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Dynamic coexistence of several phaselike forms, a solid, microcrystalline phase, a homogeneously
melted phase, and phases exhibiting a solid core and a melted surface, is found in isothermal molecular-
dynamics simulations of magic-number rare-gas clusters. We present a theoretical model for the equilib-
rium and dynamics of phases of small systems that incorporates homogeneous and heterogeneous phases
and gives necessary conditions for the material parameters if a cluster is to exhibit the observed
multiple-phase behavior.
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I. INTRODUCTION

The melting-freezing phase transition of small systems,
notably clusters and nanophase materials, has attracted
increasing interest both experimentally [1,2] and theoreti-
cally [3-6], its main motivation lying in connecting the
dynamics of isomerism at the molecular level to the fa-
miliar macroscopic phase transition. A theoretical
framework was developed [3,4,7-9] and substantiated by
simulation models carried out with Lennard-Jones
[6,10—15] Morse [16],and alkali-halide (Born-Mayer and
shielded Coulomb) potentials [18]. This work indicated
that clusters may exhibit sharp but unequal limiting tem-
peratures for freezing and melting. Its most immediate
consequence is that clusters showing this behavior have a
finite range of temperature and pressure within which
solid and liquid clusters of a specific size may coexist.
Within this band of temperatures the ratio of solidlike
and liquidlike forms changes smoothly. This obviously
differs from bulk matter, whose freezing-melting transi-
tion occurs sharply at a single temperature for each pres-
sure. The theory of this phenomenon, as presented until
now, is restricted to changes between homogeneous
phases and does not recognize behavior with heterogene-
ous phases such as surface-melted [17] or nonwetted
structures [18].

Similarly, the concept of surface melting has grown
into an area of mounting attention both on the experi-
mental [19]and theoretical [20-27] sides, its origin stem-
ming partly from the quest to explain the nonexistence of
superheated solids. Whereas most of the previous work
concentrated on bulk systems (or small systems that
could be treated as infinite), work on surface phenomena
in small systems such as clusters with three to several
hundreds of atoms is relatively uncommon. Briant and
Burton [28] had proposed the idea of surface melting as
early as 1975 and Nauchitel and Pertsin [29] found evi-
dence for it in Monte Carlo simulations of Ar&5 in 1980.
In 3 study of ArN, N =40—147, and Cu55 clusters Cheng
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and Berry [17] report surface melting at temperatures
below the onset of homogeneous melting on the basis of
isoergic molecular-dynamics (MD) simulations and pro-
pose a mechanism for the process.

The occurrence of coexistence phenomena [29,30] and
surface melting [17] in different accounts of the same ar-
gon clusters raises the question of what role surface melt-
ing has in phase changes of clusters. In terms of a
different emphasis, the occurrence of surface melting
calls for a generalization of the theory, henceforth allow-
ing for heterogeneous phases to enter.

Based on these two considerations we have organized
our study and this paper. In Sec. II we report the results
of isothermal MD simulations of Ar55 and Ar, 47 clusters
in a temperature range in which surface and homogene-
ous melting are possible. Building upon the results from
these computer experiments we devise a simple melting
theory in Sec. III, expanding the validity range of a mod-
el by Wales and Berry [4] that describes the coexistence
of homogeneous phases, by including heterogeneous
phases as well. In Sec. IV we discuss the results and draw
the conclusions in Sec. V.

II. NUMERICAL SIMULATIONS

A. Methods

To investigate the phase coexistence behavior of clus-
ters we have chosen to conduct constant-temperature
MD simulations of Arss and Ar, 47 clusters. As is fre-
quently done, their potential energy P was modeled by a
pairwise interaction given by the Lennard-Jones potential
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where e.=1.67 X 10 J and o.=3.4 A are widely used pa-
rameters for argon.

The equations of motion we used for the constant-
temperature MD runs are those given by Nose [31,32].
By adding a suitable pair of canonical variables to the
classical Hamiltonian equations governing the motion of
the atoms, we describe the dynamics of the N-particle
system coupled to a heat bath of fixed temperature in a
manner which, under the quasiergodie hypothesis, gives
canonical averages of static properties. Since the forces
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in the Nose method are momentum dependent, a propa-
gation algorithm is necessary that calculates accurately
both the configurations and the momenta. For this pur-
pose a fourth-order Gear predictor-corrector method
[33,34] was used to propagate the (6N+2)-dimensional
system of first-order ordinary differential equations. A
time step of 3X10 ' s was required to conserve the en-

ergy of the total system, i.e., of the cluster and the heat
bath, from step to step to at least five significant digits as
well as to prevent it from drifting over time. We fixed X
and chose free-boundary conditions so that the atoms
may evaporate from the clusters. In the temperature
range relevant for phase changes evaporations occurred
rarely, however.

To keep the cluster from starting on a high-symmetry
manifold in configuration space, thus possibly destroying
the assumed ergodicity, we distorted the icosahedral
ground state, the global minimum-energy structure for
magic-number sizes of homogeneous clusters with pair-
wise, centrosymmetric forces, by randomly displacing the
coordinates of each atom. The initial momentum was
chosen to be zero to avoid the complication of nonzero
angular momentum. Before the averaging process began,
fluctuations of the bath variable were damped by frequent
zeroing of the corresponding momentum during the
course of a preliminary run of 8X10 time steps. The
cluster was then equilibrated for 5 X 10 time steps before
the averaging process was initiated. %'e additionally
quenched the cluster periodically during the runs, locat-
ing the potential surface minima with the conjugate gra-
dient [35] minimization technique. In this method the
potential energy of the system is minimized along 3E —6
mutually orthogonal directions, so that the minimization
performed along each such direction is independent of all
the others.

As suitable diagnostics for the phase-change behavior
we calculated the short-time mean potential energy, the
short-time mean internal (kinetic plus potential) energy,
the radial distribution of atoms, the individual, shell-by-
shell mean-square displacements for each phase, and the
dependence of the vibrational entropy on the potential
energy for a characteristic sample of quenched states.

B. Results

What we call "phase" in the context of small clusters
must be understood to be a form that exhibits the equilib-
rium properties we associate with bulk phases, at least for
time intervals long enough to permit spectroscopic prob-
ing. Phases in the sense we use the term are, however,
only the small-system analogs of bulk phases, not identi-
cal to bulk phases, and in particular are in dynamic equi-
librium. The coexistence of two phases of a cluster thus
normally means that the cluster in its history passes
among the coexisting phases, spending relatively long
times in each but visiting them all for time intervals
whose ratios of average dwell times are given by the ex-
ponentials of the free-energy differences between pairs of
phases, in units of kT.

The method of recognizing dynamic phase coexistence
in isothermal MD is to compute short-time averages of

the cluster's potential or total energy over a few of its
breathing periods; when plotted against time, these distri-
butions separate into distinct bands, each of which is
easily distinguished by eye if the cluster stays in a partic-
ular potential-energy region for times long relative to the
characteristic breathing period of the cluster. Rather
than the potential energy, we averaged over the total (or
internal) energy E«, of the cluster to generate Figs. 1 and
2. Since the fluctuations of the kinetic temperature occur
on the same time scale as the characteristic breathing
periods of the potential energy, the picture of the short-
tirne averages as a function of time remains unchanged;
with increasing T, one merely observes a shift to higher
values of the kinetic energy Eh„=kT/[2(3N —6)],
~here T is the temperature of the heat bath. Figure 1

shows the short time mean total energy (E«, ), for
difFerent temperatures of Arss, where an averaging inter-
val of ~=1800 time steps has been used. At T =30 K,
below the temperature of the onset of phase coexistence,
we see a unirnodal distribution of energies that corre-
spond to vibrational states around the icosahedral ground
state, whose structure is shown in Fig. 3(a). At 33 K we
observe a splitting of the total energy into two distinct
bands. A typical structure of clusters with total energies
in the upper band is shown in Fig. 3(b): an atom has
popped out of the surface and occupies the adjacent outer
shell (a "floater" ), leaving behind a vacancy in the sur-
face. For T =35 K two additional bands appear [Fig.
l(c) and 1(d)]: one very close to the upper band of Fig.
l(b), representing a two-floater state [barely visible in Fig.
1(c) but clearly observable in Fig. 1(d)] and a wider one at
much higher energies. The latter represents clusters with
an amorphous structure which we denote "homogeneous-
ly melted" (HM) as opposed to the structures in the two
lower energy bands with floater-vacancy pairs and a solid
core, which we call "surface melted" (SM). The
justification for these names will become clear in the fol-
lowing discussion. For slightly higher temperatures the
SM bands disappear and only the band corresponding to
energies of the HM phase remains.

Figure 2 shows the caloric curve of Ars5 obtained from
isothermal MD by averaging separately over the
potential-energy values corresponding to the total-energy
regions I, II, and III shown in Figs. 1(c) and 1(d). We
find three coexistence regions: between 33 and 34 K the
solid and SM phases (dark squares and open circles, re-
spectively) coexist, in the range between 35 and 38 K we
find a threefold coexistence with the additional HM
phase (open triangles). Somewhere between 38 and 39 K
the solid phase vanishes and a twofold coexistence
remains until only the HM phase remains for tempera-
tures higher than approximately 39 or 40 K. We can dis-
tinguish four characteristic temperatures for the Ar»
freezing-melting transition. They are, in ascending order,
T&F and Tcz denoting the lower limits of the existence
range of a liquid surface and liquid core, respectively, and
therefore defined as the respective freezing-limit tempera-
tures, and TsM and TcM representing the corresponding
upper limits, the melting limits. The latter indicate the
melting temperatures of surface and core, respectively.
The limits found for the coexistence ranges in Fig. 2 are
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only very crude estimates, since simulations of an order
of magnitude longer in time would be necessary to give
reasonably accurate limits of stability, especially to find
the low-temperature limits Tsp and TcF. Far longer
times would be required to give reliable frequency distri-

butions for occupancy of the phases, i.e., to produce sta-
tistically based equilibrium constants.

Figure 4 shows the short-time mean total energy for
Ar&47 at 38 K. Again we find several bands, the lowest
one corresponding to the icosahedral ground state and
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FIG. 1. The short-time-averaged internal energy (E„,), for different temperatures of Ar». Each point represents an average over
v= 1800 time steps of 3 X 10 ' s each. (a) At 30 K, before the onset of melting, the energy remains in one band representing a cluster
whose energy is fluctuating around a mean value due to vibrational motion around the icosahedral ground state. (b) %%en the tem-
perature is increased to 33 K an additional band of higher internal energy comes into play corresponding to a cluster with a solid
core and one floater: the cluster can move back and forth between the two phases. It does this only occasionally, however, a given
phase persisting for periods of time very long relative to the characteristic vibrational period. (c) and (d) At 35 K we find as addition-
al phases of a dynamical coexistence a surface melted phase with two floaters and a homogeneously melted phase, in which the core
and the surface of the cluster show liquidlike behavior. The solid lines in (c) and (d) correspond to the energy limits used in the simu-

lations to distinguish between energy regions of the different phases, I denoting the solid phase, II the surface-melted phase, and III
the homogeneously melted phase. (e) At 40 K the coexistence vanishes and only the homogeneously melted band persists.



1898 RALPH E. KUNZ AND R. STEPHEN BERRY

] I I 1

-1.80x10 -1.60x10 -1.40x10

FIG. 2. Caloric curves of the solid (solid squares), surface
melted (open circles), and homogeneously melted (open trian-

gles) phases in Ar» derived from the isothermal MD simula-

tions.

the next two to surface melted states containing one, two,
and three floaters, respectively. Our MD simulations of
Ar, 47 also show dynamic coexistence of surface melted
phases and the homogeneously melted phase. In order to

find coexistence of S, SM, and HM phases in one run,
however, simulations much longer in time than those we
could perform are necessary.

To speak about different thermodynamic phases only
makes sense, however, if the dynamics of the system al-
lows it to spend long enough time intervals in each form
to develop equilibrium properties characteristic of that
form. To verify that the short-time averages presented in

Figs. 1 and 4 are not artifacts of the length of the averag-
ing interval r (resulting, e.g., from a peak in the frequen-
cy spectrum of the energy close to 2n. /r) and to investi-
gate the system's relevant time scales, we have calculated
(E„,), for Ar» at 35 K using three different averaging
intervals v=1.8X10 time steps [Fig. 5(a)], 1.8X10
[Fig. 5(b)], and 1.8X104 [Fig. 5(c)]. For r= 1.8X10 dis-
tinct energy bands can already be recognized although
the fluctuations of the energy within each band are of the
order of the energy shifts between the bands. For
7 —1.8 X 10 and 1.8 X 10 all the bands persist and no
mixing can be found. From Fig. 5(c) the minimum dura-
tion of stay in a single phase can be estimated to be of the
order of 6X10 breathing periods of 3X10 time steps
each, assessing the average period of vibrational motion

(a) (b)

(c)

FIG. 3. Representative (quenched) structures of the coexisting phases in Ar~~: (a) solid icosahedral, P= —5.292X10 eV/atom,

(b) surface melted with one floater, P= —5.242X10 eV/atom, and (c) homogeneously melted, P= —5.027X10 eV/atom. The
core atoms and the floaters are represented by dark spheres, the outer shell atoms by light ones.



49 MULTIPLE PHASE COEXISTENCE IN FINITE SYSTEMS 1899

-1.86xl0

0
65

-1.88x10
C)
C)
Qo

T=38K
I

147
I ~ I I

~ ~ ~

ag ~ ~ ~~o ge
C

~ ~ +~
~ ~ ~ ~

i ' . '|t

~ ~r~ ~
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basis of the energy region of the initial point. Since the
ratio of sampling time of the MSD and the minimum
duration of the system's residence in one phase is short
(«—„',&1), the error in the MSD due to crossovers be-
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the diffusion coefBcients for each shell and phase can be
calculated:
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FIG. 4. The short-time-averaged internal energy (E„,)„
7 —1800 time steps, for Ar&47 at T =38 K. The dynamical coex-
istence between the solid phase (lower band) and three surface
melted phases with one, two, and three floaters, respectively, is
shown.

by inspecting individual trajectories.
To learn more about the properties of the different

phases we have calculated the probability distribution
P(d) that a particle be the distance d from the center of
mass (Fig. 6). The statistical ensemble for each phase was
determined to consist of those points of the trajectory ly-
ing within a designated range of total energy. For Ar~s at
35 K these energy ranges are shown in Figs. 1(c) and 1(d).
Region I corresponds to the solid phase, region II to the
SM phase, and region III to the HM phase. Due to the
cluster's energy fluctuations across these artificially set
limits, the ensemble averages do not represent pure
phases and contain mixing contributions between
difFerent phases. The statistical weight for each phase is
by far highest within its own region; consequently, they
give us a good qualitative picture of the properties that
distinguish the phases. The average over region I (thin
solid line) exhibits the pronounced shell-like structure of
the Mackay icosahedra. There is no intershell motion
due to the vanishing of P(d) between the shells. In re-
gion II (heavy dashed line) the shell-like structure per-
sists, although the peaks flatten slightly. There is, howev-
er, an additional nonzero contribution for values of d
greater than that of the outermost shell. It arises from
floaters. In region III particle exchange occurs between
all shells, the shell-like structure becomes less pro-
nounced, and the cluster looks amorphous in snapshots.
The distribution can no longer be described by a superpo-
sition of Gaussian functions, and the intershell interac-
tions and exchanges become relevant.

Figure 7 shows the averaged shell-by-shell mean-square
displacements (MSDs) of Ar55 in the threefold phase
coexistence region. The MSD for shell k with particle
number Nk is given by

(r'(t))k= g ([r,(t)—r, (0)]'),1

Nk, h,g

where the average is over many independent time origins,
in our case 1X10 . Again we differentiated between the
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FIG. 5. The short-time-averaged internal energy t,E„,), for
Ar» at T =35 K for different averaging times ~: each point cor-
responds to an average (a) over 1.8 X 102 iteration time steps, (b)
over 1.8X10, and (c) over 1.8X10 . The separation of phases
in time is discernible in all three cases.
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FIG. 6. Probability distributions of the distance d from the
center of mass averaged over the regions in Fig. 1 separately for
one constant-temperature MD run of Ar» at T= K. hT=35 K: the
average over region I (thin solid line) exhibits the pronounced
shell-like structure of Mackay icosahedra. There is no inter-
shell motion due to the vanishing distribution P(d) between the
shells. In region II (heavy dashed line) the shell-like structure
persists, although the peaks flatten slightly. There is, however,
an additional nonzero contribution for values of d greater than
that of the outermost shell stemming from floaters. In region

hell-likeIII particle exchange between all shells occurs and the s e - i e
structure becomes amorphous.

For Ar55 at 35 K the diffusion coeScients computed
from Fig. 7 are given in Table I. From the solid to the
HM phase the diffusion constant of each shell in Ar» in-

creases by a factor of at least 20. The stiff localized
motion of the particles in the solid transforms into delo-
calized difFusive motion characteristic of a liquid.
Whereas the difFusion constant D4 of the outer shell in
the HM phase hardly differs from the corresponding con-
stant D& of the center particle, D4 has 4.5 times the value
of D& in the SM phase. The absolute value of D4 there,
however still lies an order of magnitude below the values
of the HM case. We can conclude that the floater-
vacancy pairs exhibit diffusive motion, but that their
motion is more restricted than any particle motion in t e
HM case.

As a further diagnostic tool to distinguish between the
different phases we have computed the vibrational entro-

py 0 vib ln'"' 'n the harmonic approximation for a sample
of quenched states along the trajectory and identified
their structures. The potential-energy hypersurface
P(r„rz,. . . , rz) can be approximated by a harmonic po-
tential in the vicinity of its local minima, which we find

by quenching, and the vibrational eigenfrequencies co;,
can= 1 X be computed from the Hessian matrix

(h)(8 P/Br; Br ); . The vibrational entropy o „;b is thenl,J
given by

(4)o'„;b=kg 1n(fiPco, ) .
J

Figure 8 shows the harmonic vibrational entropy (nor-
malized to the ground state) in terms of the potential en-
ergy P for a sample of quenched states of Ar~5. The
structure of each state was determined by computer visu-
alization. We see an almost linear rise in the entropy for
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FIG. 7. Shell-by-shell mean-square displacements of Ar» at
T =35 K for each of the energetic regions I (a), II (b), andnd III
(c), respectively. From the center outwarr s the shells are
represented by thick solid, thin solid, thin dotted, and heavy
dotted lines, respectively.

states with a solid core and mf floaters, rnf =0, 1,2, and a
saturation at the three-floater state. The harmonic ap-
proximation supposes that the system stays near the local
minimum of the potential-energy surface. At the ternper-
atures in the range of surface melting and above, the
floaters are not only able to go well above the harmonic
regions of their potentials, but they go high enough to
cross saddles fairly easily. From the diffusion coeScient
D~ in region II (cf. Table I) and the average vibrational
period of floater motion, which was obtained from in-

spec ing in
' 't' '

dividual trajectories during the simulations
elland was found to lie around 3 X 10 time steps, the dwe

time of a floater in each potential well can be estimated to
be of the order of 50 breathing periods, so that floaters
change wells fairly often during the life span of the SM
phase. Hence o.„'";bgives only a lower bound for the actual
vibrational entropy. An upper bound can be obtained
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from a free-volume model without floater-floater interac-
tions (especially excluded volume, i.e., strong repulsive
interactions). This would only be expected to show satu-
ration close to the half-empty shell levels. The simula-
tions indicate an intermediate situation, so that the actual
saturation is likely to occur at floater numbers a little
above 3. Supposing that the actual entropy is not much
larger than cr„";b,Fig. 8 shows HM states to be advanta-
geous to SM states with floater numbers larger than 2.
The saturation of the entropy for small floater densities

pf
=mf/N„wh—ere N, is the number of particles on the

cluster surface, suggested by o„'";b, together with the
strong rise in the entropy of the HM phase with increas-
ing P, might explain why the maximum number of
floaters observed in computer simulations [17] is much
smaller than the number of outer-layer atoms.

The multiple phase coexistence reported in this study
for isothermal MD simulations of Ar» and Ar&47 with
free-boundary conditions has also been observed in
Monte Carlo (MC) simulations of Ar~~, the cluster having
been placed within a hard constraining sphere. Nauchitel
and Pertsin [29] report that the result of their MC run
was "extremely 'unstable' in the [surface melted] region
in the sense that all three phase states of the cluster could
be here observed depending on the starting configuration
and the sequence of random numbers used to generate
the MC chain. Moreover, there sometimes occurred
'jumps' from one phase state to another within a single
MC chain. " The theoretical framework of dynamic
phase coexistence in small systems was not yet developed
when this was written. Consequently Nauchitel and Pert-
sin still thought of the melting-freezing transition of
small Lennard-Jones systems in bulk terms, and con-
sidered the surface melted state in clusters the small sys-
tem analog of the "two phase" state in bulk systems, in
which solid and liquid phases are present together in one
physical system. They did not recognize that they were
observing dynamical coexistence of three phases. In-
stead, they considered "the observed instability to mask
the true behavior of the internal energy-vs-temperature

(2)
(1)

(0) ~ (3)

-5.3xl 0 -5.2xl 0 -5.1x10 -5.0x10

E~ot (eV/atom)

FIG. 8. The normalized vibrational entropy of quenched
states of Ar» as a function of their potential energy obtained
from a harmonic approximation. The solid circles are states
with a solid core and zero, one, two, or three floaters, respec-
tively. The open circles represent clusters with an amorphous
core and surface. For low floater numbers the entropy increases
linearly and saturates for the three floater state, where the
higher-energy homogeneously melted states begin to be advan-

tageous entropically.

TABLE I. Typical diffusion coeicients Dk for Ar55 at 35 K.
The units used are 10 cm s

Shell Region I

&5.0X10 '
6.2X 10-'
4.3X10 4

8.6X10-'

Region II

7. 1X IO

8.0X 10
1.0X 10-'
3.1X10

Region III

1.3X 10
7.0X10-'
1.4X10-'
1.5X10

III. SIMPLE MELTING THEORY

A. Model

The conception of the model presented here is the for-
mal separation of the clusters's statistical-mechanical
properties into three subsystems, the cluster core, the sur-
face layer, and the floaters, respectively. We suppose
each cluster has 1V atoms, which we write as
N =N~(n)+a in the proximity of the Mackay numbers
N~(n) =(2n +1)[1+5/3n (n + 1)] with index n [37],
where a can be either positive or negative. If a is small
compared with ~N~(n) N~(n+1)

~
then t—hese categories

are well defined. In the ground state the core and surface
contain N, =NM(n —1) and N, =N—„a6(—a), parti-—
cles, respectively, where N„:N~(n) N~(n —1) an—d 6—
is the Heaviside function. In this case there are also

curve in the vicinity of the melting temperature, " which
they thought of as having the shape of an integrated A,

peak.
Using a Metropolis sampling algorithm, Labastie and

Whetten [30], on the other hand, report a solid-liquid
coexistence from their MC simulations, but do not find
the SM phase. The fact that surface melting did not con-
tribute noticeably to the statistical sample they gathered
might stem from the properties of the sampling algorithm
of the Metropolis MC method and of the density of local-
ly stable configurational states 0 in the SM region. From
data gathered during the isothermal MD simulations, 0
can be computed by a technique presented in Ref. [18].
The result for Arz& is that the values of 0 are nearly de-
generate in P for each of the two SM phases: the absolute
values of 0 for the two SM forms, with one and two
floaters, respectively, are 2.7X10' and 1.3X10' as
compared to the maximum value of 6.2 X 10 7 in the HM
phase [36]. If the initial configuration of a Metropolis
MC run does not lie within the energetically thin SM
shell, the Markov chain used for the sampling might well
find the solid-liquid, i.e., the solid-HM, transition without
ever finding the SM states, so they do not contribute to
the averaging process. This is opposed to the situation in
isothermal MD runs, in which the dynamical equations
virtually require the system to pass through the SM
phases when changing from solid to homogeneous liquid.

In Sec. II B we presented the results of isothermal MD
simulations showing a multiple phase coexistence in the
melting-freezing transition of rare-gas clusters. In Sec.
III we derive a simple statistical-mechanical model with
which we can investigate the conditions for such
behavior.
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ae(a) floaters. For a negative a approaching —N„,/2
or a positive a approaching N„+,/2, the notions of sur-
face layers and floaters as distinct categories lose their
meaning.

The starting point for the investigation of the cluster's
melting behavior is the partition function ZN in (5) which
we express in terms of the number of core or internal de-
fects m„ofsurface defects m„and of floaters mf ..

X„/2
Z = VZ'„;„'exp( PE—' ')

m~ =0 rn, = —a6( —a)

W„+l/2

Z, (m, )Z, (m, )Zf(mf )Z;„,(m„m„mf),
m =ae(a)f

with the summation indices restricted by the condition
that m, —mf+a=0. The numbers of floaters and vacan-
cies mf and m, cannot vary independently, but are relat-
ed to each other by m, —mf +a=0, since we allow no
particles to evaporate from the outermost layer. It is
most appropriate to view the independent variable as m,
if a&0 and mf otherwise. In (5) p=—l/kT, V is the
volume, E' ' and Z„';bdenote the potential energy and the
vibrational partition function of the ground state, respec-
tively, and Nd is the number of possible defect sites in the
core. In the absence of interactions the normalized part
of Z~ factors into contributions Z, , i =c,s,f, correspond-
ing to each subsystem. The factor Z;„,then takes into ac-
count entropic and energetic interactions between the
subsystems.

For the core we follow Wales and Berry [4], who gen-
eralized a model Stillinger and Weber [38] formulated for
the melting-freezing process on the basis of their comput-
er simulations of argon clusters in a body-centered-cubic
ground state lattice. Their formulation, which is similar
to that used in the hole theory of dense fluids [39], was
suggested by the concept of an inherent lattice arising
naturally from Stillinger and Weber's quenched simula-
tions. Using a quasiparticle formulation and working in
the limit of a low density of defects, a simple considera-
tion of the allowed permutations and a mean-field as-
sumption for the energy led them to an expression for the
partition function

V,
Z, =B (Nd, mc )

C

-paE"e

Qo
1

e (c)—Q [a (c)+b (c)(p) ]pk
k=o k' (7)

More specific models, such as Stillinger and Weber's [38],
where the quasiparticles axe actually composed of two
particles and particles are allowed to appear together in
the same cell, merely lead to quantitative changes of the
melting properties; the fact remains that p(p, ) has turn-

where 8 denotes the binomial function,
bE"—=E"—E' ' is the energy deviation of the core
from the ground state, A = (h /2m Mk T ), M is the
quasiparticle mass, and V, is the core volume. Whereas
an energy expansion in terms of the number density of
particles is not expected to be useful for a condensed sys-
tem, an expansion in terms of the number density of de-
fects p, —=m, /Xd is appropriate if the system of quasipar-
ticles is reasonably dilute. Expanding e"=DE '/Nd we
obtain

ing points only in the case of mutually attracting quasi-
particles; this will be shown below.

Z, and Zf describe the deviation of the partition func-
tion from the ground-state value due to the effect of va-
cancies in the surface layer and of floaters, respectively.
They are defined as

Z, =Z'„',b(m, )Z"(m; ) exp[+ pb E "(m, )],
i=s f . (8)

Here Z„';band Z ' are the vibrational and permutational
partition functions, respectively, and 4E"—=E"—E' ',
i =s,f, are the energies of the surface and fioater systems,
respectively, normalized to the ground state. Counting
the allowed permutations for the surface vacancies, one
obtains Z„'=B(N„m,). An evaluation of Z f' is more
difficult, however, and resembles the problem of "com-
munal entropy" [39], since the floaters can perform
diffusive motion throughout the outer layer. The simula-
tions show that the floaters vibrate around one site for
many periods and only about once every 50 periods pass
from one minimum to another and less frequently ex-
change with surface atoms. In this case the floaters' per-
mutational partition function can be approximated by
Z' ' =B[N„+)—cm„mf], in which we take into account(f)

the fact that floater sites adjacent to surface vacancies, of
which there are assumed to be c for each vacancy, are ex-
cluded since the resulting vacancy-floater sites would be
unstable. Prior to the onset of homogeneous melting
m «N„+)/c holds, however, so that we obtain
Z '=B [N„+„mf]+O(mfm,). The energies AE",
i =s,f, can be defined analogously to (7) by the expansion
of e"=bE "/N, in te—rms of the number densities of va-
cancies or floaters p; =—m;/N, .

Interactions between different subsystems are incor-
porated into Z;„,—:exp( —PN, e;„,), where e;„,can be ex-
panded in terms of p;, i =c,s,f, again assuming
suSciently dilute subsystems:

[ [ (cs) +g(cs)(p)] I I'

1, 1'= 1

+ [+(s() +b(&P) (p)]pl pI'

+ [& ( cP) +b ( cP) (p ) ]p
I
p

I

B. Local extrema in the case
of vanishing interlayer interaction

Explicitly neglecting fluctuations, we can replace the
sums in Zz by their dominant terms in a maximum term
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approximation. These can be found for fixed, suSciently
arge N by taking the natural logarithm, applyin

Stirling's approximation, and differentiating with regard
tom =—(m m.;), where we now denote the independent
surface variable by m; and the dependent one by m . In
the case of vanishing interlayer interaction, which we in-

vestigate in this subsection, the differentiation can be con-
ducted independently for the core and the surface-floater
system, respectively.

Let us first calculate the extrema of Z, . From (6) we

o tain

1n(1/p, —1)+ 1n(P, /Nd )
—3 lnA

ae"/a). ,

8 lnZ,

Bm,

2e (c)

=Nd[(p 1)p ] P z
=0.

C C ~Pc

where we are using p, =m, /1Vd instead of m, . Due to
the theorem of implicit functions and the nature of the
partition function, the turning points of P(m, ), defined by
dP/dm, =0, also solve

8 lnZ, V,= —31nA+ In
(12)

+ ln
Nd ge (c)—1 pNd-
mc Bm,

(10)
J

The condition for this derivative to vanish and hence for
an extremum m, of the free energy is therefore

Since the fractional number density of quasiparticles is
ess than one, we will only find turning points for P as a

function of p, if the second derivative (1 e "/Bp can be
C

negative. This requires the terms in a" b"Q2 2 Q3 3

etc. to make a negative contribution to the second deriva-
tive of the energy. Interpreting the defect-defect interac-
tion terms in e" proportional to p„p„etc.as two-bodywo-o y,
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8 ln[Z;(m, )ZJ (m;+ ~a~ )]
Bm.

P, m =m
=0. (13)

Again using Stirling's approximation we obtain from (8)

8 ln[Z'„';I,(m;)Z„'JI,(m;+ ~a~ )]

+ ln

m;

S; —1 +ln
m;

P, m =m

1V —1
m, +/a/

+pN, [e"(m, }—e. '~'(m;+a~)]& =0,

(14)

where the minus sign holds for i =s and the plus sign for
i =f and NI=N„+,has been introduced. The first term

three-body, and higher corrections, we see that turning
points will occur if these interactions are energy lower-
ing, i.e., if there are attractive forces between the quasi-
particles.

The equation defining P( m, ) [(i j)= (s,f) for a ~ 0 and
vice versa otherwise] in the interactionless case is given
by

in (14) can be expressed as the derivative of

0 „;&(m;) =—In[Z„';I,(m; )Z„'JI,(m;+ ~a ~ )]

Z„+(m,=O, m; m;+ ~a~ )= ln
(OjZ vib

(15)

0 ib Ns [1 l+ Y2arctan[1', (m, —N, p)]] (16)

accommodates the simulation data with the fitting pa-
rameters y, , yz, y3, and p (for parameter values, see Fig.
9). Again it must be pointed out that o'„";b gives only a
lower bound for the vibrational entropy, which we as-
sume, however, to be represented well by o'„";s'. With (14)
and (16) we obtain P(m, ) for magic number clusters

where Z„;& is the total vibrational partition function,
since for m, =0 the vibrational partition function of the
core drops out due to the normalization. Note that (15)
also holds if interlayer interactions are included. The ex-
plicit dependence of o.„;~on m; can be approximated
from simulation data by calculating (4) for quenched
states with a solid core and m; Aoaters as well as for the
ground state, and subsequent subtraction. For Ar»
(which is a magic number cluster, thus a=0 and i =s
hold}

N, y2y3[1+(y3) (mz N, p) ]—'+ ln(N, /m, —1)+ ln(NI/m, —1)

N, axe'/'/am,
(17)

where we have introduced b e' '—=e"—e' '. The turning
points of P(m, ) are given by

8 1n[Z, (rn, )Z/(m, )]
81B~ P, m, =m,

2N, yq(y3) (m, N,p)—
[1+(y3) (m, Np) ]—

m, (N, —m, )

a'~e'~'
Bm

m, (N/ —m, }

(18)

where the dependence of P on m, is given by (17). For
reasons of simplicity let us now neglect all energy terms
of cubic or higher order in m, . If o.„;~were linear in m„
the first term in (18), being the second derivative of o „;~
with respect to m„would vanish. In this case, analogous
to the core, a pair of turning points m»2 would be found
only if Aez' ' (0. Due to the properties of the second
and third term in (18) m*, &N, /2&m& would hold.
Coexistence within the range of rn, E [O,N, /2], where the
outer layer is still well defined, would not be possible.
The nonlinearities of cr„;b,however, lead to a resonance-
peaklike form of its second derivative o.„";&

=(8 o„;~/BK,)& around N, p, making a second pair of
turning points for negative values of Aez' ' possible.

I

They can even lead to a pair of turning points for positive
Aez' ' under a certain threshold if y2 is large enough.
For p « —,

' the arctan shape of o „,s given in (16) is there-
fore sufficient to create the finite-system counterpart of a
first-order melting-freezing transition of the surface in a
range of m, that is compatible with numerical experi-
ments.

What are, however, the necessary conditions that o.„;~,
the entropy of the surface vacancy-fioater system, has to
meet in order for a pair of turning points in the P(m, )

curve to appear with surface densities p & &2=—m*, &2/X, ((—,'? Let us assume that 0.„";&has a single

global maximum at m «N, /2 and there are no other lo-
cal extrema. Under sufficient conditions the curly brack-
et in (18) then has a single global maximum at a value of
m, much smaller than X„since the other terms are
monotonically falling in m, . Negative values of Aez' '

can then lead to four intersection points. Two of these
points originate from the diverging behavior of the
second term in (18) at m, =0 and N, and lie in the vicini-

ty of the poles. The other two are created by cr„";~and lie
near m. Since o.„;~is non-negative and ~„;„(0)=0 holds
by definition (15), any function of m, that increases for
m, & m and saturates at a value m smaller than N, /2 will

have a single local maximum in its second derivative at m
and thus lead to the desired surface melting behavior.
And indeed, the entropy values for a solid core and
different values of m, =m&, gained from a harmonic ap-
proximation and shown in Fig. 8, exhibit a saturation
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behavior at m =3 & N, /2 =21, suggesting a similar
behavior for the actual vibrational entropy.

In the absence of interactions the classification of the
extrema of the full system is easily determinable from
that performed in each subsystem separately, since the ei-
genvalues of the Hessian (8 1nZN /Bm; Bm J )&, i,j
=c,s, are given by A,,=(8 lnZ, /Bm, )& and

=[8 ln(Z, ZI)/Bm, ]&. Analogously to P(m, ) [4], des-
cending branches of P(m, ) are local maxima of 1n(Z, Z/)
and thus have A,, &0 if the derivative of the energy with
respect to m, is negative. Maxima of lnZ& (i.e., minima
of the free energy) therefore are those subsets of (m„m,),
in which P is a decreasing function of both independent
variables.

In order to find m, (P) and m, (P) the transcendental
functions (11) and (17) can be inverted numerically. In-
stead, we do this graphically by plotting P as a function
of p, and p, (alternatively to m, and m, ), in three dimen-
sions. The interactionless case is shown in Figs. 9(a)-9(c)
using three different sets of parameter values. In addition
to the full space curve P(p„p,) (heavy line), its projec-
tions p, (p, ),p, (P), and p, (P) onto the axis planes are
visualized as thin lines.

Figure 9(a}exhibits separate coexistence regions for the
core and the surface. For low temperatures (or high P)
both the core and surface defect densities are close to
zero. The cluster is solid. With increasing temperature
(or decreasing P) the system reaches a value PsF =—1/kTsF
at which a second extremum of lnZ„appears at p, &0.
This temperature is the upper limit for the existence of a
melted surface and can thus be seen as the "surface freez-
ing" point. Since p, =O still holds, the system changes
from the solid phase (characterized by p, =O,p, =0) to
coexisting solid and surface-melted (p, =O,p, XO) phases
at Ps„.Lowering P further one reaches the temperature
at which the extremum with p, =0 and, equivalent to it,
the solid phase vanishes. This is the point of complete
surface melting, represented by Ps& =—1/Ts~. A further
decrease of P leads to an analogous cycle for the core: as
the surface remains melted, a second value of p, = 1 max-
imizing lnZ appears at PCF, the upper limit for the ex-
istence of melted core states and thus the core freezing
point. Here the SM phase coexists with the HM phase in
which both the core and the surface are melted

(p, =l,p, %0). At Pc~—= 1/Tc~ the branch with p, =0
vanishes and the core melts, so only the HM phase
remains. The (inverse) limit temperatures Ps„and Ps~
are represented by dashed lines in the (P,p, ) basal plane
in Figs. 9(a}—9(d}, Pc& and Pc~ by dashed lines in the
(P,p, ) basal plane. In Fig. 9(d) PcF has been extended to
the (P,p, ) plane.

Figure 9(b} shows P(p„p,} in the case that the coex-
istence range of the surface is completely contained in
that of the core. With increasing temperature or decreas-
ing P we find the cluster in S, then in a region of coex-
istence of S and a phase with a melted core and a solid
surface ["core melted" (CM), p, =1,p, =0], then in a
coexistence zone of all four possible phases S, SM, CM,
and HM, then in a coexistence of only SM and HM, and
finally in a region of HM only.

C. Inclusion of interlayer interaction

In this section we calculate the extrema of lnZ& assum-

ing the interaction term Z;„,makes a nonvanishing con-
tribution. As was the case for intralayer interactions, we
restrict ourselves to terms of order smaller than cubic in
the defect-floater densities, incorporating terms linear or
quadratic with respect to p, and p; into e"and e"by re-
normalizing the coei5cients of the energy expansion, so
that

(c) +(c) (c)y (cj)
a& ~

&
=a& a& & Nd'

(i) y(I') (0 y (ij)
S

a2 a2 =a2 +2a(i) (I) (0 (ij)

(19)

and equivalent substitution equations can be found for b.
We find that e;„,reduces to

[+&cs& ++&cf~ +y&cs&(P)+b&cf&(P)]p p (20)

where we have dropped the tildes again.
Froin (5) we then obtain the defining equations for m,

and m, in the presence of interlayer interactions

Figure 9(c) displays P(p„p,) with core parameter
values chosen in such a way that the core coexistence
range [Pc~,Pc„]is that found in simulations of Ar».
Here the overlap of the surface coexistence temperature
band with that of the core is only partial. Again scanning
through the temperature range starting at large P, we find

S, a coexistence of S and SM, a fourfold coexistence of all
possible states, again a twofold coexistence, this time of S
and SM, and finally HM alone.

Figure 9(a)-9(c) display the temperature dependence of
the phase behavior in the interactionless case for all pos-
sible scenarios of overlap of the coexistence regions.
[Switching the coexistence regions in Fig. 9(c} merely
leads to an exchange of S and C in the sequence of
phases. ] We conclude that in the absence of interactions
between the core defects and the vacancy-floater pairs,
the threefold coexistence of S, SM, and H we found in the
simulations of Ar55 and infer from those of Ar, 47 cannot
be explained in a mean-field model; either separate two-
fold phase coexistences or an intermediate fourfold coex-
istence persists. Additionally, it must be pointed out that
the CM phase is an artifact of this omission: the fact that
the core can melt independently of the state of the sur-
face contradicts the dynamical behavior of the system
governed by the underlying Newtonian equations of
motion: they only allow a deviation of the core from the
icosahedral energy-minimizing structure if the restraining
forces acting from the surface are sufficiently small. This
shortcoming is removed with the refinement of Sec. III C.
One can, however, imagine a frozen surface around a
molten core in the presence of unusual forces, such as
those between water molecules, which permit solids to be
less dense than the corresponding liquids.



1906 RALPH E. KUNZ AND R. STEPHEN BERRY 49

8 lnZ~

Bm pm =m

0 lnZ~

Bm pm =m

() lnZ,

Bm pm =m

Xi+4
p$ =0

d

[ lnZ, (m, )Zf(m, )]&
S S

Xi+4
p, =0,

$

(22)

where we again restrict ourselves to the magic
number case, and g, =N, [a ',",'+a", ,

' ] and gz
=NP[b~i"i'(P)+b&'i'(P)] were introduced for siinplicity.
In the following we assume that the temperature-
dependent contributions to the interlayer interaction en-
ergies b &",

' and b', ', ', e.g. , describing the coupling of core
and surface defects by phonons, are linear in the tempera-
ture T = 1/kP, making gz independent of P.

We obtain two equations for P corresponding to the
derivatives of lnZ& with regard to the two independent
variables m, and m, :

ln(l/p, —1)+ ln[V, /(NdA )]—(gz/Nd )p,

Be"/B +(gi/Nd )p,
=,(p„p,)= (23)

N, yzy&[1+(yz) N, (p, —p) ] '+ ln(1/p, —1)+ ln[Nf/(p, N, ) —1] (gz/N, )p-,
Bb ' '/B +(g /N )

(24)

From the transcendental equation P, (p„p,)—P, (p„p,)=0 we find p, (p, ), which after insertion into
(23) gives us P(p, ) and, using p, (p, ), P(p, ). Whether the
extremum P(p„p,) is a maximum, a minimum, or a sad-
dle of lnZ& is determined by the trace Tr and deter-
minant Det of the Hessian H:

B lnZ~

Bm;Bm
=5;, A, , +

Ni+kz
$ d

Si+kz
1V,Nd

i,j c,s, (25)

where A.; are the eigenvalues in the case of vanishing in-

terlayer interaction. For the respective cases, Tr H (0
and Det H )0, Tr H )0 and Det H )0, and Det H ~0
hold. The inclusion of interlayer interaction only has a
very small effect on the stability of the solution manifolds

P(p„p,}. Hence the criterion of the interactionless case,
i.e., that P curves which are descending functions of both

p, and p, are maxima of lnZ&, also holds here with good
approximation.

Figure 9(c) shows P(p„p,) for g&, hz =0 and parameter
values suitable to describe Ar». If a negative, i.e,
energy-decreasing temperature-dependent interlayer in-
teraction gz, is assumed [Fig. 9(d)], the part of the curve
in the CM regime that is not connected with the rest
shrinks and finally vanishes. Figure 9(d) shows that a
coexistence of S, SM, and HM takes place between Pc„
and PsM. For large P we find a coexistence of SM and S
and, if P & Ps„,merely the solid phase. The condition
PcM &P &PsM yields a SM-HM coexistence, and for
P &PcM we find only HM. In Fig. 10 p, (p, ) is compared
for g, = —10 [Fig. 10(a)], g&=0 [Fig. 10(b)], and g&=10
[Fig. 10(c)] and several values of gz. One sees that the
value of gz & 0 at which the core-melted state vanishes for
g&=0 increases if the energetic interaction is negative,
i.e., the two-body forces between the core and surface
quasiparticles are attractive. Comparing, e.g., the p, (p, }

curves for hz=0 [heavy solid lines in Figs. 10(a)—10(c)],
the CM phase that exists for an energy-increasing
temperature-dependent interaction (,=10 vanishes for

gi = —10.
From Figs. 9 and 10 we can therefore conclude that

the multiphase coexistence of S, SM, and CM that we
find in MD simulations of Ar55 and infer from those of
Ar, 47 can only be explained within the framework of a
mean-field model if the interactions between core defects
and floater-vacancy pairs are suSciently energy lowering,
i.e., that these quasiparticles either attract each other or
have a mode-softening effect on the phonon spectrum, or
both. This inference is similar to that made by Wales and
Berry [4]. Clusters whose interatomic forces lead to a net
repulsion of these quasiparticles will not exhibit a melted
surface, since this phase would imply the existence of the
"dual" core-melted phase. Mechanical considerations,
however, make the appearance of such a phase unlikely
for clusters bound by simple, central forces. Such clus-
ters are more likely to exhibit a transition to a nonwetted
phase, in which a solid and a liquid region coexist "side
by side" simultaneously, which is the case, for example,
for (KCl)3z [18].Here the dual state, in which the role of
the core and the surface are simply exchanged, also cor-
responds to a physically reasonable structure, namely, the
nonwetted one itself.

IU. DISCUSSION

The phase coexistence behavior we find in Ar» and
Ar, 47 allows us to make some general remarks on the na-
ture of the surface-melting transition. As opposed to ear-
lier suggestions [17], it resembles more a finite system's
counterpart of a normal, first-order transition, rounded
by finite-size effects [40,41] than the small-system analog
of a weak first-order transition. In the previous work, the
necessity of a small latent heat was recognized but the
formalism did not allow enough flexibility to reveal the
two-minimum or multiple-minimum form of the free en-
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ergy as a function of the order parameter, at constant
temperature and pressure. The solid surface clearly does
not lose its local stability at the same temperature the
liquid surface gains it. This stems from the fact that the
entropy of the surface seems to saturate for a very low
density of surface vacancy-floater pairs and cannot be
treated as linear in the number of floaters within the tran-
sition range. A direct statistical-mechanical derivation of
this behavior from the interatomic forces remains to be
performed, however. The "melted surface" apparently
does not provide nuclei for homogeneous melting, thus
permitting superheating.

From a mean-field theory we further find that clusters
will only exhibit a melted surface if the two-body interac-
tion forces between core defects and the quasiparticles of
the surface, i.e., floater-vacancy pairs, are attractive.
From the symmetry of the CM and SM phases in (p„p,)

(&)
0.05, 1

P 0.03"

space, which accompanies repulsive core-surface interac-
tions, we conclude that clusters with interatomic forces
leading to such properties of the quasiparticles will more
likely exhibit nonwetted structures. From the model we
derived in Sec. III we can compute conditions the materi-
al parameters of the cluster have to meet for the cluster
to show multiple phase coexistence. This has been done
in the Appendix.

V. CONCLUSIONS

Isothermal MD simulations of Ar33 and, in a less com-
plete way, of Ar, 47 clusters reveal a dynamic, multiple
phase coexistence involving a solid, rnicrocrystalline
phase, a homogeneously melted phase, and phases exhib-
iting a solid core and a melted surface. A simple theory
for the melting-freezing transition that incorporates
heterogeneous phases shows that this behavior is possible
if the core and surface both undergo finite-system analogs
of first-order transitions with overlapping coexistence re-
gions, and the mode-softening defects of the core exhibit
an attractive interaction with the vacancy-floater pairs on
the surface. Parameter dependences necessary for the ex-
istence of multiphase behavior are given.
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APPENDIX: CRITERIA
FOR MULTIPLE-PHASE COEXISTENCE

P 003" !

0.00
0

(c)

0.5

In this appendix we will briefly give an algorithm with
which criteria for the mean-field parameters of the model
in Sec. III can be found so that multiple phases (i.e., more
than two) coexist. The parameters Nd, a', b(~', etc.,
ln( V, /%&A ) for the core and a", , b ~i'), a If', b',f', etc., y „

7 3 8 for the surface we will symbolically denote by a,
and a„respectively. The condition for multiple phase
coexistence (MPC) is then given by

0.05
psM(a a }—pcF(a (Al)

P 003",

0.00
0 0.5

If we restrict ourselves to the interactionless case [which
is a reasonable approximation since the turning points of
p(p, ) and p(p, ) are not changed considerably for small g&

and $2] psM and pc„canbe computed from (12}and (18).
By solving (12) numerically and choosing the larger of the
two roots, we obtain p, (a, ) and after insertion into (11)

max

pcF(a, ). The equivalent procedure for (18), for which the
smallest root p,

* (a, ) must be found, leads to psM(a, }.
min

The fina condition for MPC is then given by

FIG. 10. The relation of surface to core density p, (p, ) for
different values of the interlayer interactions g, and gz. g, is
given by (a) —10, (b) 0, and (c) 10; gz is 500 (solid triangles), 100
(crosses), 0 (heavy line), and —100 (thin line).

p, lp,
' (a, )]=p, lp,

' (a, )l (A2)

where the subscripts indicate the diferent functional
dependencies of P in (11}and (17).
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