) + 2s2 + 4s1],

y1 ——exp [—4s2],

y2 ——exp [
—4s1] .

(4)

Next, we show that to each striped domain-wall config-
uration, one can assign a vertex configuration. To do this
we deform the triangular lattice into the square one as
shown in Fig. 4. One then finds that there are five types
of unit squares. Figure 5 shows them together with as-
signment of vertex configurations. If one works under
the ice rule, the assignment of vertices shown in Fig. 5 is
»pique modulo the arrow reversal.

In this way, we obtain one-to-one correspondence
between striped domain-wall configurations and bond-
arrow configurations satisfying the ice rule. Vertical up
arrow indicates the presence of a domain wall. In the

(c)

FIG. 3. Four possibilities of next-nearest-neighbor bonds
along the direction 1.
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2 N-1

FIG. 5. Five types of unit squares in the deformed lattice
and assignment of vertex con6gurations.

FIG. 4. Deformation of Fig. 2 into a square lattice.

N1 Ng N4 Ns Ng
v ——+g m~ m2 m4 (5)

where the summation is taken over all arrow configura-
tions and N, is the number of the ith vertex appearing in
an arrow configuration. Unfortunately, if we assign the
Boltzmann weight of an arrow configuration as a product
of local vertex weights, we cannot treat the fully interact-

TAFIM language, vertical up arrows correspond to hori-
zontal nearest-neighbor spin pairs which have opposite
signs and right arrows correspond to vertical nearest-
neighbor spin pairs which have the same signs. The
absence of the third vertex (or the fourth upon arrow
reversal) is a result of our deforming the triangular lat-
tice in the manner shown in Fig. 4. If it were deformed in
the opposite direction, it is the first vertex (or the second
upon the arrow reversal) which does not appear. In any
case, one obtains the five-vertex-model configurations.

The five-vertex model on the square lattice is obtained
&om the six-vertex-model by suppressing one of the first
four vertices. The five-vertex model with special choice
of its vertex weights was first considered by Wu [14] as
a limiting case of the six-vertex model and is studied
in connection with the nonintersecting directed random
walk [15] and the directed percolation problem in three
dimension [16]. Recently, Gulacsi et al. [17] studied its
phase diagram for a special case. The general five-vertex
model is obtained by assigning arbitrary vertex weights
to each type of vertices but there are only three indepen-
dent parameters since the vertices 5 and 6 always occur
in pairs along a row under the periodic boundary condi-
tion and a global rescaling of weights introduces only a
trivial factor.

The partition function Z5 of the five-vertex model is

ing domain-wall model (si g 0, sz p 0 case). However, if
we restrict ourselves to the special case si ——0 (yz = 1),
then Eq. (2) can be expressed in the form of Eq. (5).
From now on, we consider the partially interacting model
where only domain walls of type 1 interact.

The vertex of type 1 represents the case where the two
domain walls of type 1 are interacting. So, if we choose
vertex weights as

F5 = QJ6

&1JJ1)

1,
+2)
~zg,

(6)

the partition function Zs „becomes the same as that of
the partially interacting domain-wall system:

ng ng lgZ5„——g x& x2 yz

We study the five-vertex model using the transfer ma-
trix. Suppose the lattice has M rows and N columns,
and periodic boundary conditions are imposed in both
directions. Let n = (ni, . . . , aN) denote the state of ver-
tical arrows of one row. Then, as usual, we can write the
partition function Z5 „as

(8)

where T5 „is the 2 by 2 transfer matrix with elements

N

Ts--(~») = ). ~(~' ~'lP;, v;+i) . (9
(p;=+i) &=&

ln Eq. (9), W(p, a~P, v) is the weight of the vertex con-
figuration in the standard notation [18). Let TL, (TR)
be the transfer matrix of the five-vertex model with the
first horizontal arrow fixed to the left (right). This can
be written graphically as

Pi P2, ,A Pi P2, ,Ar

&~(~
I &) = TR(~

I &) =

Q2) . ,QN Q& Q2~ ~ ~ ~ ~QN
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Then the transfer matrix can be written as

T5- = TQ+ TL,

Prom the ice rule, the number of up arrows on a row
and right arrows on a column are conserved. In the lan-
guage of domain wall, the number of up arrows per row
corresponds to the number of domain walls per row and
the number of right arrows per column corresponds to
the number of type-1 domain walls per column. We will
call them Q and 0, respectively. From the conservation
of Q, Ts „ is a direct sum of submatrices labeled by Q
which only act on the subspace with Q domain walls.
Thus,

Ts- — ~~ (TR,q + TL, q),
@=0,...,1V

where stands for the direct sum and TR q (TL, q)
denotes the sector Q of TR (TL,).

The partition function Zs, of the five-vertex model is
obtained from the partition function ZTAFIM of the T = 0
TAFIM as follow. Suppose the triangular lattice has M
rows and N columns as in Fig. 2 under the boundary
condition (p, v) defined by

s', M+i = (—1)"s;,i

sar+i, , = (—1)"si,
(p = 0, 1),

(v = 0, 1),

( T++ + T+- 0
0 T++ —T+ )

(13)

where T„(s,s' = 6) is the matrix whose elements are

TTAFIM(s, a
~

s', a') and denotes an equivalence up
to the similarity transformation. We use the fact thatT„=T, , If we denote the partition function of
the T = 0 TAFIM under the boundary condition (p, v)

(~ ~) ~

+TA'FIM, lt can be written as

where p, , v are 0 (1) for periodic (antiperiodic) bound-
ary condition. Let s = (si, . . . , siv) denote the spin state
of one row. It can also be represented by (si, a) where
a = (ni, . . . , aiv) and cr; = —s;s;+i. With the identifi-
cation of a = 1 (—1) to the up (down) arrow in the ith
vertical bond in the dual lattice, one notes that n is the
arrow configuration of a row of vertical bonds of the cor-
responding five-vertex-model configuration. The transfer
matrix TTAFIM of the T = 0 TAFIM is defined through
its matrix element TTAFIM(si, a

~
si, a') which is the

Boltzmann weight for two successive row configurations
(si, a) and (si, a') with the boundary condition v along
the horizontal direction. Due to the global spin-reversal
symmetry, it takes the block form

(~) ~ T++ T+- ~
TAFIM

(0 0) (o 1) (0») (1 &)Zs- =-IZTAFIM J &~F™JZTAFIM+ TAFIMI2 )

(15)

where the factor 1/2 accounts for the two-to-one corre-
spondence. This relation will be used in Sec. IV to ob-
tain the toroidal partition function Zs, of the five-vertex
model.

III. PHASE DIACRAM

The five-vertex-model transfer matrix can be diagonal-
ized by the Bethe ansatz method as a special case of the
general six-vertex model [14]. Its phase diagram has re-
cently been calculated by Gulicsi, Beijeren, and Levi [17]
for the special case of t'ai ——is2. (Gulicsi, Beijeren, and
Levi use the notation isz ——0. Their work and ours are
related by the transformation isi ~ Is4, is2 e+ its and
its e+ ups. ) In this section, we generalize it to the full
three-dimensional parameter space and also calculate the
domain-wall densities. We also discuss types of solutions
of the Bethe ansatz equation (BAE) of the five-vertex
model.

The eigenvalues of the transfer matrix Eq. (9) in the
sector Q (g N) are given by [14,17]

Q
q q — f issiOs

z, ~,
~ ~ a g)2 Q)4j=1

where the set (zi, z2, . . . , zqj are the solutions of the
BAE

z. = (—1)
1 —Az

l=1
j = 1,2, . . . , Q

with

domain wall in the horizontal direction, spin configura-
tions under the boundary condition v = 0 (1) yield only
domain-wall configurations with Q even (odd). There-
fore, T++ and T+ in Eq. (13) are TR and TL„respec-
tively, of the five-vertex model restricted to Q even (odd)
sectors for v = 0 (1). This shows that the transfer ma-
trix spectra of the two models are not identical. Only the
even or odd Q sector of Eq. (11) are present in Eq. (13)
while the latter includes the block T++ —T+ which is
not present in the five-vertex model. And the spin con-
figurations under the boundary condition p = 0 (1) yield
only domain-wall configurations with 0 even (odd) as-
suming that M is even, since the sign of spin changes in
every step except when crossing a type-1 domain wall in
the vertical direction. If M is odd, even (odd) 0 corre-
sponds to p = 1 (0). So, the partition function Zs „of
the five-vertex model is given by

(~iP) gs (~)
+TAFIM ~ TAFIM (14)

~1~2 —~5~6
t02QJ4

where R is the spin-reversal operator.
Since the sign of the spin reverses by crossing each

All z~'s should be distinct. When Q = N, AIv = wi +
~N
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An alternative expression for the eigenvalue which is
useful for Q ) N/2 is given by

~5~6
Ag = %01

tU1 Z —824
1

Q

+tU4 Q)2—Q
h 4 I

j=l

tUgQl6Z~
)

tUi Z&
—QJ4

Q

Aq = z2~ (1+az, )
~ ~ z

j=l
(20)

or

Q

Aq = z2~(6+ a)q (5+ a)z —1
2=1 2

Q

j=i

azj
(4+z)z, —1 j' (21)

where a is the ratio of two domain-wall fugacities

a=Xi X2 (22)

where Q—:N —Q is the number of domain-wall holes and
the set (zq, z2, . . . , zq j is again given by Eq. (17) with Q
replaced by Q. We call Eq. (16) and Eq. (19) the domain-
wall representation and the domain-wall hole representa-
tion, respectively. Using Eq. (6) into Eqs. (16), (18), and
(19) gives Aq in terms of the domain-wall parameters as

1
f (z2, a, 6) = — lim max —ln Aqm-+~

= —max [qlnz2 + z(q)], (28)

where q = Q/N is the domain-wall density. This equa-
tion gives z~'s as a function of 8 which should, in turn,
be determined &om its defining Eq. (26).

Note that the BAE [Eq. (17)] arises from the periodic
boundary condition on the wave function of Ts „[19].
It is also interesting to consider another boundary con-
dition, say, the antiperiodic boundary condition. The
effect of the boundary condition is to shift domain walls
out of the Nth site to the first site with appropriate phase
factor 1 (—1) for periodic (antiperiodic) boundary condi-
tion. The shift operation is done by the operator T~. So,
if we impose antiperiodic boundary condition, the result-
ing matrix we diagonalize is TL, —T~. In this case, the
expression for eigenvalues remains the same except for
the fact that I~ should be integers for even Q and half-
integers for odd Q. So, we can obtain whole spectrum
of the transfer matrix of the T = 0 TAFIM &om the
transfer matrix of the five-vertex model under periodic
and antiperiodic boundary conditions. Note that the an-
tiperiodic boundary condition here is diferent from that
which reverses the sense of horizontal arrows.

The free energy in the language of the domain-wall
physics is a function of zq, z2 and yz through Eq. (6).
From now on, we regard it as a function of 6, z2 and a =
zq/z2. Since the free energy is given by the maximum
eigenvalue of the transfer matrix, f(z2, a, A), the free
energy per site in the units of kT, is written in the form

and

6 = z, (y, —1)/z, = a(yg —1)

where z(q), which will be called the configurational &ee
energy, is given by

Q

Np~ = 27rI~ + ) 0(p~, pi), (24)

We will call 6 the interaction parameter. It is positive
for attractive interaction and negative for repulsive inter-
action between domain walls.

Defining the momenta (p~ j by z~ = e'», Eq. (17) also
takes the familiar form

tc(q) = lim max —) ln(l + az~)
j=l

(29)

Here, (z~ j's are the solutions of the BAE. The equation of
state which relates the equilibrium domain-wall density

q as a function of thermodynamic parameters is given by
the relation

where
q(z2, a, 6) = (30)

,.6(„) 1 —Ae'"
1 —Ae'~

and I~'s are half-integers for even Q and integers for odd
Q ranging &om (N 1)/2 to (N —1)/2—. DifFerent eig—en-
values come &om difFerent choices of the set (I~ j.

The BAE may take another form. If we define

1
s = —) ln(1 —az, )

Q l

then the BAE becomes

, = (—1)f~ '}~ (1 —L5.z, ) e ~',

where Qo is the value of Q at which Aq attains the max-
imum value. The equation of state can be rewritten as

0—~(q, a, b, ) = —ln z2
t9g

if e(q) is a difFerentiable and convex function. The con-
figurational free energy r(q) is a Legendre transformation
of f That is, it is a.free energy as a function of domain-
wall density while f is a &ee energy as a function of the
domain-wall fugacity.

We now classify types of solutions of the BAE cor-
responding to the maximum eigenvalue. First, con-
sider the case —1 & 4 ( 1. This region contains
the noninteracting case with 4 = 0 which is consid-
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ered in [14]. In this case, the 0 function defined in
Eq. (25) is identically 0. So, any set (I~} of Q dif-
ferent numbers are solutions of the BAE and the so-
lution giving the maximum value of Ag is (I~}
(—(Q —1)/2, —(Q —1)/2 + 1, . . . , (Q —1)/2}. We as-
sume that this set (I~} still gives the maximum eigen-
value even after the turning-on of weak interaction and
remains so in the whole region —1 & 4 & 1. This as-
sumption is tested by direct numerical diagonalization of
the transfer matrix with N up to 15. We call this type
of solution as the free magnon type

When ~b,
~

& 1, there appear other types of solutions.
Assume that the solution is of the form

ly ~ ~ ~
y N+

zi = z~, j = (N+.+1),. . . , (N++No)

zi = —— ', j = (N++No+1), . . . , Q,

where a~ and b~ are constants greater than 0 and S~'s
are assumed to remain of order 1 as ~b,

~

~ oo. In other
words, of Q zi's, N+ are diverging, Ns remain finite,
and N = Q (N++N—s) vanish inversely as ~b,

~

~ oo.
Then, the necessary condition that this set should be
a solution of the BAE is either (i) N~ N=——0 so
that all zz's are of order 1 or (ii) No ——O, b~ = (Q-
N+)/N+ and a~ = (N —Q)/N+. We also call the first
type as the free magnon type while the second type will be
called as the bounded magnon type. Of these possibilities,
one can easily show that the configurational free energy
is realized by the free magnon type if b, ~ —oo and the
bounded magnon type with N+ ——1 if 6 m oo. We 6nd
numerically that this feature also persists for all b, in the
range ~b,

~
& l.

It is very difficult to obtain the equation of
state [Eq. (31)]analytically for whole range of parameters
z2, a, and h. But, the phase boundaries which separate
the commensurate phases with domain-wall density 0 or
1 from the incommensurate phase can be obtained if we
solve the BAE in the q ~ 0 or 1 limit. Apart from the
C phases with domain-wall density 0 or 1, there appears
a new C phase with q = 1/2 if a is large so that b, can
take values less than some critical value 6,. (Below, we
will see that b,, takes the value —4.) Consider the case
where domain walls of type 1 are much more favorable
to form than those of type 2 (a = zq/zs » 1) and there
are repulsive interaction between them (yq & 1) so that
the interaction parameter 4 is less than 6 . Then, the
most energetically favorable state for q & 1/2 is the state
where there are only type-1 domain walls with no ad-
jacent pairs. But, if q is larger than 1/2, there should
appear type-2 walls and adjacent pairs of domain walls
of type 1 whose energy costs are large. So, it is expected
that there is a discontinuity in z2 which controls the to-
tal number of domain walls across the q = 1/2 line. The
phase boundary of the q = 1/2 C phase can be also deter-
mined analytically. Our results for the phase boundary
are given by Eqs. (35), (38), (41), (49), (59), and (70)
and are illustrated in Fig. 7.

(i) 6 & 1, q = 0. In the region 4 & 1, the free
magnon type solution in the q ~ 0 limit is

z,- = e*" 1+ (1 —e"') + 0(q'),
1 —6

where 8~ = 2@I~/N and (I~} is a set of integers or
half-integers depending on the parity of the domain-wall
number Q. The maximum value of e(q) is obtained if
we choose the set (I~} = (—(Q —1)/2, —(Q —1)/2 +
1, . . . , (Q —1)/2} and the next largest values of e(q) are
obtained by using the set (I!= I~ + m} which is a shift
of the set (I~}by an integer m. With this solution, the
configurational free energy e is given from Eq. (29) by

y„(q) = — ln 1+ac'
~

1+ (1 e' ) ~

de
1 ' ,s ( b,q

27l' ~q ( 1 —z j
+o(q')

= qln(1+ a) — q + 0(q )6(1+a)
(34)

This, together with Eq. (31), implies that q = 0 if z2 &

1/(1+ a). Thus, we obtain the phase boundary z2 = zoo
between the q = 0 C phase and the IC phase as

1
+OC = 1+a (35)

or equivalently zq + zq ——1. For zz slightly larger than
zoo, Eq. (34) gives

2(1 + a) X/2
q ~ (lnz2 —lnzpo)

G7i
(36)

1 . a
e(q) = qln(6+ a) + —) ln

(6+ a)(b, + a —1)

qs n'(b, + a)
6 (b, +a-1)2 (37)

From this, the phase boundary x2 ——xq~ between the
q = 1 C phase and the IC phase is given by

(&+a)(&+ a —1)
(a+a & 1) (3S)

The domain-wall density thus shows the square-root de-
pendence on domain-wall formation energy which is the
general character of the PT transition. This type of sin-
gularity is originated from the fact that the leading con-
tribution e(q) aside from the linear term is of order qs.
It is originated from the entropy reduction due to the
collision of domain walls [20).

(ii) 8 & I, q = I. Next, consider the case near q = l.
In this case, it is easier to consider the BAE for domain-
wall holes rather than domain walls. Inserting Eq. (33)
with q replaced by q into Eq. (21), we obtain e(q) near
q = 1. q = 1 —q is a domain-wall hole density. There are
two cases to consider depending on whether 6 + a & 1
or b, + a & 1. When b, + a & 1, the first term in the
right-hand side of Eq. (21) dominates and hence
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and the equilibrium domain-wall density near x1c is
given by

2(a+ a —1)' 1/2
q 1— (»»c —lnz, )'

mz(A+ a)
08-

Similarly, when 4+a (. 1, the con6gurational &ee energy
ls given by

O.b-

N. - (6+ ), —1

1 —b, 1 s az'{1—ab, —6')
1 —b, —a 6 (6+ a —1)2(b, —1)2

+o(q ) (4o)

&om which the phase boundary zz ——zi, and the equi-
librium domain wall density near z1c are given by

1.5

1 —6
&1C—

1 —6 —a
(6+a (1) FIG. 6. Typical xz dependence of q within the IC phase is

shown for x~ ——xq. The curves are for 6 = —0.7, —0.3, 0, 0.3,
and 0.7, respectively.

2(6 + a —l)z(b, —1)'
q = 1 — (ln xi, —lnz2)'

az'2 1 —ab, —Az

(42)

So, we conclude that when 6 ( 1, there are commen-
surate phases with domain-wall density 0 for z2 ( zo,
and domain-wall density 1 for z2 ) zi, . In between, the
equilibrium domain-wall density increases smoothly as zz
increases as long as 6 ) —4. Figure 6 shows a typical
zq dependence of q for the case of a = 1. The curves
are obtained numerically by solving the BAE for N up
to 150. The case 6 ( —4 will be considered later.

(iii) 3 ) 1. Now, consider the case where there is
a strong attractive interaction between domain walls so
that b, ) 1. The solution of the BAE maximizing rc is
of the bounded magnon type with N+ ——1. The exact
solution of the BAE is easily obtained from the transfor-
mation of z to z defined by

ei8
1 )

i.~(1+2'/Q)
Z~ g1 = Z1e )

where 8 can take the value from the set N x (1, . . . , N)
The corresponding right eigenvector ~A) of the Tit q +
TL, iq 1S

n1( "(ng

where C is a normalizing constant. Here, (n;j's denote
the position of up arrows or equivalently domain walls.
It is obvious that these states represent bounded domain-
wall states because the components of the eigenvector de-
cay exponentially as the distance between domain walls
becomes large. In fact, one can calculate the mean dis-
tance of the last domain wall from the first one. The
mean distance (nq —ni) of the Q domain-wall system is

given by

Z~+1 —~ 1 gN Q

Then the BAH for z~ becomes

1V' Q —1

+N —Q

(43)

(46)

K{q) = qln(b, + a) (47)

where n~ is the position operator of the jth domain wall.

Inserting the eigenket to the above expression and after
some algebra, we find that (ng —ni) is equal to Q for
a macroscopic number of domain walls. Thus, we can
interpret this state as the bounded domain-wall state.

This solution yields the exact con6gurational &ee en-

ergy which is obtained from the solution Eq. (44) with
8=0;

For macroscopic numbers of N and Q, the values of
z~/6 ~ and b, ~ are exponentially small and may be
neglected. Thus the solution is

And the free energy f for 6 ) 1 is simply

Pf = max [q ln—x2 + q in(b. + a)]
0(47(1

(48)
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The maximum value is obtained at q = 0 if x2 is less than
I/(a + a) and at q = 1 if x2 is greater than I/(& + &).
So there is a first-order phase transition between the two
commensurate phases when x2 is at the critical fugacity
z, where

1 1 —A 2+ (q —1/2) — + o[(q —1/2) ],4~1+ A

B = lnA+ O[(q —1/2) ],
(55)

1
6+a (6 & I) (49)

Note that the condition urq ——w2 used in [17] is amount
to the condition z2 ——I/(4 + a) so that the first-order
transition for 4 ) 1 could not to be seen in [17]. We
have thus found the phase boundary of the C phase with
domain-wall density q = 0 and 1 and the nature of the
phase transition. We present the resulting phase diagram
in Fig. 7(a) for the case of a = 1.

(ie) Ll & —g, q = I/8 . As discussed before, we ex-
pect that f has a singularity in zs at q = 1/2 if b, is
large and negative. To see the q dependence of z2 near
q = 1/2, we should evaluate the configurational free en-

ergy z(q) near q = 1/2. Gulacsi, Beijeren, and Levi [17]
used the root density function p(p) to find the q = 1/2
phase boundary when x2(b, + a) = 1. We employ the
same method to the general case.

p(p) is defined so as Np(p)dp to be the number of the
roots of the BAE [Eq. (17)] with z = e'& in the interval

(p, p+ dp) in the complex p plane. We stress here that
the roots do not lie on a straight line in the complex p
plane. For domain-wall density q, p(p) is given by [17]

1.5

0.5-

0- (tcl

-0.5-

-1.5

D= 1+ I+ I+ 4l
2 ( 6)

+(q —1/2) ln(dA)
~ I

+ O[(q —1/2) ],
( 1 1 i 2

id —1 2d)

(50)

-0.5 0.5

In Fig. 8, we give a typical root distribution of the BAE
in the complex n plane which is related to p as

(a)

e' = 1 —Ae'" (51)

The root density function p(a) in the n plane is given by

dp 1 ( e'~
P(~) —= p(s) = —

I

—q+-
do. 2x g

e' —1) (52)

and the variables A, B and D in Fig. 8 are given by

q = Im ln (e' —1) /(n + A),
eiA —B

in + —Re ln(e' —1)

1nx2 0

1+ —) sin nA = 0, (53)
Vr X - n2

n=1

(0)

-5 -4 -3 -'2

D = 1 —AC,

where C is determined &om the equation

Near q = 1/2, they take the values

(54)

FIG. 7. (a) phase diagram in the ines —A plane for a = 1.
(p), (1), and (IC) denote the C phase with q = p, 1 and the
IQ phase, respectively. (b) Same as in (a) with a = 7. New C
phase with q = 1/2 appears for b ( —4. The dotted line in
the IC phase denotes the position vrhere dislocations become
irrelevant. See Sec. IV.
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f'rom Eq. (21). For convenience, we define two quantities
A and 8;

(
—4+ iB) (2+ iB)

Q

A = —) ln (1 —Ae'"')

8 = —) ln 1 —(a+ b, )e'"'

Then the configurational free energy is written as

(60)

(61)

where ~L, = A —8 and KR = lna+qln[(a+6)/a] —8. The
quantities A and 8 can be written as contour integrations
in the complex a plane in the thermodynamic limit N ~

A = da ia p(a)
C (62)

FIG. 8. A typical root distribution of the BAE in the com-

plex n plane. This 6gure shows the solutions of BAE for
q=1/2and 3, = —?.

with

A=- 6 —2 — 6 —22 —4
1

(56)

With this knowledge, we can calculate K(q) near q =
1/2. First consider the case q & 1/2, where e(q) is eval-
uated from Eq. (20).

r.(q) = —) ln (1+ae" )

(5?)

a a+4
lnx = —ln —2 ln 1+

fE]A a (59)

(v) c1 & —g, q = l/2+. Next consider the case q )
1/2, where the configurational free energy is evaluated

where the integration should be taken along the contour
C shown in Fig. 8. But, the contour can be deformed
to the straight line l'. since the integrand is analytic in
the shaded region. Then K(q), up to the first order in

(q —1/2), is given by

1 " e"/A (a+ 6 —ae"/A)
r.(q) = — -q+ ., ln

~27l' ~ e A —1

1 a t' a+A.= —lna+ (q —1/2) ln + 21n
~

1+ A
~

2 ]8~A ( a )iO[(q —1/2)'] (»)
Note that r(l/2) =

2 lna is independent of b, . This
implies that there are only type-1 domain walls with-
out adjacent pairs of them at the q = 1/2 phase. From
Eq. (31), we see that q = 1/2 phase starts at 2:2 ——x
where

Since the integrand in A is analytic in the shaded region,
the contour can be deformed to the straight line l: and
the integration results in

1
A = —ln ~b,

~

—(q —2) lnA+ 0[(q —1/2) ]2
(63)

+0 (q —1/2)'

(b) 1/D & (a+ 3)/a & A. In this case, the branch
cut intrudes into the shaded area. Therefore, upon
changing C to the straight line, one needs to subtract
the contribution around the branch cut. The result is

1
8s = —ln(a+ b, )2

+(q —1/2) ln +21n
~
1+a+6 f aA

+0 [(q —1/2) ] (65)

(c) (a+ 8)/a & 1/D & A. In this case, the contour
can be deformed to the straight line 8 as in the case (a)
and the integration results in

8, = —ln +(q —1/2)» +2»
~

1+ a+»
a Q ( aA

+ 0 [(q -1/2)'] (66)

For each case, the quantity v.~ and KL, take the follow-
ing values at q = 1/2:

In order to calculate 8, there are three possible cases to
consider;

(a) 1/D & A & (a+ 8)/a. The integrand is also an-
alytic in the shaded region and the contour C is replaced
by the straight line C. It yields

18 = —ln(a+ b, )2

a+4 ( aA
+(q —1/2) ln +21n

~

1+
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(a) zl, = 2ln I aI, 14~ = 2lna

b) ~1, = ln I I ~R = —,'lna (67)

[Eq. (59)] and x+ [Eq. (70)] defines the phase
boundary between the q = 1/2 C phase and the IC phase
and the domain-wall density is locked at q = 1/2 for the
range

(c) KI, =
2 inc 1 a{a+&}

, ]cR — 2lna+ 21n
z (z2 (z+ (71)

When a+ 4 & 1, only the cases (a) and (b) in Eq. (67)
occur and r~ & el, at q = 1/2. So near q = 1/2, the
configurational free energy e(q) is determined by eR(q)
and is given by

1 Aa 5 a+6&
z(q) = —lna+ (q —1/2) ln + 21n

~
1+

2 aA )
(68)+0[(q —1/2)'].

'
~L, (q) if (a+ b, )/a (1/D

[ ~R(q) if (a+ b, )/a & 1/D

1 Aa ( a+6)
2 ( a )

= —inc+ (q —1/2) ln +21n
~
1+

(69)+O[(q —1/2)'].

From Eqs. (68) and (69), we see that the q = 1/2 phase
ends at z2 ——z+ where

aA t' a+ 6)
lnzp ———ln —21n

~

1+
aA )

(70)

When a+ b, ( 1, cases (b) and (c) occur. One can
easily find that if (a + 6)/a ( 1/D then ~L, & ~~ and if
(a+ b, )/a & 1/D then ~I, ( r~ So, n. ear q = 1/2 the
configurational free energy is

IV. THE CRITICAL PROPERTIES
OF THE IC PHASE

The conformal-field theory predicts that the operator
content of a critical phase is related to the finite-size
correction to the eigenvalue spectra of the transfer ma-
trix [21]. When we write an eigenvalue A of the transfer
matrix for a lattice of width N as e @, then E takes
the form at the criticality,

=Nf + —~4 +b, ——~t,"sin8
N E 12)

(6 —b, ) t,'cos8+ o
~

—
~

2%i 1

gN)
(72)

where c is the central charge, (D, b, ) are the con-
formal dimensions of the operator corresponding to the
nth energy eigenstate, ( is the anisotropy factor, 8 is the
anisotropy angle, and finally f is the nonuniversal bulk
free energy per site in units of kT [21,22].

The toroidal partition function (TPF) Z is defined as
the order 1 part of the partition function Z for confor-
mally invariant system of N columns and M rows. It
follows from Eq. (72) that

Since z and z+ merge at 6, = —4, this phase appears
only when a & 4. Figure 7(b) shows the full phase bound-
aries for a = 7 and Fig. 9 shows the domain-wall density
as a function of in@2 for 4 = —4 and —5.

0.8

) e™/e NMf-
N, M moo

MlN =fixe a

=) exp—2sM( ( — c i+b, ——[sin8

0.4-

+i (b, —b, ) cos8
H

(qq)
—c/24 ) (73)

0.2
where q, the modular parameter, is given by

q=e (74)

-0.5

1n X2

0.5
with

p i{+—8}
N ) (75)

FIG. S. Typical x2 dependence of the demain-mall densi-
ties for A = —4.0 and —5.0. The curves are for a = A + 0.1.
This is obtained &om the equation of state [Eq. (31)) where
configuratienal free energy is taken frem the numerical solu-

tion of the BAE with N = 150.

q is the complex conjugate of q and the s»m is over the
infinite set of levels whose energy E scales as Eq. (72).
In the 6rst part of this section we use the notation q to
denote the modular parameter [Eq. (74)]. This is not to
be confused with the domain-wall density.
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1 ) q&-.-(g)q&-, -(g-)
ln(q)l' „ (76)

where g is the so-called Gaussian coupling constant,

+ i/gm I

and )7(q) is the Dedekind eta
4 (, ~g

function;

For the Gaussian model compactified on a circle, or
equivalently, the symmetric six-vertex model in the con-
tinuum limit, the TPF under periodic boundary condi-
tions in both directions is given by the c = 1 Coulombic
partition function [23]

n(q) = q" (1 —q")
~ 4 ~

n=1.
(77)

One can impose U(l) boundary conditions on the six-
vertex model instead of periodic boundary conditions.
In the Pauli spin representation, the twisted boundary
condition is

(~)v+i + i~N+i) = e (~i + i~i) ~ (78)

where p is the twisting angle. The Coulombic toroidal
partition function is then modified to [24]

] ~ I

&~(g) = ) e
—'

V q&, «a (g-)q&, ( ~&-o )(-g)

l~(q) I' „,, (79)

where (p and p are the twisting angles in the space and time directions, respectively.
After this short review, we now turn to the critical properties of the IC phase. It is generally known that the striped

IC phase is critical and described by the c = 1 conformal-field theory in the continuum limit [1,25]. In the fermion
model approach, Park and Widom [6] calculated exact toroidal partition function explicitly for the free fermion, i.e.,
noninteracting domain-wall system and showed that it is of the form of Eq. (79) where g = 1/2, (p' = 0, and y/27r is
the number of the domain walls per row (mod 1). Note that the twisted boundary condition used in Ref. [6] has no
direct physical meaning.

For the T = 0 TAFIM without the second-neighbor interaction, the central charge and the scaling dimensions of
several operators are calculated analytically [25]. Since all the transfer matrix spectra are known from the Onsager
solution in this case, one may go one step further and calculate the toroidal partition function explicitly. We present
the calculation in Appendix B.

When b, = 0, the TPF Zs „,of the five-vertex model can be obtained from the Z&(A'F)&M of Appendix 8, by using
the relation Eq. (15). The result is

C2

, (l~i(» q)I'+ l&2(» q)l'+ l~s(» q)l'+ 1~4(» q)l')

2iaoMm—, (en+ +o ) /-2=(~ o ) / (g ())
l~(q) I' „,, (80)

This takes the final form after the modular transformation r ~ r = —1/7;

—iwqgm 6,„go(g=i/2) -A („g ) (g=l/2) (g 0)
1

l~(q)l'

where Qo and Qi are given in Eqs. (828) and (829), re-
spectively. This is the exactly Coulombic partition func-
tion with the twisting angle y = 2mQO and p' = irQi.

Note that this can be also obtained by replacing (m, n)
in Eq. (B30) by (2m, n/2). In Sec. II, we gave the relation
between the transfer matrices of the T = 0 TAFIM and
the five-vertex model. Tz „contains odd Q sectors while

T&&F&M contains the spin-reversal odd sector, TL, —T~.(o)

So, one expects Z5 „can be obtained &om X&A'F&M by
-(o,o)

adding terms coming from the odd Q sectors and elimi-
nating the terms originated &om Tl. —T~. Our results
show that this is exactly done by a simple substitution
of (m, n) by (2m, n/2).

Equation (81) implies that the IC phase of the non-
interacting domain-wall model is in the universality class
of the Gaussian model with coupling constant g = 1/2

m2
Re(Z gj =

I
-(Q —Qo)'+

c )

12)

(82)

regardless of the anisotropies in the fugacity of the do-
main walls. This result is in accord with previous works
but it confirms the universality in the strongest sense.

We assume that the eKect of domain-wall interactions
preserves the c = 1 nature throughout the IC phase even
though it may change the modular parameters, the cou-
pling constant, etc. Since the coupling constant g deter-
mines the critical exponents, its possible dependence on
interactions over the IC phase is of interest. If we denote
the eigenvalue of T5 „corresponding to the mth spin-
wave operator in the sector Q by e &, it is expected
to take the form in the IC phase
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where Qp ——qN is the average number of domain walls

per row. Here and below, q denotes the domain-wall

density. We now calculate g perturbatively in the small

4 limit and numerically for a wide range of b, . During
the perturbative calculation with (b,

~
( 1, we will only

consider the isotropic case (a = 1) for simplicity. In this

case, the eigenvalue e & of the transfer matrix with
4=0is

Re(E q(h =0)) =
~ p+

2~+ (m' g'(Q- Q.)'

+Nf, (»)
where c = 1, ( =

z tan(z'q/2), and g =
z as given in

Appendix B and the superscripts in g and ( denote the
value for the noninteracting case. If we insert pz ——n~+u~

I

where 8 is

u~ =iq 8+ 4e (84)

sinzq 2, ym (.
8 = —~

&q ( 6N2) (85)

that is determined from the condition P. uz ——0. With
this solution (u~), we can calculate the energy shift

bE,q
—= E q(h P 0) —E q(b = 0) due to the inter-

action

into the BAE where nz
——I~ + m is the solution of the

6 = 0 BAE for the mth excited state in a given Q sector,
the resulting equation for u~ is, up to the first order in

2 2

&q' q . l ~ . , ~q . hami' z. (q . i 51)= &
I

—+ —»n~q + &12sin ——zq»nzq
I

—
I

+ &
I

—»n~q I+ o
I(2 2vr ) & 2 iN& 6N' &2 & (6') (86)

Using the value of Re(E q)/N at b, = 0, we can write down the energy Re(E q(b, )j up to the first order in b, .

. 2Xq)zqsinzq+ 4sin
8x 2]

zzq . & x (pp Aq. l (11
n ——zqsinzq [

—
~

t,
" c — sinzq

~
+ O

~

2 i 6¹g 2 ) gb2)

1—Re(E q(b, )j = Re(E q—(b, = 0)) + —Re(bE, q)
1 1

&Q —Qo&' t.'g'

(m 2 t,
'p b,

+2m
(
— + —

~

2si
&N 2gP 2~ E

—:f' +
~

—(Q —Qp) + —m —c/12
~

2mt,
' t'g

Nz g2 )2g

(87)

The new anisotropy factor t,', the Gaussian coupling constant g and the central charge c are obtained by comparing
the last two expressions,

c = 1)

g =
2 (1 ——sinwq) + O(b, ),

2 tan ~z (1 —2b, qcos ~2) + O(h )

(88)

The result from the first-order perturbation calculation shows that the interaction between domain walls causes a
continuous variation of the coupling constant g so the scaling dimensions vary continuously as a function of the
interaction parameter 6.

For larger values of b„g can be evaluated numerically by the finite-size corrections of the eigenvalue of the transfer
matrix [Eq. (72)j. Suppose the model parameters are tuned in such a way that Qp ——Nq is an integer. That is, we are
considering the case of q being integer multiple of 1/N. From Eq. (82), g and (sin8 can be evaluated if we calculate
four eigenvalues E q with (m, Q) = (0 Qp), (0 Qp+1) and (1,Qp).

g = Re Ep,g,+g+Ep, g, g
—2Ep, g, Re Eg,g, —Ep,g, 2

N
Re(+p, q +1 + @o,qo —1 —2Ep q, jRe(Eg q, —Eo,qo)/2 (89)

Necessary E g's are obtained by solving the BAH for
N up to 150. The coupling constant g obtained in this
way is shown in Fig. 10 as a function of q for several
values of b, for a particular value of a = ~E~ + 0.1. Note

that the value of g starts from around 1/2 at q = 0 and
ends at 1/2 at q = 1 and varies smoothly when b, ) —4.
The values g = 1/2 at q = 0 are easily understood since
the interaction efFect will vanish in these limits. So is
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the case for q = 1 and 4 + a ( 1. When. 4 & —4, the
value of g approaches 2 as q -+ 1/2. The fact that g = 2
exactly in the q ~ 1/2 limit can be derived analytically
following the procedure similar to that used by Gwa and
Spohn [26].

The domain-wall model is obtained from the TAFIM
by neglecting the spin configurations in which three spins
on any elementary triangle are in the same state. This
excitation. driven by the thermal Buctuation creates or
annihilates two domain walls at a time and causes a
domain-wall density dislocation. (See Fig. 11.) When
two dislocations of up triangle and down triangle occur
in pair, the density dislocation remains as a local de-
fect. These pair excitations are analogous to the vor-
tex and antivortex pair excitations in the XY model.
The scaling dimension for the density dislocation [9] is
xo 2

—= 60 2+ 60 2 since such excitation creates or an-
nihilates two domain walls. Since zo 2

——2g we see that
when g ( 1 (xo 2 ( 2) the density dislocation is relevant
and destroys the criticality of the IC phase. Therefore, if
dislocations are allowed with finite costs of energy, the IC
phase cannot remain critical and becomes the disordered
Quid phase. On the other hand, when g & 1 (zo, 2 ) 2)
the density dislocation is irrelevant and the criticality
of the IC phase survives. At the boundary g = 1, the
Kosterlitz- Thouless (KT) transition would occur. Since
the noninteracting domain-wall system has g = 1/2, the
critical IC phase cannot survive from the density dislo-
cation. However as seen in Fig. 10, g crosses the critical
value g = 1 in the region of repulsive (6 ( 0) interac-
tions. The dotted line in Fig. 7(b) inside the IC phase
denotes the position where g takes the value 1.

So, we conclude that the IC phase near the q = 1/2 C
phase is stable under the density dislocation. This shows
that there are three phases encountered if we consider the
dislocation eKect. They are long-range ordered q = 1/2

—.5.o

I I I I I I I I I

(i () 1 ()'I 0) () 1 Oi ()G 0 7 OH ()') 1

FIG. 10. The Gaussian coupling constant g calcu-
lated numerically with lattice size N = 150 and

0.5, 0.0, —0.5, —2.0, —3.0, —4.0, and —5.0. For each
curve, a is set to the value a = ~b,

~
+ 0.1.

8 1])

FIG. 11. Effect of finite temperature in TAFIM is to excite
dislocations in domain walls. Simultaneous creation of vortex

(a) and antivortex (b) pairs as in (c) destroys the IC phase if

g ( 1 but is irrelevant if g ) 1.

C phase, quasi-long-range ordered IC phase, and the dis-
ordered phase. They are separated by the PT transition
and the KT transition. It also explains the phase dia-
gram of the TAFIM with the isotropic NNN interaction
obtained by Monte Carlo simulation [11].

V. SUMMARY AND DISCUSSION

In this work, we have introduced a solvable interacting-
domain-wall model derived from the T = 0 TAFIM
with anisotropic nearest-neighbor and NNN interactions.
The model is shown to be equivalent to the five-vertex
model and exact phase diagram is obtained in the three-
dimensional parameter space. It shows C phases where
the domain-wall density is 0, 1/2, or 1 and the IC phase
in between.

The IC phase is a critical phase described by the Gaus-
sian fixed point. The Gaussian coupling constant g which
determines the scaling dimensions of operators is a func-
tion of the model parameters and changes smoothly from
1/2 at q = 0 and q = 1 phase boundaries to 2 at the

q = 1/2 phase boundary. As the interaction is turned
on, it decreases (increases) for the attractive (repulsive)
interaction. For strong repulsive interactions, there is
a region with g ) 1 in which dislocation is irrelevant.
Therefore the scenario proposed by Nienhuis, Hilhorst,
and Blote for the effect of the isotropic NNN interaction
in the T = 0 TAFIM is partly born out in this model.

We also have shown by the explicit calculation of the
TPF of the noninteracting T=O TAFIM that it renor-
malizes to the Gaussian 6xed point with the coupling
constant g=2. This is in accord with previous works.
But, the transfer matrix spectra of the five-vertex model
with A = 0 and that of the noninteracting T=O TAFIM
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are different in that some sectors present in one are ab-
sent in the other. This redistribution of sectors or op-
erator content changes g of the five-vertex model to 1/2
when b. = 0. The TPF of the five-vertex model is found
to take the form of the symmetric six-vertex model with
the twisted boundary conditions. A fractional part of the
number of domain walls across a row and a column de-
termines the twisting angles of U(1) boundary conditions
along the space and time directions, respectively.

The model considered in this work is rather special
in that only one type of domain wall interacts. For the
fully interacting case, say y1 ——y~

——y, one needs to rely
on less accurate numerical methods. The effects of the
interaction between domain walls in both directions on
the phase diagram and the critical properties of the IC
phase are of interest and left for further works.

ACKNOWLEDGMENTS

We thank discussions with F.Y. Wu and H. Park. This
work was supported by KOSEF through the grant to
Center for Theoretical Physics. J. D. Noh also thanks
the Dawoo Foundation for its support.

APPENDIX A

In this appendix, we discuss the Yang-Baxter equa-
tion {YBE) of the five-vertex model and alternative
parametrization from which the corresponding quantum
chain Hamiltonian is derived.

The YBE for the five-vertex model is given by

(1g R) (R'g1) (18R")

= (R" 3 1) (18R') (R g 1), (AI)

As a result, the transfer matrix of Ts „having three in-
dependent parameters forms a two-parameter family of
commuting matrices. Vertex weights of the five-vertex
model used in this work is given by Eq. (6). If one
parametrizes them alternatively as

%01 = e
t02 = 1)
QJ3 = 0)

(e' —e")/6, ,
tu = m = e"/'2

5 — 6—

(A5)

Im" = e"1
iv" = e"(e" ' —e" ")/b,

II II (u' —u)/2ms —t06 —e
(A7)

Standard parametrizations of solutions to the YBE in-
volve the so-called spectral parameter u with which the
YBE displays the difFerence property; i.e., if R = R(u)
and R' = R(u') then R" = R(u' —u). At critical-
ity, it gives the physical meaning of the anisotropy an-
gle [22]. Also, the corresponding quantum chain Hamil-
tonian commuting with the transfer matrix is obtained
by the logarithmic derivative at u = 0. We find from
Eq. (A7) that the five-vertex model also displays the dif-
ference property if we set v = 0. This is the special case
ivi ——iv2 considered in Ref. [17].

We calculated the quantum Hamiltonian 'R of the one-
dimensional quantum spin chain by taking the logarith-
mic derivative of the transfer matrix at u = 0 for the case
of v = 0. The result is

and similarly for iv,"s, the transfer matrices T, .(u, v; 6)
with difFerent u and v commute, i.e.,

[ Ts „(u,v;b, ), T, .(u', v';b, ) ] = 0 (A6)

for all u, u', v, and v'. Equation (A4) with above
parametrization becomes

where 1 is the 2 x 2 unit matrix, denotes the direct
product, R is the 4 x 4 matrix given by —1

5-v
+5-v

fivi 0 0 0 )
0 t05 t03 0
o iv4 ~s o
0 0 0 ivz)

(A2)

u, v=0
N

~~ ~

h+ h hg hg
i i+1 + i i+14i=1

(A8)

and finally R' {R")is the same as R with iv; replaced
by iv! (ur!'). When tos ——ivs ——0, the YBE has a solution
provided

I I I I~1~2 - ~5~6 ~1~2 - ~5 6
I I

tu2m4 ~2tU4
(A3)

The solution under the normalization m2 ——m2
——mz' ——1

1s

II
%01 = Q)1 tU1 )

where a; is the quantnm spin density operator at site i.
This non-Hermitian Hamiltonian is similar to the Hamil-
tonian of the XXZ quantum spin chain. The difference
is that there is no term s,. a,+i in this model. So, there
is a net Qux of the spin Bow kom the right to the left
of the chain. It comes &om the anisotropic choice of the
vertex weights at the beginning.

APPENDIX B
IIt03 = Oq

~1t04 —~4to& ~5~6,
IItos = QJ5 tos q

(A4)

In this appendix, we present the phase diagram of the
T = 0 TAFIM with anisotropic nearest-neighbor interac-
tion and the toroidal partition functions under the gen-
eral boundary conditions.

Through the star-triangle relation, the Ising model on
the triangular lattice can be mapped into the Ising model
on the honeycomb lattice [18]. Let K; = K+ b; and
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(j = 1, 2, 3) be the interaction strength (including
the factor —1/kT) of the Ising model on the triangular
and honeycomb lattice, respectively. Then, the partition
functions ZTAF1M on a triangular lattice with A' sites and
Z„on a honeycomb lattice with 2JV sites are related by

where

Z' Z + Zk Z'
sinh2L, = —', cosh2L; =

k 2ZjZA.

2Z1 Z2Z3

Q2 (83)

&a(L, 2&) = & &T~F1M(~,&) (81)

provided K and L satisfy the star-triangle relation:

exP [K18283 + K28381 + %38182]

= R ) exp [t(L1a2 + L2s2 + Lsas)] . (82)

Here R is the normalization factor.
If we take the zero-temperature limit K —+ —oo, the

solution of the star-triangle relation is

2biz;=e

k = (4z, z~ z&)/[(zz + z& —z; ) —4z~ zl, ]

and (i, j, k) is a cyclic permutation of (1,2,3).
Now, we consider the transfer matrix T„" on the

honeycomb lattice whose matrix element T„" (a, t) is
the Boltzmann weight for a spin con6guration shown in
Fig. 12;

M/2

T~"l(a, t) = ) exp ) Lst2 t2
vi=+1 m=1

M/2

X exp L3T2m —1T2m
m=1

= (T~Tg1Tc Tg2) (a, t).

M/2

exp (L1T2m —lt2m —1+ L2T2mt2m
m=1

M/2

exp (L182mT2m + L282m 1T2m 1— —
m=1

(84)

M/2

~ h ~ h

m=1

T Z Zexp L302 CT2

The superscript p (= 0, 1) denotes the boundary condi-
tion aM+1 ' ——(—1)"s1i. Each of the four factors in the
first two lines in Eq. (84) defines the four matrices T~,
T~1, T~ and T~2, respectively. Their operator forms are

where R is the spin-reversal operator.
Following the same procedure as in Ref. [27], we di-

agonalized the transfer matrix Eq. (84) exactly. If we

write the transfer matrix as T„" = (4z1z2/k ) e
M/2

then the Hamiltonian 'R after the usual signer-Jordan
transformation can be written as

/4, , 1 / /

k2 ~I h

m=1
exp L1+2 —1 L2+2

'R = —) (e1(k)(2nl, —1) + e2(k)(2m' —1)}, (87)1

(4 ) M/4 M/

h ~ 1

m=1
M/2

exp L2o.2 1+L1*0.2

(85) where nI, and mp are the mutually commuting occupa-
tion number operators with eigenvalue nI„mg ——0, 1 and
e1(k) and e2(k) are the quasiparticle excitation energy
which is given by

~ 1 4 ~

m=1

T Z Z
eXp L3+2m —1+2m e1(k) = sgn(k) cosh t+ —cosh p —icos t

(88)
where cr,"- is the Pauli spin operator at site i and e
tanh L;. Putting N rows of Fig. 12 in succession and ap-
plying the star —triangle transformation gives the M x N
triangular lattice whose basis vectors are rotated by 90
&om those of Fig. 1(a). Thus, to calculate the toroidal
partition function of T = 0 TAFIM, we instead carry
out the calculation using T„.The boundary condition
along the vertical direction is 8; 1v+1

——(—1)"8; 1. For

each boundary condition, the partition function ZT"„'",

is written as

e2(k) = sgn(k) cosh t~ + cosh p —icos

where

Ll

(p,v) (y)
TAFIM R", (86) FIG. 12. The honeycomb lattice transfer matrix.
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zs 2zs cosk
C~ —— + — 4+

4Z1 Z2 2 4Zy Z2 Z&Z2

z +z1 2S7-
2ZQ Z2

(89)

where

d6y

dk „ s+

k,M
0! = 4'

Q(2zl + 2z2 —1) —(zl —z2)
2(z2 + z22) —1

k,M
4m

(815)

From now on, we set zs ——1 since all quantities are func-
tions of ZI/zs and z2/zs only. z;/zs in this section is
equal to z; of the text if s; = 0. [See Eq. (4).] The values
of k are restricted to the set

with [z] denoting the integer part of z. The ground-state
energies for each sector under antiperiodic boundary con-
dition (p, = 1) are

2Ir 2g —1+p if p„(ns+ms) = even
27+ p if QS(Ill, + ml, ) = odd

EO (816)

where

( 2 ) —JV/2

xi —
i

gzs)

) exp( —N P [ee(k)eee
even (odd)

+ee(k)eee))

(811)

(810)

for boundary condition y, along the horizontal direction.
The partition function ZTA'F&M is given by

The quantity 2 ln (zs/2) —
4 J& el(k)dk is the bulk free

energy f~ per site.
From the predictions of the conformal-field theory, we

know that the transfer matrix has gapless excitations
with the linear dispersion relation at the criticality. The
quasiparticle excitation energies become zero at k = +k,
where

cosk, = (zl + Z2) —(zl —z2)
2Z] Z2

(817)

in the range ~zl —z2~ & zs and ~zl + z2~ & zs. So, we
conclude that the system is critical in this range. This
includes the result of Blote and Hilhorst [8] who treated
the case zl ——z2.

The toroidal partition function ZT("A'F)&M under the gen-
eral boundary condition (p, v) is given as

M/2

E,"= ——)
m=1

= —) el

�

2m. 2'—(2II—1+p) + e2 —(»—I+V)M M j
2x—(2n —1+@)M

M/2
gv ) ( 2Ir(2n+p)

M

2'�(2II+p)
M

2Ir(2n+ p)
M

P,„,„(P&&) denoting the sums over the occupation
number configurations (ns, ms = 0, 1) under the restric~
tion p&(nl, + ml, ) = even (odd), respectively, and the
values of k are given in Eq. (810). We will say a state is
in an even (odd) sector if Ps(ns+ ms) is even (odd). In
Eq. (Bll) E," and E" are the ground-state energy in the
respective sectors and are given by

(~ ~) ~ (~,~) —NMf
+TAFIM ™~TAFIM /

N, M-+cm
M/N=fixed

(818)

Especially, the toroidal partition function for periodic
boundary condition in both directions is given as

-(0,0)
TAFIM

'~~ e', (I/12 —n') go
Pf, M -+oo even

N/M =fixe

4~~~ eo [I/12 —(1/2 —n) j g0e odd (81e)

el 2(k) = e' ~k p k,
~

—iao(k —k, ) p ia(), (820)

Since N is large, the modes near k = +k, whose energy
scales like 1/M contribute factors of O(l) in the sum.
Therefore, for M, N m oo with N/M fixed, we may re-
place the dispersion relation by the linear one

We obtain the finite corrections to EI' and E" from the
Euler-Mclaurin formula. The results for periodic bound-
aIycoIldltlo'I1 (p = 0) are

where

~& ~=~+

Z2 Zg
2 2

2(z2+ z2) —1'
4 I

2 4

M 2&
4Ireo (' 1.,(k)dk- '

I

——(1/2- a)' I,4x M g12
(814)

1 —Zl Z2
2 2

cos ao ——cos a(k, ) =
2ZQ Z2

(821)

The restricted sums can be done conveniently using the
transformation
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where

k= &~ (2n —1) ng ——O, lM

7 0

4%'ft ng O
M

and similarly for 7 ' and 7
After a lengthy calculation with this linear dispersion relation Eq. (820), we obtain

-a
zTA~PIM -

2 (
—l~~(* t))l' + l~~(* t))l' + l~s(* q)l' + (~4(* q)l')

where q(q) = q~) 24 Q„z(1—q") is the Dedekind eta function, 6; are the Jacobi theta function [23I, q = e ' with

2iN (
7 = (EO + wxo)

and finally

AON

2
+ 7t A'T

Following the same procedures, we can also calculate Z&&FIM under the general boundary condition (p, v). We
present only the results.

-(X,O)
TAFIM

-(O,~)
TAFIM

-(i,z)
TAFIM

- a-, (l~~(z q)I'+ I~2(z q)l'+ l~s(z q)I' —1~4(z q)I')

-a
, (l~i(z q) I' —I~2(z q) I'+ l~s(z q) I'+ 1~4(z q) I')

-a-, (l~~(z q)I'+ 1~2(»q)l' —l~s(z q)I'+ 1~4(»q)l').

(824)

The toroidal partition function Z ~„'»M can be rewritten as an infinite series in q. Using the series form of 8 s and
rearranging the summands, we obtain

™[(2+p)/2+ + /2] /2 =[(2 +P)/2+ — /2] /2
q

'7

(825)

To compare with the triangular lattice shown in Fig. 1(a), we perform the modular transformation 7 m v = 1/7—
This is achieved by applying Poisson sum formula to both summation indices n and m in Eq. (825). The resulting
expression for the periodic boundary condition (p, = 0, v = 0) is

g(O&O) g ~ —2miam [m/2+(n —aors/2n )] /2 —[m/2 —(n —aoN/2n )] /2

I ( )I' g (826)

where q = e ' . Note that

O i(~—e, )I
N

and

2 2
Z2 Zl

K —
HO = cos

/2(z2 + z2) —1

with

q' = L2(z2+.,') —1]'"y2

This is exactly the Coulombic partition function with the
twisted boundary conditions and the coupling constant

g = 2.
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Since z s are the activities of the diamonds shown in

Fig. 1(b), one easily obtains [8] from the bulk free en-

ergy that the mean domain-wall densities of each type
are given by

(ng + n2)/N' = ap/n. ,

(B27)

(ng —n2)/JV = k, /n,

wall densities as

n(n~+ n2)
noN =

M
=n p~

7l Ay —A2
27lA =

N 2

(B28)

(B29)

with np and k, given by Eq. (B21) and (B17), respec-
tively. Therefore, one sees that the twisting angles apN
and —2na in Eq. (B26) are related to the total domain-

where Qp is the number of domain walls per row and Qq

is the difference of number of type-1 domain walls and

that of type 2 per colnmn. Using these quantities, Z»r, M
-(o,o)

is written as

~
—img1rn/2 D~ ~ g f 2 (g=2) -& ( ~ ]~)(g—2)AF™

]r/(q) [2
tn)nQ Z

(BaO)

where b, „(g) = (m/~g+ ~gn) /4.
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