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Order-parameter flow in the fully connected Hopfield model near saturation
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We present an exact dynamical theory, valid on finite time scales, to describe the fully connected
Hopfield model near saturation in terms of deterministic flow equations for order parameters. Two
transparent assumptions allow us to perform a replica calculation of the distribution of intrinsic-noise
components of the alignment fields. Numerical simulations support our assumptions and indicate that
our equations describe the shape of the intrinsic-noise distribution and the macroscopic dynamics
correctly in the region where replica symmetry is stable. In equilibrium our theory reproduces the
saddle-point equations obtained in the thermodynamic analysis by Amit, Gutfreund, and Sompolinsky
[Phys. Rev. A 32, 1007 (1985); Phys. Rev. Lett. 55, 1530 (1985)],the only difference being the absence in
the present formalism of negative entropies at low temperatures.

PACS number(s): 05.50.+q, 05.70.—a, 87.10.+e

I. I¹RODUCrxON

We present an exact dynamical theory, derived from
inicroscopic principles and valid on finite time scales, to
describe the fully connected Hopfield model [1] with an
extensive number of stored patterns in terms of deter-
ministic Sow equations for macroscopic order parame-
ters. At present there is yet no such exact dynamical
theory available. The equilibrium properties of the
Hopfield model have been studied by Amit, Gutfreund,
and Sompolinsky [2]. Most dynamical studies so far,
however, have been concerned with systems with addi-
tional simplifying features such as extreme dilution of in-
teractions [3] or small numbers of stored patterns [4,5].
Alternatively, some authors have concentrated on the
first few time steps [6], dynamics near equilibrium [7], or
interpolations between these two temporal limiting cases
[8]. However, the present successful treatment is applica-
ble even for high connectivity, high storage, and arbitrary
finite time scales.

There' are several reasons why there is a need for an
analytical dynamical theory to describe the fully connect-
ed Hopfield model with an extensive number of patterns
on finite time scales. First, it has been known for quite
some time that the equilibrium theory by Amit, Gut-
freund, and Sompolinsky [2] and its replica symmetry
breaking adaptation [9] do not describe the remanant
"ferromagnetic" order in the spin-glass region of the
phase diagram, as observed on the time scales involved in
simulation experiments [10]. Second, in contrast to the
relatively simple Hopfield model, fully connected non-
symmetric recurrent neural networks cannot be studied
with tools from equilibrium statistical mechanics. The
dynamics of the latter type of models (which do not obey
detailed balance) has been solved only for the case of hav-
ing a relatively small number of stored patterns (see [11]
for an overview}. One cannot expect to be able to solve
the case of an extensive number of stored patterns if the
corresponding situation for the (symtnetric} Hopfield
model still poses an open problem.

The main difficulty in studying the dynamics of the ful-

ly connected Hopfield model with extensive pattern load-
ing lies in the analytical treatment of the intrinsic noise
components in the local alignment fields (which result
from overlaps with the so-called uncondensed patterns),
which in general cannot be absorbed into the system's or-
der parameters (as for small pattern loading) nor be treat-
ed as independent Gaussian variables (as with extremely
diluted models). Simulation studies clearly indicate [12]
that the intrinsic noise distribution will remain Gaussian
only if the system evolves towards a pattern reconstruct-
ing (or ferromagnetic) attractor. This explains why many
phenomenological theories fail (such as [12,13]), which
are based on the assumption of a Gaussian shape of the
intrinsic noise distribution. In this paper we show how
two transparent physical assumptions (one of which is
clearly backed up by numerical simulations) allow one to
calculate analytically the intrinsic noise distribution.
This calculation allows us to develop an analytical
theory, derived from microscopic principles, to describe
(in the thermodynamic limit) the retrieval dynamics of
symmetric and nonsymmetric fully connected attractor
neural networks with an extensive number of stored pat-
terns in terms of deterministic equations for a finite num-
ber of order parameters. Preliminary presentation of
some of the results of the present paper has been given in
[14].

II. DYNAMICS OF THE HOPFIELD MODEL
NEAR SATURATION

A. Definitions and macroscopic laws

The Hopfield model [1] consists of N neurons or Ising
spins s; H [ —1,1], i = 1, . . . , N (s; = 1 indicates that neu-
ron i is firing with maximum frequency and s; = —1 indi-
cates that it is at rest) with infinite-range symmetric in-
teractions J;~. The evolution in time of the probability
p, (s) to find the system at time t in state s= (s„.. . , sz)
is governed by a Markov process, based on stochastic
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alignment of the spins to local fields h;(s):

The vectors p—:(p„. . . , pz) F [
—1, 1] represent

stored patterns which are meant to become attractors of
the system by virtue of the above choice for the matrix of
interactions J; . The individual pattern components g,
are assumed to be drawn independently at random from

[
—1, 1]. We will restrict our discussion to stochastic

networks governed by a continuous-time Markov pro-
cess, described by the master equation

N—p, (s) = g [p, (Fks)wk(Fks) —p, (s)w„(s)], (1)
k=1

in which Fk is a spin-Hip operator Fk@(s}
=4(s&, . . . , —sk, . . . , sz } and the transition rates wk(s)
have the usual form

wk(s) —=—,
' [1—sktanh[Phk(s)] j .

The so-called "condensed ansatz" (introduced in equilib-
rium statistical mechanical studies [2]) implies that one
assumes that the correlations m„(s):—( I/N)gkgsk be-
tween system state and stored patterns are of order one
only for a finite number n of so-called "condensed" pat-

I

terns. In order to keep the problem as transparent as
possible we set n = 1 ( generalization to n & 1 is straight-
forward) and take pattern one to be condensed. The

remaining p —1 correlations are assumed to be of order
, their cumulative impact on the system's dynamics

being measured by the order parameter r(s):

P 1
x

m(s)=——g (ksk, r(s)= —g —g skPka „
Local alignment fields can now be written as

h, (s}=g,'[m(s)+z, (s)]——s, ,
1

(2)
P 1

z;(s) =k' & P; N & Pksl .
p) 1 k (Wi)

In the spirit of the dynamical treatment of the simpler
situation p &(&N [4,11] (i.e., far away from saturation}
we introduce a distribution which measures the probabili-
ty density in terms of the macroscopic order parameters
(m, r):

P, (m, r ) =g p, (s)5(m m(s—) )5(r —r(s) ) .

By inserting the microscopic equation (1) we can write
the time derivative of the macroscopic distribution for
large N in the form

2 ] 4—P, (m, r)=gp, (s) g w;(s) 5 m —m(s)+ —
g,'s; 5 r —r(s)+ —s, g,'z;(s) —5(m —m(s))5(r —r(s)) .

N

Bm, ' N,g p, (s)—g [ 1 —s;tanh[Ph;(s) ] ] g,'s;5(m —m (s) )5(r —r(s) )

N

+2 gp, (s)—g [1—s, tanh[Ph;(s)]]g, 's;z;(s)5(m —m(s))5(r —r(s))
s pr

1 S
+—g p, (s)5(m —m(s))5(r —r(s)) . 6 1,—g ~z; ~,

—g z;N, ' 'N, .

P, (m, r) m —f dz D „., [z]tanh[Pm+Pz]

+2 P, (m, r) r —1 ——f dz D „., [z]z tanh[Pm+Pz]
8 1

+ P, im, r} . G 1, f dz—D „., [z]~z~, f dz D „., [z]z (4)

All complicated terms are now concentrated in the distribution

gp, (s)5(m —m (s) )5(r —r(s })—g 5(z —z, (s) }
1

D, , [z]=
gp, (s)5(m —m (s) )5(r —r(s) )

Thus far no approximations have been used; Eq. (4) is still exact. In dynamical terms the condensed ansatz reads

f dzD „,[z]z =6(1) for N~. oo .
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On finite time scales it causes Eq. (4) to acquire the Liou-
ville form in the thermodynamic limit N~ ~ and there-
by leads to deterministic evolution of the order parame-
ters (m, r):

P,(m, r}=5{m—m (t))5(r —r (t)) (N~ao) (6)

in which the deterministic trajectory (m'(t), r'(r)) is
given by the solution of the coupled set of low equations:

N=2000
I I

I
I I I

I
I I I

I
I I I

10

N=4000
I I

I
I I I

I
I I I

I
I I I

m = f dz D, , [z]tanh[Prn+Pz] —m, (7) 0
» I » i I « i I «r o I I I I I I l I I I I ( I I I ( I I I-

.4 .B .B 1 0 .a .4 .e .e

r= —J dz D „., [z]z tanh[prn+pz]+ I r. —(8)
1

2dt a

B. Self-averaging and equiyartitioning
of probability in macroscopic snbshells:

Closure of macroscopic laws

gl I I
I

I
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I
I I I
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The fiow equations (7) and (8) are exact within the con-
densed ansatz, but have the disadvantage that they con-
tain the distribution D „., [z] (5), which is defined in
terms of the solution p, (s) of the microscopic equation
(1). Equivalently (since the master equation is a first-
order differential equation) we might say that the explicit
time dependence in the right-hand sides of (7} and (8} is
determined by the initial microscopic distribution po(s).

In the phenomenological dynamical theories presented
in [12,13] one simply assumes D „., [z] to have a Gauss-
ian shape and subsequently tries to arrive at self-
consistent rules to determine the first two moments of
this distribution. However, numerical simulations show
that D „., [z] remains Gaussian only for those iterations
that lead to a final state with a finite value for the order
parameter m [12]. In order to close the set of equations
(7) and (8) we make two simple assumptions on the
asymptotic (N~ ~) form of the intrinsic noise distribu-
tion D, , [z].

(i) The deterministic laws describing the evolution in
time of the order parameters (m, r) are self averaging w-ith

respect to the distribution of stored patterns [PJ.
Therefore the intrinsic noise distribution in self-averaging
as well.

0 -I
I I I I I I I I I I I »

0 .8 .4 .B
0 I I

0
I I I I I I I I I I I I

.4 .B .B 1

FIG. 1. Trajectories in the (m, r) plane obtained by perform-
ing zero-temperature sequential simulations of the Hopfield
model with a=0. 1 for t&[0,10] iterations/spin. The initial
states generating the difFerent trajectories (labeled by
I =0, . . . , 10) were drawn at random according to
po{s}=P; [z (1+1/10)5,+-'{1—I/10)5, ], such that

I I

(m ),=0=0.1l and (r ),=0=1.

Assumption (i) allows us to simplify the problem by
performing an average over the (quenched) random vari-
ables [PI. As a consequence of assumption (ii} the expli-
cit time dependence in the fiow equations (7) and (8) and
the dependence on microscopic initial conditions are re-
moved, since the intrinsic noise distribution now becomes

(ii) If the intrinsic noise distribution is self-averaging
with respect to the pattern distribution we expect that, as
far as the calculation of D „.,[z] is concerned, we may
assume equipartitioning of probability in the macroscopic
(m, r) subshells of the ensemble.

+5(m —m {s))5(r —r(s) )—+5(z —z, (s) )
1

N, .D, , [z] +D „[z]—:-
+5{m —rn (s) )5(r —r(s) )

(9)

For sequential dynamics, the first of these assumptions is
clearly supported by experimental evidence, which we
present in Pig. 1. Each of the four graphs corresponds to
one particular realization of the stored patterns {g']. In-
creasing the system size shows that fluctuations in indivi-
dual trajectories eventually vanish and that well-defined
flow lines emerge, which for large N no longer depend on
the pattern realizations. On the typical time scales in-
volved in realistic experiments (t ~ 10 sequential
Glauber-type iteration steps per spin) it turns out that the
fiow in the (m, r) plane is indeed self-averaging with

l

respect to the (random) choice of patterns, as the system
size N increases. The second assumption cannot be tested
in such a direct manner; its validity will be established a
posterior by comparing the order parameter flow as pre-
dicted by the resulting theory with simulation results.

In equilibrium studies the above two assumptions are
in fact the basic building blocks of analysis as well, where
(i) is assumed and (ii) is a consequence of the Gibbs form
of the microscopic equilibrium distribution. The distri-
bution (9) will be calculated using the replica method.
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III. THE INTRINSIC NOISE DISTRIBUTION measure W:

A. Replica approach

We use the following replica expression for writing ex-
pectation values of a given state variable 4 over a given

I

which allows us to write (9) in the replica form

P 1
N nD, [z]=)im 6 z —6[ X 6r —X gzzz ii 6(m —m( s)16 (r r(—s )))'(,

)
p&1 N k &1 a=1

By writing the 5 functions involving r, m, and z in integral representation and performing gauge transformations on
pattern variables, we obtain

D „[z]=f e'"'limdx;, . N
21T n —+0 27T

2n

jdRdM exp (Ng[r R+mM ]—iz R exp —(XM Xi'ezz M{s ))(,i(a a a k

N

M[s')= (exp(
— —X 6[r)ezJ ——XR,N k, " a k lk ~N ] ~N g krak

k&1 k&1

'p —1

in which we have introduced the independent random variables g G [
—1, 1 j

We first work out the quantity M [s j (note that a =p/N unless it appears as an index, in which case a labels the n

replicas):

p —1

M[s j = d "z 8'(z;[s'j)exp — —(Iz[ ——gR z2+ s]z

with the distribution W(z; [s'j ):

1 1 1
W(z; [s j )—:5 z — g skr)k „=Q(z; [q,p j )

——b(z; j(q,p, w p s j )+8a a a
N

e
—(1/2)z (q )zdU 1

Q(z; Iq pj)= exp iu z —
—,
' g u q,pup

~,p (2m )"det[q j

a 849(z;Iq pj)
a(z; Iq~p, wars} )=

12 ~ wi pr
a,P, y, 5 Za Zp Zy Zg

in which q p(s)—:(1/N)gk»sksf and w prs(s)—= (1/N)gk ]sksgsgsk. We expand the remaining average in powers
of N and forget about vanishing orders:

M[s')=(exp ——JR,z, . i — zs rz6[z, + —XR z&z,
a 2p a

2 p 1

=exp[NQ[q, p, R j
—RIxg', ,q,p,R,s, j PIq p, R,w p s}]—

in which we have introduced the functions
t

A[q p, R }=aln f dz Q(z;[q pj)exp ——gR z
a

2
2x&az]+ gR s,zv'~

f dz9(z;[q pj)exp ——gR za

f dz 9(z;[q pj)exp ——'gR z
1 a

%[x,q p, R,$] j =—
2

1
P[q p, R,w p s j —=—Q[q p, R j+

dzh(z; [q p, w prs})exp — gR z-
a

f d z Q(z; jq p} )exp ——gR z
a
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In order to enable the averaging over the spin variables we define the quantities q( I s j ) —= I q &(s) j and

w( t s j ) —= [w & s(s) j as integration variables by inserting 5 functions, which are in turn written in integral form:apy5

a,P=1

Ndq &da~
exp iN pa &[q &

q—&([sj)]2' p

a,P, y, 5=1

Ndw~ sdb ttrs
exp iN g b tt s[w tt s w—tJ s([sj }]

277 p

This reduces our averages to single-site ones, involving an n-dimensional Ising spin:

D „[z]=f e'"'lim fdRdMdqdw da db
2 IT n ~0

Xexp N ig[rR +imM ]+i+a &q t3
a a,p

+i g b ttrsw prs+QIq t3, R j +(t} 1

a,p, y, 5 1V

Xexp P}q,SR„R',e„s}
——i XR, (exp

—
}q}xqt, RS, }

—it X M,s'
a a

Xexp (N —1)le(exp —iXMs s' Xe,,e's—'se
a a,p

S

i g b p ss s srs
a, p, y, 5

—s't X lk, s '
)p,

a
s

in which the order parameters q &, P and 4 define the
extremum of the extensive part }II of the exponent. One
immediate simplification is the result of demanding 4 to
be critical with respect to variation of w py5, which re-
moves the parameters w py5 and bapy5 from our problem
and simplifies %' to

p=&Iq ~,R j+i g [rR +mM ]+i g a &q &
a a,p

+lnexp —i Ms —i a pssP
a a,p

(10)

For large N we end up with a saddle-point problem. If
for the moment we neglect overall constants (which can
always be determined a posteriori by normalization) we
obtain the relatively simple expression

D, [z]—f e 'lim exp —AIxg, q &,P, s
277 n ~0

B. Replica-symmetric saddle points

4 is symmetric with respect to permutations of replica
indices; we make the replica-symmetric (RS) ansatz and
assume the relevant saddle point to be invariant under
the permutation group. Without loss of generality we
can choose a =0 [since the exponent }II (10) does not
depend on the diagonal elements a, by virtue of
q = 1]. With a modest amount of foresight we set

q p=5 tt+q(1 —5 p), a p= ,'iA(1 ——5 t.}),

R =—2iaP, M =ip .

If we define the Gaussian measure—1/2 —(1/2)Dy =—[2m] '~ e "~ }r dy we can write the relevant quan-
tities as

'IqRs=QRs[q, pj —
—,'narp —nm}M —

—,'nA, [1+(n —1)q]+ln f Dy cosh"(Ay+}M),

QRs(z;q )=
exp —

—,
' gz z&[[1+q(n —1)] 'n '+(1—q) '[5

&
—n ']j

a,p

+(2m }"[1+q(n—1))[1—q]"
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with which we obtain

QRs{q,p}= —
—,'(n —1)a in[1 —p(1 —q)]

—
—,'a in[1 —p(1+q(n —1))] .

The RS saddle-point equations for 4 become

p aq
[1—p(1 —q)][1—p(1+q(n —1))]

1 —p(1 —q)[1+q(n —1)]
1 —p(1+q(n —1))][1—p(1 —q)]

Dy cosh" y+p tanh Ay+@

f Dy cosh"(Xy+p)

f Dy cosh"(Ay+p)tanh2(Ay+p)
g

=
f Dy cosh "(Ay +p )

For n ~0 one obtains

1 —p(1 —q) pv aq
[1—p(1 —q)] 1 P(1

(12)
m =f Dy tanh(Ay+p), q= f Dy t»h (4'+p) .

By eliminating p we obtain a one-dimensional problem

q=F „Iql
in which

F „[q]= f Dy tanh [A (q)y +p(X(q), m )],
A,(q)—:

V'aq 2r —1+q —V(1 q) +—4rq

1 —q+V'(I q) +4rq-
m =fDy tanh[Ay+p(A, , m)] .

0
0 4 .8

FIG. 2. Illustration of the nonlinear map F „[q) for a=a. 1,
r =4.6, and m =0.1,0.2, . . . , 0.8,0.9 (from bottom to top). The
fixed points are the intersections of F with the diagonal.

This last equation uniquely determines p=p(&(q), m).
The saddle-point solution q (the fixed-point of H subse-
quently generates A(q), p(&(q ), m )»d

p(q)= [2r —1+q —l/(1 q)'+4rq—] —0
1

2r(1 —q)

[in principle there are two solutions p(q) of the saddle
point equations, one of which is eliminated by the re-
quirement 1 —p(1+q(n —1)))0, which is necessary for
Gas {q, p j to be well defined].

The typical shape of the map F is shown in Fig. 2. The
symmetry F „[q]=F „[q]implies for the saddle point

q( —m, r)=q(m, r), A( —m, r)=A(m, r),
p( m, r)=p(m, r),—p( —m, r)= —p(m, r) .

The physical significance of the RS order parameters is

m —ms r —rs sk
S

m —ms r —rs

1z= —X
ap p»

m —ms r —rs ksk
S

x5(m —m(s))5(r —r(s)) )'~' '

At stable fixed pints of the fiow equations (7) and (8) we can make the identification

0 ~0EA p ~rAGs ~

ap

where qE~ =—(( I /N ) gk (~s),„)(&I
is the usual Edwards-Anderson spin-glass order parameter [18] and

r~os ——( ( I /p ) g„» ( ( I /&N ) gk Qsk ),z ) (&)
is the order parameter introduced by Amit, Gutfreund, and Sompolinsky

[2) (( ),h denotes a standard thermal average over the Gibbs microstate distribution).

C. Shape of the replica-symmetric distribution

We now turn to the shape of the resulting RS intrinsic noise distribution

D „fz]—f e'"' lim exp ARs{xg, q, k, s ]+—gpss
dX ixz

7T n~0 a
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with

+—,'pz xvaz(+ip~aps z
p

1 n —1 &ap

2 ' P 1+q(n —1} 1 —
qap

+—pz
1

2

—n
I

~1e~
I

~~
a

Z Z

I q n ~ ~ ~
q

~ I

dzex ——' z z
n ap

1+q(n —1) 1 —
q

RRs[x, q, p, sj =—

2 ~ 2x g, )+21Px g s,g, —
P g s spg p

a a,p

in which the coefiicients g p are defined as

5 n—

f
—1 5, —n

1+q n —1 1 —q

+ 2PZ ZaZp

+—px

g0 +g 1 ~aP

(the above form of g~ is the result of symmetries of the integrand). The form factors gO and g, are calculated by per-
forming specific traces and using saddle-point relations where appropriate:

g0+g1 g gaa
1

a

1 1+q(n —1)
N ~ P 1 —p(l+q(n —1))ap

We can now write (again using saddle-point relations)

g~=r5~+ [1—5 p] .
ap

As a result

D „[z]- e "/ ' ~ + *lim f Dy cosh" '[Ay+@ ixAp—']cos,h[Ay+p ixapr]—
2m' n-+0

r —(1/2)(z —a)2/ar i —(1/2)(z+ (),)2/ar]
Le +e

2Y2n ar

—i e " ' + 'sin x im Dycos " ' y+p —ix p 'sinh y+p —ix p2' n~0

with iL= apr A, /p—&0} t—he inequality follows from the saddle-point equations). At this stage we note that the two
operations n ~0 and fDy do not commute; if we take the limit n ~0 first we end up with divergent integrals. There-
fore we first assume n to be a positive integer in dealing with the integral fDy, which thereby becomes free of singulari-

ties, such that we can shift the integration contour in the complex plane and take the limit n ~0 after this operation:

DRS r q r —(1/2)(z+t)) /ar+ —(I/2)(z —a) /ar]e
2&2m ar

i f e "/—' " )' '"'sin(hx) Dy e '"~" ~tanh[Ay+p] .2'

After performing the integral over x the remaining expression can be written in the form

e
—((/2)(h+z) /ar i.2D „[z]= 1 —f Dy tanh Ay +(6+z) +p

2 2nar apr apr

—(1/2)(LL —z) /ar+e
2V 2mar

1 —f Dy tanh Ay
apr

' 1/2
A,

2

+(b, —z ) —
(M

apr
(13)

Equation (13) is the main result of this section.
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D. Freezing and replica-symmetry breaking

ln2+ lim lim
1

N cc n —+0 Nll

n

g5(mf —m(s ))
a=1

X5(r —r(s')) . —1 =0,
Is I, I/I

which implies for the replica-symmetric ansatz

1
lim —4&s = —ln2,
n~0 7l

in which O'Rs is the exponent (11) (note that
lim„o+„s=0). Taking the appropriate limit gives the
following expression:

1 1
lim — =f Dy ln cosh[ky+p] —pm

+RS

in[1 —p(1 —q) ]

In order to check the applicability of the replica-
symmetry ansatz we will first define and calculate the
equivalent of the zero-entropy ("freezing") line in the
(m, r) plane (where the number of microscopic
configurations contributing to our averages vanishes) and
second the de Almeida —Thouless (AT) line [15],where a
replica-symmetry breaking (RSB}solution of the saddle-
point equations bifurcates from the RS saddle point.

The freezing line defines those points in the (m, r} plane
where the number of microscopic configurations contrib-
uting to the intrinsic noise distribution changes from an
exponentially large number to an exponentially small
number (in terms of N}, so

lim —ln g 5(mf —m(s))5(rf —r(s)) =0 .1

N
S

Using the replica technique 1 Zn=lim„o(1/n)[Z" 1)—
and averaging over the pattern distribution allows us to
relate the freezing line to the saddle-point problem stud-
ied in the preceding sections:

1/2
2 t,~- &(~))2

+1 &r—+6(1) (q~ 1 ) .

This implies that the freezing line, which indeed coin-
cides with the line where q = 1, is given by

' 1/2 2

(m) — 1+ —[erf (m)}f a~
(15)

The AT line signals the first bifurcation of a saddle-

point solution without replica symmetry from the
replica-symmetric one. We follow the usual convention
and assume that the first such bifurcation is of the form

O=a —
p [a+6,] f Dy

cosh4[Ay+p, ]
(16)

[Eq. (16) is to be solved in combination with the saddle-

point equations (12)]. The RS solution is stable as long as
the right-hand side of (16) is positive. For r =1 (with

~
m

~
& 1) the saddle-point equations (12) yield &=p =&=0

so the RS solution is indeed stable. The AT line inter-
sects the line m =0 at r =1+1/&a. Using the scaling
relations (14} one can also show that near the freezing
line (15) the RS solution is unstable, except for

~

m
~

= r = 1, where the freezing line and the AT line meet.
In Fig. 3 we show the freezing line and the AT line for

a =0.1 in the same plot as the fiow in the (m, r) plane ob-
tained from N=16 000zero temperature simulations (cf.
Fig. 1), in order to indicate the relevance of the different

regions. We can conclude that in the region of the (m, r)

plane where there is ferromagnetic-type order [away from

q~p~q+5q~p, Q~p~k, +5Q~p, p~=p, p~=p .

Inserting this ansatz into the original RSB saddle-point
equations shows that the RSB bifurcations are of the
form 5q p-5a p, g +p5q~=0. After some bookkeep-

ing and after taking the limit n ~0 one then obtains the
bifurcation condition which defines the AT line:

+ p(1 —q)(1 —p+3qp)
[1—p(1 —q)]

In view of the physical meaning of the order parameter q
one must expect the freezing line to coincide with the line
where q =1. Expanding the solution of the saddle-point
equations {12)near q =1 gives

10—

a( r 1)+6(1 )
1 —

q

&r —1p= —+6(1),
(1 q)&r—

p= &2a(&r —1)erf '[m] +6(1) .
1 —

q

As a result we find near q = 1

(14)
0 I I I I I I I I I I I t I

0 .2 .4 .6 .8 1

FIG. 3. Freezing line (short dashes) and AT line (long
dashes) in the (m, r) plane for a=0. 1. To indicate the relevance
of the regions we also show the corresponding simulation Aow

lines for N = 16000 and T=O (solid lines).
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the lines m =0 and r =rf(m)] the RS solution is stable,
but that it breaks down in the region which corresponds
to spin-glass states (near m =0 for large r). In the latter
region the RS freezing line and the AT line deviate
significantly, which is reminiscent of the behavior of the
zero-entropy line and the AT line in spin glass models
below the spin-glass ordering temperature (cf. [16,15]).

K. Comparison mth simulations
and with spin-glass theory

From expression (13) it is clear that, for a&0, D „[z]
is Gaussian only if b, =O, which in turn can be traced
back (using the saddle-point equations} to the situation
r= 1. For r =1 the fixed-point problem has the trivial
solution A, =p=A, /p=O, p, =tanh '(m), q=m, with
which we obtain

DRs [z] e
—(1/2)z /a1

&2na

DRS [z]
e

—(1/2)[z+a(~r —1)] /ar

v 2rrar

X8[—z &2—ar erf '[m] a(—~r —1)]
—(1/2)[z —a(+r —1)] /ar+e

v'2n. ar

X8[z+&2ar erf '[m] a—(~r —1)]

[this expression applies to the freezing line q =1, where
the two parameters (m, r) are related according to Eq.
(15)]. Note, however, that in deriving this result we have
extended the RS solution into the region where it is un-
stable (a similar situation was encountered in [17]).
Again this is in agreement with the physical interpreta-
tion of the order parameter r, since large values of r im-

ply strong spin-glass order, which in an ordinary spin

we find for the asymptotic (q —+ I}form of the noise distri-
bution (13)

In the rest of the (m, r) plane the intrinsic noise distribu-
tion does not have a Gaussian shape. These analytical re-
sults explain the Ozeki-Nishimori [12] simulation results,
since those trajectories that lead to pattern reconstruc-
tion (i.e., a nonzero equilibrium value for the order pa-
rameter m} are indeed located near the line r =1 where
D "s„[z]is found to be Gaussian (see Fig. 1).

In order to obtain an idea of the shape of the distribu-
tion away from the Gaussian regions we present results in
Fig. 4 of evaluating the remaining integral in (13). In
general we will have to resort to numerical evaluation of
(13), except for the case where q=0 which again allows
for analytical evaluation. Near q =0 the map F behaves
as

1.5

5—
0

1.5

5—

I I I I I I I I I I I I I

I I I I I I I I

-2 0
I I I I

2 4
I I I I I I I I I I I I I

=s//a=

F,[q]=m +aq(r —1) [2m2(1 —m2)2+1+3m4]

+8(q ) (q~O) .

Therefore q =0 for m =0, r & 1+1/&a:
z+a(r —1)] /ar e

—(1/2)[z —a(r —1)] /ar
DRs [z] +

2&2@ar 2&2 . era

(m=0, r & I+1/~a) . (17)

0

1.5

.5—

I I I I I I I I I

-4 -2 0
I I I I

2 4

This is precisely the shape of the local field distribution as
obtained in [17] for the Sherrington-Kirkpatrick (SK)
spin glass [18] in thermal equilibrium above the spin-glass
ordering temperature. The breakdown of the shape (17}
for r & 1+1/v a, when q becomes nonzero, is therefore
nicely in agreement with the spin-glass picture, since r
measures spin-glass-type order.

For large values of r we recover another spin-glass re-
sult. We observe in Fig. 4 that for large r and small m
the intrinsic noise distribution approaches the
Schowalter-Klein [19] -type shape of the local iield distri-
bution for the SK spin glass in equilibrium at zero tem-
perature [17] (with a typical gap). Using the asymptotic
behavior (14}of the solution of the saddle-point equations
for strongly ordered regions in the (m, r) plane, i.e., near
q = 1, and the asymptotic form of 5,

b, =a(&r —1)+8(1—q),

0

—.5 -4
1.5 I

I I I I I I I I I I I

—2 0 2
I I I I I I I I I

5—
0

I I I I I I I I I I I I I I I I

—4 —2 0 2
z

FIG. 4. Examples of the shape of the intrinsic noise distribu-
tion 2P, [z] for a=0. 1 in the (m, r) plane; for each value of m
we show r=rf(rn), 2rf(m)+ 2, and 1 (from top to bottom
within each frame).
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glass at thermal equilibrium is obtained near T =0.
Finally we compare our analytical result (13) directly

with the outcome of measuring the intrinsic noise distri-
bution during actual numerical simulations. %e concen-
trate on the region where deviations from the Gaussian
shape are expected to be most relevant, i.e., on small
values of m. In Fig. 5 we show histograms of the intrin-
sic noise distributions as measured in a sequential
%=16000 Hopfield network at a=0. 1 after having per-
formed ten (sequential) zero-temperature iterations per
spin. In the same figure we show the shape of the distri-
bution as given by expression (13) for the particular
values of the order parameters (m, r) of the microscopic
network state reached. We show these graphs for four
different initial conditions: m =0.0, 0.1, 0.2, and 0.3 (see
the caption of Fig. 1 for details about the microscopic
realizations of these states). According to Fig. 5 the
theory leading to the distribution (13) gives a good quan-
titative description of the simulation data; significant de-

viations are confined to the spin-glass region (small ~m~),
where the RS solution is unstable.

IV. DETERMINISTIC FI.O%
OF ORDER PARAMETERS

A. The flow equations

—m= DxDyM m, r;xy —I, (18)

——r= Dx Dy R m, r;x,y +1—r,1 d
(19)

By combining Eqs. (7) and (8) with expression (13) we
arrive at a closed set of autonomous differential equations
describing the deterministic evolution of the macroscopic
state (m, r). After eliminating the quantities A, and b,

from the saddle-point equations (12) in favor of the order
parameter r~Gs =—A, /ap and after performing a rotation
in the (x,y) plane of the Gaussian integrals, the dynamical
equations become

I I I I I I I I I I I I I

mo ——Q.Q-
in which

M(m, r;x,y ) = —,
' [1—tanh(x polar AGs+ p, ) ]

0
I I I I I I I )

—4 —2 0

4

I ) I I I I

2 4

m, o=Q. 1—

Xtanh[P(m+ U )]

+—,
'

[ I +tanh(x p+ar~os+ p ) ]

Xtanh[p(m + U+ }],
1

R (m, r;x,y ) = [ I —tanh(xp+arAGS+jtt)]
2(x

X U tanh[p(m + U )]

1+ [ I+tanh(xp+ar&Gs+ p)]
2(x

I I I I I I I I I I ) I

—2 0 2 with the abbreviation

X U+tanh[P(m+ U+ )],

4

I I I I I I I I I I

mo=0. 2 ="+arAGs y+a(r rAos } ap(" r~os)—

I I I I I I I I I I I

0 2 4

4

l ) ) ) I ) ) ) I ) ) ) l ) ) ) I )

—4 —2 0 2 4

FIG. 5. Comparison of theory (dashed lines) and the noise
distribution as measured during simulations (histograms) in a
network with %=16000 and a=0.1. Initial states correspond
to mo =0.0, O. l, 0.2, and 0.3, respectively.

and with [q, r, r~Gs, p, p] being functions of the macro-
scopic state (m, r), to be solved from the saddle-point
equations (12). Equations (18) and (19) are our main re-
sult.

In Fig. 6 we compare the fiow defined by (18) and (19}
with numerical simulations (%=16000) for some choices
of the storage level a and the temperature T. At intervals
of Et = I iteration/spin we measure the macroscopic or-
der parameters (m, r) in the simulation system and calcu-
late the derivatives [(d/dt)m, (d/dt)r] as predicted by
(18}and (19). The initial states generating the trajectories
(labeled by 1=0, . . . , 10) were drawn at random accord-
ing to p (s) —=g,.[—,'()+I/10)5 + —,'(I —I/)0) I~, ]

such that (m ), O=O. I/and (r ), o= l. The figure indi-

cates that the flow is correctly described by (18) and (19),
except for those regions in the (m, r} plane where the RS
solution is unstable (between the dashed lines). It also in-

dicates that the relevant processes are indeed taking place
on finite time scales.

In Figs. 7 and 8 we compare the individual velocities
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20—

rr

20-

a=0.05

a=0.05

10

a=0.10

a=0.10

10

a=0.15

a=0.15

FIG. 6. Trajectories in the (m, r) plane ob-

tained by performing sequential simulations of
realizations of the stochastic Hopfield model
for t E [0,10] iterations/spin {solid lines}, to-

gether with the velocities as predicted by the

theory (arrows, calculated at intervals of 1

iteration/spin for the instantaneous macro-

scopic state of the corresponding simulation,

at the point of the base of the arrow). The top
row of graphs corresponds to T=0.5 and the
lower row corresponds to T=O.O. The dashed
lines indicate the freezing line (upper) and the
AT line (lower). Note that these curves show

both retrieving and nonretrieving situations, as
well as the effect of temperature thereon.

dm ldt and dr/dt as measured during zero-temperature
sequential simulations (in an N=30000 system) with the
predictions (18) and (19) of our theory. Figure 7
represents trajectories which will end up in a spin-glass
state; Fig. 8 represents trajectories which lead to retrieval
of the condensed pattern. There is reasonable agreement
between theory and simulation experiment as far as the
retrieval trajectories are concerned. However, away from
the initial stage, the nonretrieval trajectories show a
significant deviation between theory and experiment.
The deviation is in fact an overall showing down in the
simulations (as compared with the theory), as the system
state evolves towards the spin-glass region, alfecting both
dmldt and drldt. This can be concluded from Fig. 9,
where we show the ratio dm /dr for the nonretrieval tra-
jectories of Fig. 7 (here there is, again, agreement be-

B. Equilibrium

The fixed-point equations corresponding to the
paramagnetic state are

1T 1 ——
r

1 — Dx tan x ar +a r —1

1 — Dx tanh x ar +a r —1

The q%0 (SG) state bifurcates continuously from the

q =0 (P) state at r= 1+1/ a [see (17)]; this gives the
second-order transition line P~SG:

tween theory and experiment}. At present we have no ex-

planation for this efFect.
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FIG. 7. Comparison of time derivatives of the order parame-
ters (m, r). Solid lines: zero-temperature sequential simulations
for t E [0,5) iterations/spin in an N=30000 system. Markers:
theoretical predictions, calculated at regular intervals in the re-
gion where the RS solution is stable. Initial states correspond
to mp=0 (triangles), mp=0. 1 (squares), mp=0. 2 (diamonds),
and mp =0.3 (circles) (representing nonretrieval situations).

FIG. 8. Comparison of time derivatives of the order parame-
ters (m, r). Solid lines: zero-temperature sequential simulations
for t E [0,5] iterations/spin in an %=30000 system. Markers:
theoretical predictions, calculated at regular intervals in the re-
gion where the RS solution is stable. Initial states correspond
to mp=0. 4 (triangles), mp =0.5 (squares), mp =0.6 (diamonds),
and mp =0.7 (circles) (representing retrieval situations).
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to arrive (for the thermal equilibrium state of [2]) at

.05

—.05
0

FIG. 9. The ratio dm /dr of time derivatives of the order pa-
rameters. Solid lines: zero-temperature sequential simulations
for t E [0,5] iterations/spin in an N=30000 system. Markers:
theoretical predictions, calculated at regular intervals in the re-

gion where the RS solution is stable. Initial states correspond
to m p =0 (triangles), m p =0.1 (squares), m p =0.2 (diamonds),
and mp =0.3 (circles) (representing nonretrieval situations).

1 —fDx tanh [xpg &a+ @~a+p v'a ]1=P [1+@'a]
1 —f Dx tanh[xPz'(/a+Va+P Va]

(20)

The solution of (20) is given by T =1+&a (as in [2]),
which can be verified by insertion and by using the identi-
ty

fDx tanh [xz+z ]=f Dx tanh[xz+z ], Vz .

Note, however, that the macroscopic state
(m, r)=(0, 1+1/&a} is precisely on the AT line (16),
since it corresponds to 6=a(r —1), A, =p=0, and
p= 1 —r '. The RS solution is stable in the paramagnet-
ic region T)Ts = 1+v a, but becomes unstable at
T= Tg, where one enters the spin-glass region, as in [2].

The equivalence with the equilibrium result in [2],
demonstrated directly for the boundary of the paramag-
netic region, is not accidental. From the saddle-point
equations we conclude that the solutions (m, q, rAos } of
the equilibrium formalism [2] are obtained by requiring
p=p and p, =pm. Inserting these two relations into the
saddle-point equations gives

—m = Dx tanh m+ x ar~Gs —m =O,

1 d—r—=P r —rAos Dx tanh [Pm+Pxgar&os]2 dt

+1—r=O.

The order-parameter equations in thermal equilibrium, as
derived in [2], thus define fixed points of our fiow equa-
tions. The topology of the order-parameter flow as ob-
served in, e.g., Fig. 6 suggests that there will be no addi-
tional fixed points. If we insert the fixed-point relations
into our expression (16) for the AT line, we obtain

[1—P(1 —q)] =aP f cosh [Ay+p]
which again corresponds exactly to the result obtained in
thermal equilibrium [10].

We may conclude that in equilibrium our dynamical
equations reproduce exactly the phase diagram as derived
by Amit, Gutfreund, and Sompolinsky [2,10] (including
the location of the AT line). One interesting feature of
the dynamical formalism is that it turns out that at zero
temperature the freezing line defined in (15) does not
coincide with the zero entropy line as calculated in [10].
If we insert our fixed-point relations into (15) and take
the limit T~O, we find that the fixed points are exactly
on the freezing line (in fact, one can easily convince one-
self that an alternative way of obtaining the T=O fixed
points is to minimize the energy per spin
E= —

—,'[m +ar] along the freezing line (15)). The fa-

miliar pathology of finding a negative entropy at T=O
does not have a dynamical counterpart in terms of the
freezing line (15).

C. The limit a —+0

For a~0 the order parameter r can diverge as r -a
After rescaling according to r =a 'r we obtain from the
saddle-point equations:

1 —P(1 —q) q

[1—P(1 —q)] [1—P(1 —q)]
m = f Dy tanh(P+ar~osy+Pm ),
q = Dy tanh arAGsy + m

Finally we use the identities

tanh(u)= —,'[1—tanh(u)] f Dy tanh(u+yz —z )

+ —,'[1+tanh(u)] f Dy tanh(u+yz+z ),
u tanh(u)+z =

—,'[1—tanh(u)]

X Dy tanh u +yz —z u+yz —z

+ —,
' [1+tanh(u) ]

X Dy tanh u+yz+z u+yz+z

The intrinsic noise distribution thereby becomes Gauss-
ian and the flow equations reduce to

—m = f Dx tanh [pm +px ')/ r ]
—m,d

dt
(21)

r=r p f D—x[1—tanh (pm+pxV r )]—1, (22)
1 d 2

2 dt

There are two types of fixed points: the two retrieval

states [m =tanh(pm ), r =0] and the nonretrieval state

[m =0, 1=PJ Dx[1—tanh~(Px+r )]j. However, the

Jacobian matrix at the nonretrieval fixed point has a zero

eigenvalue, ' the nonretrieval fixed point apparently desta-

bilizes precisely in the limit a~O. The only stable states
are the retrieval states.

The differential equations (21) and (22) are equivalent

to the differential equations that have been derived in [4]
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to describe the (deterministic) evolution of the p correla-
tions m „=(1/N )gk gsk far from saturation (their
derivation required p «~E [11]):

rn „=(g„tanh[P f.m ]}~
—m „,dt

p= 1, . . .p, g'E [
—1, 1]~

in which the average is defined over the 2~ dummy vari-
ables g with uniform probabilities. If in these latter equa-
tions we make the condensed ansatz, i.e., m, =(t}(1)and

m„» =(t}(p 'iz) (note that 1'=g„»m „),we obtain

—m =f dzD[z]tanh[Pm+Pz) m, —

1 r=——dz D[z]z tanh[Pm +Pz] r,—
2 t

with

P
[zD]:—

(5 z —Z t|tzzzz )g
.

p —2

By taking the limit p ~ ac the distribution D[z] becomes
Gaussian, with f dz D [z]z=0 and fdz D [z)z =F, and

we recover Eqs. (21) and (22).

V. DISCUSSION

In this paper we studied the dynamics of the Hopfield
model near saturation. We employed the fact that on
finite time scales the evolution in time of the condensed
overlap order parameter m and of the order parameter r
(which measures the cumulative strength of the uncon-
densed overlaps) become deterministic in the thermo-
dynamic limit. Our approach was subsequently based on
two transparent physical assumptions (the first of which
is clearly backed up by numerical simulations): we as-
sumed that the intrinsic-noise distribution is self-
averaging with respect to the microscopic realization of
the stored patterns, and second we assumed (as far as the
calculation of the intrinsic-noise distribution is con-
cerned) equipartitioning of probability within the (m, r)
subsheHs of our statistical ensemble. These two assump-
tions reduced the problem to a replica calculation, which
we performed using the replica-symmetry ansatz.

We believe our assumptions are clearly justified by the
accuracy of the resulting theory. We have compared our
analytical expression for the intrinsic-noise distribution
directly with the one measured during (sequential} nu-
merical simulations, and found the theory to describe the
numerical data correctly, except for the spin-glass region
where the RS solution indeed turns out to be unstable (in
the latter region one might develop an RSB calculation

along the lines of [17], which we consider to be beyond
the scope of the present paper). We also compared our
results in the spin-glass region r ) 1 with the shape of the
local field distribution as calculated for the SK [18]model
in equilibrium [17]. We have shown that the generic
features of the spin-glass results are correctly recovered,
both for small r (corresponding to the SK model above
the critical temperature Ts} and for large r (correspond-
ing to the SK model below Ts}. We have shown that our
deterministic flow equations derived in this paper de-
scribe the dynamics of the Hopfield model near satura-
tion correctly in the regime where the replica-symmetric
calculation of the intrinsic-noise distribution is stable
(away from the spin-glass states). In equilibrium our
equations reduce to the equilibrium solution obtained by
Amit, Gutfreund, and Sompolinsky [2,10]; in the limit
a~0 they reduce to the condensed version of the flow
equations as derived for small p in [4].

In situations where the number n of condensed pat-
terns is larger than one, or where the initial microscopic
conditions are inhomogeneous (in the sense that equipar-
titioning of probability in the macroscopic subshells is
violated), the dynamical theory can be generalized in a
straightforward manner by defining the macroscopic
state in terms of a larger number of macroscopic quanti-
ties, for instance, by adapting the concept of sublattices
(see, e.g., [5]) to the present case, by taking as sublattice
labels only the condensed pattern components, and by re-
placing the order parameter m by the corresponding 2"
sublattice magnetizations. Another straightforward ex-
tension would be to repeat the calculation for the case of
biased patterns, in combination with the biased Hebb rule
as in [20]. Our deterministic laws for the order parame-
ters can also be used to calculate relaxation times and can
be generalized to neural networks with nonsymmetric se-
parable interactions, where detailed balance no longer
holds and equilibrium statistical mechanics therefore
does not apply.

Finally a relevant question to be addressed is whether
our two assumptions are truly independent; intuitively
one could imagine that equipartitioning of probability
within the (m, r) subshells can be demonstrated to be a
consequence of self-averaging. In the latter case the
dynamical theory would be based on the very same build-
ing blocks as the equilibrium statistical mechanical
theory [2], namely, the condensed ansatz and self-
averaging with respect to pattern reahzations.
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