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Second-law irreversibility and phase-space dimensionality loss
from time-reversible nonequilibrium steady-state Lyapunov spectra
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We consider steady-state nonequilibrium many-body flows of mass and momentum. For several such
divisive and viscous flows we estimate the phase-space strange-attractor Lyapunov dimensions from the
complete spectrum of Lyapunov exponents. We vary the number of particles and the number of ther-
mostated degrees of freedom, as well as the deviation from equilibrium. The resulting Lyapunov spectra
provide numerical evidence that the fractal dimensionality loss in such systems remains extensive in a
properly defined nonequilibrium analog of the equilibrium large-system thermodynamic limit. The data
also suggest a variational principle in the vicinity of nonequilibrium steady states.
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I. INTRODUCTION

Since 1972, control variables, "thermostats, barostats,
ergostats, etc.," have been used in simulations to main-
tain atomistic systems in nonequilibrium steady states [1].
The theories developed to analyze these steady states [2]
led to paradoxical results. Typically, theoretical
"Kawasaki" expressions [2] for the steady-state phase-
space distribution functions diverge, f (q,p, t~ oo )~ Oo.

The explanation was discovered in 1987. The nonequili-
brium phase-space structures of steady states are mul-
tifractal strange attractors [3]. This topological finding
explained the puzzling divergence of the phase-space
probability density, away from equilibrium, and led to a
simple geometric understanding of the second law of
thermodynamics [4]. The steady-state phase-space prob-
ability density flows out of, and away from, zero-volume
unstable repellors toward, and into, geometrically similar
zero-volume attractors, upon which the second law of
thermodynamics is satisfied. Thus the repellors and at-
tractors correspond to sources and sinks, respectively, for
steady-state phase-space flows. This geometric explana-
tion of the second law incorporates concepts which were
developed earlier in order to explain the chaotic proper-
ties of nonlinear dynamical systems.

In the past 15 years, several particle-based strange at-
tractors, all characterizing time-reversible and deter-
ministic nonequilibrium steady, or tine-periodic, states,
have been analyzed [5—9]. The underlying system sizes
considered have ranged upward, from one or two parti-
cles, to the computational limit, now about one hundred
particles. (Depending upon the method selected, the re-
quired computer time varies as N, N, or N for X par-
ticles). In every case studied, the attractors turned out to
be multifractal objects. Their information or Lyapunov
dimensions were always strictly less than the dimen-
sionality of the phase space within which these objects

were embedded. The information dimension of attractors
in three- or four-dimensional spaces could be estimated
directly, by phase-space box-counting methods [8]. The
Lyapunov dimensions of higher-dimensional attractors
could only be estimated by evaluating the Lyapunov
spectra of the underlying dynamical systems.

The second law of thermodynamics declares that the
global entropy production is positive. Thus the entropy
production external to any nonequilibrium steady state
must be positive, S &0. In the prototypical situation of
steady-state hot-to-cold heat flow, with energy provided,
at rate Q & 0, to a system's hot end, and extracted, at the
same rate, from the cold end, the external entropy change
rate is

S=Q[(T b, T/2) ' —(—T+b T/2) 2]=QAT/T2 .

In continuum mechanics the corresponding negative
change of the steady-state system entropy Qb T/T is-
exactly offset by a phenomenological internal entropy
production. In statistical mechanics there is no such phe-
nomenological mechanism for offsetting the drop in sys-
tem entropy. The Gibbs system entropy for such a steady
heat flow diverges to —ao. For a study of the time
dependence of this Gibbs entropy drop see Ref. [9].

With a nonequilibrium stationary state maintained by
deterministic time-reversible equations of motion (using
Gauss's or Nose-Hoover thermostats, for instance) the
second law corresponds to the collapse of the phase-space
probability density onto a strange attractor. This result
was clearly and precisely established, numerically, for a
variety of small systems. Whether or not the topological
proof of the second law found in these small systems
could be extended to large systems hinged on two ques-
tions.

The first question is the following. Is the shift in the
Lyapunov exponents confined primarily to a few ex-
ponents, or is the shift spread over the entire spectrum?
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If the distribution of shifts is distributed over the entire
spectrum, then the loss of Lyapunov (Kaplan-Yorke) di-
mension AD can be accurately estimated, for very small
gradients, from a Taylor series in the deviation from equi-
librium. Including just the first close-to-equilibrium term
gives the loss in terms of the largest exponent I, , :

bD =S/kk,

where 5 is the total external entropy-production rate and
k is Boltzmann's constant.

The second question is the following. Can these small-

system arguments be extended to a large-system limit?
How can the behavior of large-system attractors be
judged on the basis of small-system evidence?

A breakthrough in the theoretical understanding of
both these questions, at least for some spatially homo-
geneous nonequilibrium systems, was made by Sarman,
Evans, and Morriss. They considered the spectrum of
Lyapunov exponents. These exponents characterize all
the time-averaged orthogonal growth and decay rates in a
complete set of cornoving and corotating phase-space
directions. Sarman, Evans, and Morriss showed [10] that
the sums of individual "Smale pairs" of Lyapunov ex-
ponents show identical shifts, away from equilibrium.
That is, for the ordered spectrum of Lyapunov exponents
[A, , & A,2 » A,„],all of the possible summed pairs of
exponents [ A, +A,n+, , ], for j=1,2, . . . , 0/2, have the
same value —2S/kQ. Note that we are using 0 as a
pure number, equal to the total number of independent
directions in phase space. Provided that the Lyapunov
exponents are bounded (which seems obvious on physical
grounds), this result establishes the qualitative validity of
the dimensionality reduction formula given above.

This proof holds for arbitrarily large deviations from

equilibrium and for arbitrarily large systems, at least for

systems which are "homogeneous" and which satisfy a
relatively weak restriction on their time evolution [10].
By homogeneous we mean that all particles are treated
equally. The result of Sarrnan, Evans, and Morriss is
therefore a convenient starting point for discussing inho-

mogeneous systems, in which some particles are singled
out for special treatment.

Steady Qows of mass, momentum, and energy, as well

as more complicated cyclic hysteretic thermodynamic
processes, all exhibit losses of phase-space dimensionality
in their phase-space attractors. The coexistence of mi-

croscopic time reversibility with macroscopic thermo-
dynarnic irreversible behavior seems paradoxical, but it
can be understood in terms of the LyapunoU instability of
the time-reversed motion. In the reversed motion the
positive Lyapunov exponents exceed those on the norma1
trajectory, so that the reversed motion is less stable. In
fact, the reversible character of the differentia equations
for the Lyapunov exponents [7] establishes directly that
the entire Lyapunov spectrum [A, ] changes sign in the
time-reversed motion [+A,J~[—

A, ]. This property has
been verified numerically, both for the most negative
Lyapunov exponent [11] and, in our unpublished work,
for the complete spectrum.

The generic nonequilibrium situation is as follows: In
the forward direction of time the summed Lyapunov

spectrum (from a single long trajectory) is negative,
QA, (0, though nearly half the Lyapunov exponents are
positive. In the backward (reversed) time direction the
summed spectrum changes sign and becomes positive, so
that the underlying trajectory is accordingly less stable,
though still nearly half its Lyapunov exponents are nega-
tive. This difference in global stability leads to tirne-

symmetry breaking and an overwhelming favoring of
those multifractal attractor states which obey the second
law of thermodynamics [4].

The phase-space attractors and repellors for these
problems typically display the equilibrium value of the
Hausdorff dimension together with a substantially re-
duced, relative to equilibrium, information or Lyapunov
dimension, so that the probability of selecting an unstable
repellor state, violating the second law of thermodynam-
ics, is exactly zero.

Through the efForts of mathematicians [12,13], this
simple topological interpretation of thermodynamic ir-
reversibility is being put on a rigorous basis, at least for
some simple one- and two-body systems. Intuitive argu-
ments suggest that, because (i) dissipation is extensive,
S = rie V—/T, for a small-strain-rate shear flow with strain
rate e—=du„/dy and shear viscosity ri, for instance, and
because (ii) loss of dimension can be roughly estimated by
dividing the dissipation rate by the maximum Lyapunov
exponent (which is intensive, corresponding to a micro-
scopic collision rate), the loss of dimension persists for
large macroscopic systems. A numerical estimate sug-
gests, for instance, that the phase-space dimensionality
loss in water is negligible at strain rates of order 1 Hz,
but becomes of the same order as the total dimensionality
at typical shockwave strain rates of order 10' Hz.

At the simplest intuitive level, a loss of occupied
phase-space dimensionality hD is quite sensible. Any
effective constraint on the time development of a dynami-
cal system reduces the dimensionality of phase-space
states available to the system. All solutions of
Hamilton's equations of motion lie on phase-space sur-
faces of constant energy. Constraining the kinetic tem-
perature, rather than the energy, of a selected set of v de-
grees of freedom, C=vkT gp /m—=—0, —likewise re-

stricts the phase-space states, permitting only states on
the momentum hypersphere given by the constraint con-
dition. A second constraint, dC/dt =0, were it indepen-
dent of the first, would further increase the dimensionali-

ty loss b,D from 1 to 2. The second derivative d C/dt
could lead to a further reduction. Thus it is quite plausi-
ble that the steady-state requirement, that C, as well as all
its time derivatives, be zero, could lead to an extensive
loss of dimensionality hD =D. In a nonequilibrium
driven system, for which the energy could vary with time,
the set of constraints [d "E/dt":0] could likewise lead-
to an extensive loss of phase-space dimension, relative to
the equilibrium distribution.

The twofold geometric explanation of irreversibility, as
being due first to the zero probability of multifractal
states and second to the relative mechanical instability of
nearby time-reversed states, is appealing in its simplicity.
But it contradicts a second appealing notion: the ex-
istence of a nonequilibriurn analog of Gibbs's equilibrium
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entropy, So;bb, —= —k(lnf ). Because such a nonequili-
brium entropy would be a casualty of a singular phase-
space distribution function f (q,p, . . . )= ~, there is
some reluctance to accept the simple multifractal
geometric picture of second-law irreversibility. In dis-
cussing these ideas, a test was formulated.

The test begins with a homogeneously thermostated
nonequilibrium steady state, for which the very interest-
ing exact sum rule of Sarman, Evans, and Morriss must
hold. In the homogeneous case, the dissipation rate S
and the dimensionality loss hD must both be extensive.
Then, as the thermostat is made progressively less in-
trusive, by reducing the number of directly affected de-
grees of freedom, and as the system size is increased,
changes in the phase-space dimensionality loss can be
monitored. If hD becomes smaller under these condi-
tions this could mean that the drop in dimension is not
extensive. On the other hand, a steady, or increasing,
dimensionality drop hD would strongly suggest that the
simple picture of reduced dimensionality persists for
macroscopic systems. %e take up this test, in the present
work, for two types of nonequilibrium systems.

There are conceptual difficulties in considering large
nonequilibrium systems. These are best known in two di-
mensions, where there is a relatively widespread opinion
that "transport coefficients diverge. " Because this diver-
gence is thought to be logarithmic in the system size,
there are severe conceptual difficulties in defining the
nonequilibrium analog of the large-system "thermo-
dynamic limit" in two dimensions. Even in three dimen-
sions, any fixed and finite velocity gradient leads, for
large enough systems, to divergent boundary velocities,
as well as to turbulence, rather than to nonequilibrium
steady states.

Both these twin difficulties, divergence and turbulence,
can be avoided by using homogeneous thermostats. In
both the two- and the three-dimensional cases, deter-
ministic time-reversible thermostats, developed in order
to carry out nonequilibrium computer simulations, pro-
vide a natural definition of a large-system nonequilibrium
limit analogous to the large-system equilibrium "thermo-
dynamic limit. " We elaborate on this idea in the follow-
ing section, and then devote the remainder of the paper
to numerical tests of the extensive nature of hD for two
types of relatively simple two-dimensional nonequilibri-
um systems.

II. LARGE-SYSTEM LIMIT
FOR NONEQUILIBRIUM SYSTEMS

The "extensive" natures of the energy and free energies
of thermodynamic systems, with "extensive" meaning
proportional to system size, are familiar consequences
(neglecting gravity) of sufficiently repulsive short-ranged
forces along with the overwhelming tendency for gra-
dients to dissipate. Once reached, thermodynamic equi-
librium, for a large number of bodies N, exhibits negligi-
ble fluctuations of order N' about the mean values, of
order N, of the extensive energies. The mathematical ap-
proach to statistical mechanics incorporates an idealized
thermodynamic limit in which system properties are tru-

ly extensive and in which surface effects and fluctuations
can be ignored.

At equilibrium time is unimportant. Nothing interest-
ing happens. Negligibly small fluctuations, of order N'
come and go. Away from equilibrium time must be con-
sidered. In a system with sidelength L, gradients dissi-
pate in a diffusion time proportional to L . Thus, in gen-
eral, nonequilibrium properties involve the past history of
the system, for a time of order L /D, where D is a
diffusive transport coefficient. For macroscopic systems
these times are so large that the concept of equilibration
is more mathematical than physical. An "isolated" cubic
meter of water would only reach mechanical "equilibri-
um, " through the diffusion of momentum and energy, in
a time on the order of years.

Long equilibration times are not the only undesirable
feature of large systems. Boundary values for large sys-
tems with fixed gradients diverge. Even small gradients
can lead to unpredictable chaotic behavior. At a modest
strain rate, say 1 Hz for liquid water, the flow becomes
turbulent once the system size exceeds a few centimeters.
The idealizations of the linear flow relations —Fick s law
for difFusion, Newtonian viscosity, and Fourier s law for
heat conduction —can only be realized in small systems.

Nonequilibrium steady states, with stationary bound-
ary conditions involving only composition and tempera-
ture, can become independent of their initial conditions
once the necessary diffusion times have passed. But be-
cause these times are unphysically large, for macroscopic
systems, and reach no useful large-system limit, a simpler
limit concept is welcome. The main problem is describ-
ing the boundaries themselves. Steady-state boundaries
cannot obey Hamiltonian mechanics (because dissipated
heat has to be extracted at the boundaries). Occam's ra-
zor (of fewest assumptions), combined with Gauss's prin-
ciple (of least constraint), suggests that the simplest
means of thermostating is a global homogeneous one, in
which each degree of freedom in the system has an addi-
tional constraint force 5p = —

gp designed to maintain the
temperature or the internal energy [2]. Temperature is a
more appealing independent variable than is energy be-
cause temperature is a directly measurable quantity. The
mechanical definition of temperature, based on an ideal-
gas thermometer enclosed in a semipermeable membrane,
has recently been discussed [14]. But, for technical
reasons, an energy-sensitive ergostat turns out to be more
useful than a temperature-sensitive thermostat. This is
because the ergostat, unlike a thermostat, need do noth-
ing in the equilibrium situation. Thus near-equilibrium
states require relatively small thermostat activity.

At equilibrium it is known that an isokinetic Gaussian
constraint force on the momenta provides Gibbs's canon-
ical distribution for the coordinates [15]. For a local-
equilibrium description of a nonequilibrium shear state,
characterized by temperature, density, and strain rate,
for instance, the same thermostat idea seems to be a natu-
ral choice. But eliminating temperature fluctuations, by
constraining the kinetic energy, results in an undesirable
artificial stiffness, even in the equilibrium case. This
stiffness in the equilibrium dynamics can be avoided by
using an ergostat, which plays no role whatsoever in the
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equilibrium case, and remains relatively small in non-
equilibrium states sufficiently close to equilibrium.

Simple homogeneous thermostats or ergostats can be
readily relaxed, modified, or amplified whenever more lo-
cal information is available concerning local properties of
the globally restricted nonequilibrium system. It is
straightforward to include space- and time-dependent
constraints fixing components of the stress tensor, the
magnitude of the heat flux, or the rate of heating, for in-
stance. In nonequilibrium systems the addition of such
constraints plays the same role as does the acquisition
and implementation of "information" in Jaynes's ap-
proach [16]to statistical mechanics.

In the equilibrium case the occupied phase Uolume can
be reduced by decreasing the volume accessible to the
particles or by decreasing their total energy. In the none-
quilibrium case it appears that, rather than reducing the
occupied phase volume, the dimensionality of the occu-
pied phase space is itself reduced. Thus the nonequilibri-
um driving and constraints associated with the nonequili-
brium independent variables such as strain rate and field
strength are more far-reaching constraints than are the
equilibrium state variables.

It seems intuitively evident that a global homogeneous
thermostat or ergostat, applied equally to all degrees of
freedom, is less intrusive than a local one applied to only
a few. It is plausible that, "other things being equal, " an
inhomogeneous thermostat results in a larger dimen-
sionality loss AD than the limiting homogeneous ther-
mostat. At equilibrium, for instance, a single thermostat-
ed variable in an N-body system would need to undergo
very large constraint forces, of order N', while the al-
ternative, global constraint forces, applied to all degrees
of freedom, in such a system, would have a negligible am-
plitude, of order N

Thus a hydrodynamic limit analogous to the equilibri-
um thermodynamic limit can be defined for systems in
near-equilibrium steady nonequilibrium states. The pro-
totypical limiting case is based on global (as opposed to
local-boundary) thermostats (or barostats or ergostats).
The corresponding control variables were first introduced
in molecular-dynamics simulations in order to speed the
equilibration of atypical initial conditions [17]. Later, we
will discuss specific formulations of these control vari-
ables developed based on ensemble theory. The Nose-
Hoover thermostat (of which Gauss's simpler version,
used much earlier, is a special case) allows temperature to
be specified, for a selected set of degrees of freedom, in a
way which is exactly consistent with Gibbs's equilibrium
ensembles.

Such thermostats can also be applied to nonequilibri-
um systems either homogeneously or in specified local
boundary regions. From the logical standpoint a none-
quilibrium steady state stabilized by a global thermostat,
applied to degrees of freedom throughout the system, has
much to recommend it. It is exactly consistent with the
Green-Kubo equilibrium fluctuation theory of transport.
It provides we11-defined nonlinear transport coefficients.
It stabilizes systems against the long-wavelength fluctua-
tions which generate turbulence. It can be easily incor-
porated into the Boltzmann equation so that the

Chapman-Enskog procedure can be applied to the
analysis of far-from-equilibrium states of dilute gases, the
only class of nonequilibrium problem so far accessible to
exact theoretical treatment at the atomistic level. For all
these reasons we believe that globally controlled homo-
geneous nonequilibrium steady states are a uniquely toell-
suited basis for nonequilibrium statistical mechanics W. e
investigate these states, in the present work, for a simple
model force law, chosen to minimize computational
difficulties, and described in the following section.

III. MODEL SYSTEMS

The simplest homogeneous nonequilibrium steady state
is obtained when two species are accelerated by an exter-
nal field in opposite directions, but at constant tempera-
ture or at constant internal energy. Provided that the
field is not too strong and the density is not too low, a
homogeneous nonequilibrium steady state, fully con-
sistent with the Green-Kubo theory of conduction, re-
sults [18]. Despite the more measurable nature of tem-

perature, it is better, computationally, to constrain the
internal energy, for this minimizes the task of the corre-
sponding control variable (the "friction coefficient" g).

In the present work we investigate two-dimensional
systems with up to 100 particles. Similar investigations,
for 8-particle systems, were recently carried out by Sar-
man, Evans, and Morriss [10]. All these system sizes are
small enough that the complete Lyapunov spectrum can
be generated. Here we use a smooth (three continuous
derivatives) pair potential with a finite range a,

$(r)=100e[1—(rla ) ], r/cr (1

solving the equations of motion with fourth-order
Runge-Kutta integration, in order to reduce computa-
tional errors. In reporting our results we choose the po-
tential parameters o and c., as well as the particle mass m,
all equal to unity. A careful study of the size dependence
of the largest Lyapunov exponent for equilibrium systems
(with N =4,6,8, . . . , 16 ) at an internal energy F. =N
indicated a limiting value of the largest exponent
A, ) =3.0.

We evaluated the entire nonequili bri um coeScient
spectrum for two different system sizes N=6 and 10
with a few additional simulations at N =4 . The different
system sizes allowed us to gauge the dependence of the
dimensionality reduction hD on the total number of par-
ticles X as well as the number of ergostated particles X, .
We followed the (36- or 100-) particle motion in the full
(144- or 400-) dimensional phase space, solving the
(144X145 or 400X401) ordinary differential equations
required to characterize the time-averaged growth and
decay rates in that space —the set of (144 or 400)
Lyapunov exponents. We varied the total number of er-
gostated particles in the system while keeping the total
integral energy of the system fixed. Thus the equations of
motion for the diff'usive model (choosing an atomic mass
m of unity, a field strength F,„„andunity for the two po-
tential parameters e and o ) are
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dx Idt =p„, dy Idt =p„,

dp, /dt =F„kF,t g—p„,dp» Idt =F» —gp»,

where the Gaussian friction coefficient g, which keeps the
internal energy fixed, is given by the expression

The current sum, in the numerator, includes all the parti-
cles (half with plus signs and half with minus signs) and

the primed sum, in the denominator, includes only those
which make up the ergostat. This form for the control
parameter g makes explicit the number dependence of the
constraint forces through the number of degrees of free-

dom participating in the constraint. An alternative pro-
cedure, which we have not followed here, would thermo-

stat the kinetic energy or internal energy of only a select-

ed group of particles. This seems to us less interesting be-

cause such a choice would include phase-space states ly-

ing off the equilibrium internal energy surface of the total
system. In such a case both the numerator and denomi-

nator sums would include only contributions from that
group. Our difFusive flow results appear in Table I. In
addition to the dissipative current, g+P„,we display the

largest Lyapunov exponent, the smallest Lyapunov ex-

ponent, the loss in phase-space dimensionality hD, and
the sum of all the Lyapunov exponents, equal to —k
times the overal dissipation rate dS/dt a series of 36- and

100-particle simulations.
For a homogeneous periodic shear, with strain rate

a=du„/dy, it is usual to define the peculiar momenta

fp„,p I, relative overall shear flow (u„,u ) =(sy, o). The
"Sllod" motion equations (so named because of their rela-

tionship to the Doll's tensor algorithm) then become

36
36
36
36
36
36
36
36
36
36

0.00
36 0.25
36 0.50
36 1.00
24 0.25
24 0.50
24 1.00
12 025
12 0.50
12 1.00

0.00
1.16
2.32
4.79
1.16
2.39
4.S4
1.04
2.41
4.59

3.08 —3.08
3.07 —3.08
3.06 —3.09
3.02 —3.11
3.07 —3.08
3.06 —3.08
3.01 —3.12
3.06 —3.06
3.06 —3.09
3.02 —3.12

0.00 0.00
—0.41 0.13
—1.65 0.45
—6.79 2.20
—0.41 0.13
—1.72 0.56
—7.03 2.28
—0.40 0.13
—1.80 0.58
—7.32 2.38

100 100 0.25
100 100 0.50
100 100 1.00

4.3
7.9

18.2

3.07 —3.08 —1.5
3.05 —3.07 —5.6
2.97 —3.10 —25.4

0.50
1.84
8.38

TABLE I. Results for N-particle two-dimensional color-
conductivity simulations. N, particles are ergostated. The suc-
cessive columns list field strength, summed velocity contribu-
tions to the dissipative current, maximum and minimum
Lyapunov exponents, the sum of all exponents, and the phase-
space dimensionality loss. The 36- and 100-particle results are
averages over at least 2000 and 200 time units. The statistical
uncertainty for hD is about 2%.

N N, F,„, g(+p ) A, ,

0= —e g l~F. +p.p, ] g' l:p.'+p,'j .

%'ith periodic boundaries the yE„contributions to the
single-particle sum can be combined in pairs to give
terms of the form y; FP~. Thus the sum in the numerator
is just I'„~V, proportional to the shear stress.

With periodic boundaries the center of mass can drift,
even if all the particles are ergostated. But the x and y
momentum sums, as well as the kinetic energy, are all
constant, so that the N-particle motion takes place in a

TABLE II. Results for N-particle two-dimensional shear-
flow simulations. N, particles are ergostated. The successive
columns list strain rate e, the xy component of the shear stress
—P„„,the maximum and minimum Lyapunov exponents, the
sum of all exponents, and the phase-space dimensionality loss.
For the lowest shear rate a=0.25 the length of the simulation
runs varies between 20000 time units (4 million time steps) for
N=16, and 1200 time units (240000 time steps) for N=100.
The ensuing statistical uncertainty for hD is better than 2%.
For higher shear rates the length of the simulation runs was

only half as long, resulting in uncertainties for hD of about 3%.

N N, —pxy

16
16
16
16
16
16
16

0.00
16 0.25
16 0.50
16 1.00
12 0.25
12 0.50
6 025

0.00
0.30
0.59
1.09
0.30
0.58
0.30

3.06
3.05
3.02
2.94
3.05
3.01
3.03

—3.06
—3.11
—3.25
—3.80
—3.11
—3.23
—3.10

0.0
—1.77
—7.0

—27.9
—1.82
—73
—2.03

0.00
0.57
2.21
8.17
0.59
2.30
0.66

25
25
25

25 0.25 0.31
17 025 031
9 025 031

3.06 —3.12
3.05 —3.11
3.05 —3.11

—2.85
—2.86
—3.13

0.91
0.93
1.01

36
36
36
36
36
36
36
36
36

0.00
36 0.25
36 0.50
36 1.00
24 0.25
24 0.50
24 1.00
12 025
12 0 50

0.00 3.08 —3.08
0.31 3.06 —3.11
0.62 3.03 —3.26
1.14 2.95 —3.83
0.31 3.05 —3.11
0.61 3.03 —3.27
1.13 2.99 —4.02
0.31 3.05 —3.11
0.61 3.06 —3.32

0.00
—4.11

—16.4
—63.7
—4.16

—17.0
—75.3
—4.43

—20.4

0.00
1.33
5.20

19.0
1.35
5.37

22.0
1.43
6.43

64 0.25 0.32 3.08 —3.13
42 0.25 0.32 3.07 —3.13
22 0.25 0.31 3.07 —3.13

—7.37
—7.53
—7.62

2.37
2.42
2.46

100 100
100 100
100 66
100 66
100 34

0.25 0.32
1.00 1.16
0.25 0.32
1.00 1.14
0.25 0.31

3.07
3.00
3.09
3.07
3.08

—3.14
—3.90
—3.15
—4.03
—3.14

—11.43
—176.7
—11.60

—203.0
—11.84

3.68
53.1
3.73

60.4
3.81

dx Idt =p„+Ey, dy Idt =p

dp„/dt =F„—ep„—gp„, dp /dt =F —gp„,
where the Gaussian ergostating variable g is given by the
relation
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types, diffusive and shear, appear in Figs. 1 and 2. Our
conclusions regarding the loss of phase-space dimen-
sionality, based on the results tabulated here, are de-
scribed in the following two sections.

0

~yOg
tg

~g
O~

~~

O~

0

~O

~t
~O

as
~0

I I I

20 40 60
Degrees of freedom

80

FIG. 1. Complete spectrum of 143 Lyapunov exponents for a
two-dimensional color-conductivity simulation with field

strength equal to 1.0. All 36 particles are ergostated and the
phase-space energy surface has 143 dimensions. Three ex-

ponents vanish. The arithmetic means of the Smale pairs of the
exponents are indicated by open circles.

(4N-3}-dimensional subspace of phase space. In the local-
ly ergostated case, both the center of mass and the
momentum associated with it drift, so that the subspace
is (4N-I} dimensional. It is desirable to remove, from
time to time, components of the offset vectors perpendic-
ular to the constant-internal-energy surface [19]. Because
this step is inexpensive, we have carried it out at every
time step.

Results for the shear-flow Lyapunov exponents and
dimensionality reduction appear in Table II. Typical
complete Lyapunov spectra characteristic of both system

IV. RESULTS

Tables I and II include long-term averages for the dis-
sipation, the corresponding loss of phase-space dimension
b,D, and the overall dissipation rate gA,:——S/k at fixed

energy, for a varying number of ergostated particles. The
fraction of these particles can be varied considerably
without changing the topological laminar nature of the
flow.

%e have chosen to concentrate on moderate field
strengths and strain rates in our numerical work. These
choices provide a non-negligible dimensionality reduction
hD in the corresponding diffusive and viscous phase-
space strange attractors. All these results lie suSciently
close to the regime of linear irreversible thermodynamics
to make that theory meaningful in analyzing them.

The differential equations have been integrated with
the classic fourth-order Runge-Kutta method. The
Lyapunov spectra were generated using methods based
on Benettin's ideas, which have been thoroughly and re-
peatedly discussed in the recent literature [6,7].

The numerical data presented here are fully in accord
with the theoretically based expectation that the dissipa-
tion is approximately quadratic in the departure from
equilibrium. Thus the shear viscosities (stress cr„divid-
ed by strain rate s:—du„/dy) for 16 ergostated particles
show no significant dependence on strain rate up to i= 1.
Symmetry suggests quartic strain-rate deviations from the
quadratic prediction of irreversible thermodynamics.
The deviations found here are nearly negligible. For this
reason, we believe that the implications of our results
from these simple systems have far-reaching significance.
In the next section, we discuss and interpret our results.

V. DISCUSSION AND INTERPRETATION
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FIG. 2. Complete spectra of 143 Lyapunov exponents for
two-dimensional shear-flow simulations with strain rates
i=—du„/dy equal to 0.0 (equilibrium) and 1.0. All 36 particles
are ergostated and the phase-space internal energy surface has
143 dimensions. Three exponents vanish. The arithmetic
means of the Smale pairs of the exponents are indicated by open
symbols.

Frederikson et a/. provided a useful way to estimate
the information dimension of phase-space attractors [20].
They called their estimate the "Lyapunov dimension. "
%e adopt that terminology here. From this standpoint,
the steady-state attractor is dimensionally larger than all

those phase-space objects which grow in time and dimen-

sionally smaller than all those objects which shrink. In
the steady state the attractor neither grows nor shrinks.

Any phase-space object of D dimensions, followed in

time, grows or shrinks according to the sign of the sum of
the largest D Lyapunov exponents.

By (the generally accepted) definition, a "chaotic sys-
tem" possesses at least one positive Lyapunov exponent.
Accordingly, for a chaotic system the one-dimensional

object defined by the phase-space line linking two nearby
trajectories grows, exponentially fast, at a rate given by

By (our own) definition, the phase-space volume oc-

cupied by a dissipative system shrinks with time. For a
chaotic dissipative system, with time-reversible Gauss or
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Nose-Hoover equations of motion, the comoving phase-
space volume with the complete dimensionality of the
phase space necessarily shrinks [3—9] so that the com-
plete sum of exponents g,.A,; has to be negative.
Prederikson et al. defined the "Lyapunov dimension" es-
timate of the information dimension by finding the num-
ber of exponents required for the incomplete sum g', .A,;
to vanish. Figure 3 shows typical variations of the
steady-state dimensionality loss with the degree of depar-
ture from equilibrium.

For a fixed value of the nonequilibrium flux (a mass,
momentum, or energy current) the dissipation predicted
by linear irreversible thermodynamics is extensive and,
near equilibrium, is also approximately quadratic in the
Aux. %'e have verified this prediction numerically by
considering several fields and strain rates, as detailed in
the tables. Our numerical work verifies that for small
(but by no means infinitesimal} gradients the dissipation
remains nearly quadratic in the gradients. The Lyapunov
exponents themselves reflect dynamic bifurcations in the
many-body phase space. The magnitudes of the largest
coefKicients are of the order of a collision frequency. The
distributions of the coefficients, for fluids or for solids, are
relatively featureless, simpler in structure than the vibra-
tional spectra characterizing solids. Because the sign of
the strain rate is irrelevant to AD, the Lyapunov ex-
ponents likely vary quadratically with the deviation from
equilibrium, but the fact that symmetry is broken sug-
gests that a linear law is also possible.

In equilibrium a homogeneous ergostat does not affect
the system at all. It is intuitively plausible, even in none-
quilibrium states, that it provides the least seuere

modification necessary to keep the energy constant and
hence the least possible dissipation. Our numerical inves-

tigations have confirmed this idea. A conjectured varia-

tional principle, that homogeneous constraints are the
least intrusive, could join with many predecessors (see, for
instance, Ref. [21]) and might also join them in prompt-
ing counterexamples. Nevertheless, our computational
results so far bear the conjecture out.

As we decrease the number of degrees of freedom being
ergostated the dissipation increases smoothly, at least un-

til the disparity between the constrained and Newtonian
particles becomes suSciently large to lead to a structural
change. The data in the tables support the view that any
such structural change occurs relatively far from equilib-
rium.

Thus our numerical data support the views (at least
sufficiently close to equilibrium} that the dissipation is
quadratic in the gradients and extensive, that the
Lyapunov spectrum varies no more than linearly with the
deviation from equilibrium, and that the dimensionality
drop, for nonequilibrium steady states, is minimum for
homogeneous constraints. These three results together
support the tentative conclusion that the fractional loss
of phase-space dimensionality on a non equilibrium
strange attractor is a pure number, characterizing the
material in question, and that the deviations which arise,
farther from equilibrium, are at least linear in the devia-
tion from equilibrium.

b,D /D =S/Nk A, , +O(gradient) .

o.os 1/N

0.7

D/~'N

FIG. 3. Shows the variation of the steady-state dimensionali-

loss LD D eqtt&&]br&atm D, as a function of the number N, of
ergostated particles and of the inverse total number of particles,
1/N, for a strain rate i=0.25. The (LD/e N) surface was gen-
erated by smoothing the respective data listed in Table II. It
can be readily extrapolated to the hydrodynamic limit 1/N~O
which demonstrates the extensivity of the dimension of the un-

derlying strange attractor. Within the numerical uncertainty
the limit limz „ED/eN:—d is even independent of the number
of ergostated degrees of freedom (proportional to N, ). Since
hD/N varies almost linearly with 1/N for fixed N, /N, our nu-

merical results suggest that the many-particle limit of hD is ap-
proached according to ED=a+dN, where a(N, /N) depends
only on the relative number of ergostated particles. For the
homogeneous ergostat, N, =N, a(1) is negative. a eventually be-
comes positive if the relative number of ergostated degrees of
freedom is reduced.

This means that the many-particle distribution functions,
away from equilibrium but sufficiently close to it, are
indeed multifractal in character, just as they are in small-
er systems, so that the nonequilibrium Gibbs's entropy
does indeed diverge.

VI. CONCLUSION

Because the near-equilibrium phase-space dimensional-
ity loss is insensitive to the fraction of constrained parti-
cles and appears to be minimized when all degrees of
freedom are similarly constrained, we have strong evi-
dence that the phase-space attractor dimensionality
reduction is real, persisting for large systems. The result
of Sarman, Evans, and Morriss, for the homogeneous
case, is fundamental to this demonstration and suggests
as well that the large-system homogeneously thermostat-
ed nonequilibrium state provides the hydrodynamic limit-
analog of the equilibrium thermodynamic limit.
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